红曲霉产色素相关基因的克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红曲霉(Monascus spp.)是我国传统的食用和药用微生物,在我国已有上千年的应用历史。它能分泌产生色素、莫呐可啉类(monacolins)物质、γ-氨基丁酸(γ-Aminobutyric Acid,GABA)、麦角固醇和丰富的水解酶类等多种有益代谢产物,是生产食品发酵剂、着色剂、保健食品、药品或其原料的重要微生物资源。目前,国内外对红曲霉菌种的分类、选育、代谢产物分离纯化及发酵条件的研究较多,而有关红曲霉的分子生物学研究才刚刚起步。GenBank检索结果查见,与红曲霉相关的核酸序列大部分是研究分类和亲缘关系的,有关功能基因的研究很少,而关于红曲霉产色素基因的研究尚未见报道。
     近年来,利用根癌农杆菌(Agrobacterium tumefaciens)介导T-DNA转化真菌获得突变体的方法成为寻找和鉴定新基因的有效手段。本课题采用根癌农杆菌介导的T-DNA转化法建立了包含5100多株转化子的红曲霉转化子库,从转化子库中筛选得到了24株菌落颜色发生了明显变化的色素突变子,并对其菌落形态及显微结构、潮霉素抗性稳定性及主要代谢产物的分泌能力等进行了分析。在此基础上,采用TAIL-PCR分离到8株色素突变子T-DNA插入位点的左侧序列,并应用RACE技术克隆得到了一株色素突变子805~#T-DNA插入位点的cDNA全长序列,采用基因敲除(gene knock-out)技术对其功能进行了验证。具体研究结果如下:
     1转化子库的构建及色素突变株的筛选
     通过优化农杆菌(A.tumefaciens)介导的T-DNA转化红曲霉的条件,构建了包含5100多个转化子的转化子库。T-DNA的PCR验证结果表明,随机挑选的60株转化子均含有T-DNA插入片段。24株随机挑选的转化子的Southern杂交结果表明,T-DNA单拷贝插入率为70.8%。通过对转化子菌落形态的观察,筛选得到53株形态发生明显变化的转化子,其中24株为菌落颜色发生显著变化的色素突变子,其编号分别为189~#、192~#、533~#、635~#、733~#、805~#、959~#、1132~#、1164~#、1263~#、1295~#、2066~#、2606~#、2887~#、3108~#、3257~#、3715~#、3742~#、4081~#、4096~#、4591~#、4698~#、4963~#和4968~#。色素突变子连续传代培养5代后,除733~#、1132~#、3715~#和4591~#外,其它20株色素突变子均能在潮霉素抗性培养基上稳定生长,潮霉素抗性稳定性达83.3%。
     2色素突变子产红曲色素、monacolin K、GABA和桔霉素的分析
     采用UV-VIS、TLC、HPLC等方法对上述20株潮霉素抗性稳定的色素突变子的固态发酵产物红曲的色素(包括色价、吸收波长、色素组分)、monacolin K、GABA和桔霉素的产生情况进行了分析。结果表明,与出发菌株相比,色素突变子产代谢产物的能力都发生了不同程度的变化。
     在产色素方面,色素突变子959~#的色价最高,达2 712,是出发菌株M-7色价1228的2.2倍;1263~#的色价最低,仅为20,只有出发菌株M-7色价的0.01倍。另外,色素突变子红曲乙醇萃取液的UV-VIS扫描图谱和色素组分也发生了显著的变化。在产monacolin K方面,突变子4081~#红曲的含量最高,达1601μg/g,而出发菌株M-7红曲的含量低于0.1μg/g。在产GABA方面,突变子1263~#红曲含量最高,达6183.9μg/g,是出发菌株M-7 436.3μg/g的14.2倍;635~#红曲的含量最低,只有156.1μg/g,约为出发菌株M-7的0.33倍。在产桔霉素方面,突变子635~#红曲的含量最高,达154.57μg/g,是出发菌株0.75μg/g的206倍;1295~#含量最低,为0.10gg/g,为出发菌株的0.1倍。
     比较上述20株色素突变子产色素和桔霉素的情况,可将其分为4类:第一类,色价和桔霉素都升高的,包括635~#、959~#、1164~#、2066~#、2606~#、2887~#、4081~#和4698~#共8株;第二类,色价和桔霉素都降低的,包括805~#、1295~#、3742~#和4968~#共4株;第三类,色价降低而桔霉素含量升高的,包括189~#、192~#、1263~#和4963~#共4株;第四类,色价升高而桔霉素降低的,包括533~#、3108~#、3257~#和4096~#共4株。从上述四类突变子中挑选出635~#、1164~#、2606~#、805~#、1295~#、189~#、1263~#、4963~#、533~#和3257~#共10株代表性菌株,作为研究红曲霉产色素相关基因的材料。
     3色素突变子T-DNA插入位点侧翼序列TAIL-PCR扩增及扩增片段功能分析
     采用TAIL-PCR法对上述10株色素突变子T-DNA插入位点的侧翼序列进行了扩增,得到了635~#、1164~#、2606~#、805~#、3257~#、189~#、4963~#和533~#共8株突变子T-DNA插入位点左侧的DNA序列,扩增的DNA片段长度介于500 bp~1 300 bp之间。FASTA比对分析表明,805~#突变子DNA扩增序列与烟曲霉(Aspergillus fumigatus)Af293的G蛋白信号调节子(regulator for G-protein signaling,RGS)功能域的同源性达84%:其它7株突变子的T-DNA插入位点侧翼的DNA序列未发现有功能明确的相似性序列。突变子533~#、1164~#和2606~#的DNA扩增片段已经登陆Genbank,登陆号分别为DQ861336、DQ861338和DQ1337。
     4红曲霉G蛋白信号调节子的功能验证
     以突变子805~#扩增序列的Blast比对分析结果为依据,设计特异性引物,采用RACE技术,扩增得到了对应于该DNA序列的2012 bp的cDNA序列。ORFfin工具分析显示,其包含的最长开放读码框架(open reading frame,ORF)为1851bp,推衍得到包括了RGS和2个DEP(disheveled,Eg1+10,pleckstrin)3个结构域在内的氨基酸序列。以RGS结构域两侧的DNA序列为同源臂,采用基因敲除(gene knock-out)技术对其功能进行了初步研究。研究结果表明,805~#突变子T-DNA插入位点的基因,即编码红曲霉FlbA(nuffy for brlA)的序列对红曲霉色素分泌具有正调节作用。
Monascus spp., a kind of fungi, used in food production and traditional medicine for a thousand of years in China, has become an important microorganism resources due to its production of many kinds of metabolites, such as monascus pigment, monacolins,γ-aminobutyric acid(GABA), ergosterol and hydrolyase, which are used as food fermentation starter, food colorant, function food and the ingredients or/and raw materials of medicine. At present, the investigation about Monascus spp. was focused on its classification, breeding, metabolites isolation and fermentation conditions to improve useful metablites, but the study on molecular biology of Monascus spp. is at the beginning stage. It was found that most of the sequences related to Monascus spp. in GenBank were used as classification and identification of the homology, few were functional genes. Until now, there was no report about the gene(s) involved in monascus pigment synthesis.
     In recent years, an efficient method to find and identify new function genes with Agrobacterium tumefaciens-mediated T-DNA transformation has been developed and widely used. In this paper, a transformant library of Monascus ruber by Agrobacterium turnefaciens mediated T-DNA transformation was constructed and more than 5 100 transformants were obtained. From the library, 24 color-producing mutants, which were markedly different from the original strain M-7 in pigment production, were selected, and the colony morphologies, microscopic structures, the stabilities to hygromycin resistance and the abilities to produce different metabolites of the mutants were analyzed. After that, flanked T-DNA sequences of 8 color-producing mutants were isolated by thermal asymmetric interlaced PCR, according to the bioinformation of isolated sequences, a complete cDNA sequence of color-producing mutants named 805~# was coloned with the method of rapid amplification of cDNA end. Finally, the function of the sequence from 805~# was identified by gene knock-out. The main research contents are as follows:
     1 The construction of transformant library and selection of color-producing mutants
     The transformant library of Monascus spp., containing more than 5 100 transformants was constructed. The results of PCR amplification of transformants by Agrobacterium tumefaciens-mediated T-DNA transformation suggested that all of the genomic DNA of 60 randomly selected transformants were inserted by T-DNA. The results of southern blot revealed that the single-copy rate of T-DNA into the genomic DNA of 24 randomly selected transformants was 70.8%. By morphology observation, 53 phenotype mutants from the library were selected, among which, there were 24 color-producing mutants and their codes were 189~#, 192~#, 533~#, 635~#, 733~#, 805~#, 959~#, 1132~#, 1164~#, 1263~#, 1295~#, 2066~#, 2606~#, 2887~#, 3108~#, 3257~#, 3715~#, 3742~#, 4081~#, 4096~#, 4591~#, 4698~#, 4963~# and 4968~#, respectively. After five rounds of consecutive incubation, except 733~#, 1132~#, 3715~# and 4591~# the rest of color-producing mutants can grow on the PDA containing 20μg/mL of hygromycin and the stable rate to hygromycing resistance amounts to 83.3%.
     2 Analysis of monascus pigment, monacolin K,γ-amino butyric acid and citrinin of red fermented rice produced by color-producing mutants
     The contents of monascus pigment, monacolin K,γ-amino butyric acid and citrinin of red fermented rice(RFR) produced by 20 stable color-producing mutants, were analyzed by UV-VIS, TLC and HPLC. The results revealed that the mutants rnetabolites described above were different from those produced by the original strain M-7.
     In the aspect of pigment, RFR of 959~# was of the the highest pigment-value and amounted to 2 712, which was 2.2 times that of M-7, while the pigment-value of 1263~# was the lowest and was 20, which was just 0.01 times that of M-7. In addition, the UV-VIS spectrum and pigment components of 70%of ethanol solution of RFR produced by 20 of color-producing mutants were markedly different from those of M-7. Regarding to monacolin K, the amounts of monacolin K produced by 4081~# was the higest up to 1 601μg/g while that of M-7 was lower than 0.1μg/g. About GABA, the amounts of GABA of RFR produced by 1263~# was up to 6 183.9μg/g and was 14.2 times that of M-7, the amount of 635~# was the lowest to 156.1μg/g and was just 0.33 times that of M-7. With regards to citrinin, the content of citrinin of RFR produced by 635~# was the higest among of all color-producing mutants, which amounts to 154.57μg/g and was 206 times that of M-7, the content of citrinin of RFR produced by 1295~# was the lowest to 0.10μg/g and was 0.1 time that of M-7.
     According to the pigment-values and yields of citrinin of RFR produced by color-producing mutants, 20 color-produing mutants were classified into four groups: (1)mutants with higher pigment-value and higher-producing citrinin than those of M-7, they were 635~#, 959~#, 1164~#, 2066~#, 2606~#, 2887~#, 4081~#, and 4698~#, respectively; (2)mutants with lower pigment-value and lower-producing citrinin than those of M-7, they were 805~#, 1295~#, 3742~# and 4968~#, respectively; (3)mutants with lower pigment-value while higher-producing citrinin than those of M-7, they were 189~#, 192~#, 1263~# and 4963~#, respectively, (4)mutants with higher pigment-value while lower-producing citrinin than those of M-7, they were 533~#, 3108~#, 3257~# and 4096~#, respectively. 10 mutants, which were 635~#, 1164~#, 2606~#, 805~#, 1295~#, 189~#, 1263~#, 4963~#, 533~# and 3257~#, were selected from above four groups of mutants and used as materials for further investigating the gene(s) related to monascus pigment synthesis.
     3 Isolation of the DNA sequences flanked T-DNA by TAIL-PCR and analysis of the function of the isolated sequences
     The DNA sequences flanked T-DNA left border of 10 above color-producing mutants were amplified by TAIL-PCR and the DNA sequences of 635~#, 1164~#, 2606~#, 805~#, 3257~#, 189~#, 4963~# and 533~#, were successfully isolated and the length of isolated DNA fragments ranged from 500 bp to 1 300 bp. By FASTA analysis, the amplified DNA from 805~# carries the RGS functional domain of regulator of G-protein signaling, the similarity of which was up to 84 % with that of Aspergillus fumigatus, but the isolated DNA from the rest mutants had no similarity with DNA sequences in GenBank. The isolated DNA sequences from 533~#, 1164~# and 2606~#, which have been published in GenBank, correspondingly, the recorded No. is DQ861336, DQ 861338 and DQ 861337, respectively.
     4 Identification of the function of DNA sequence coding for regulator of G-protein signaling of Monascus spp.
     On the basis of bioinformation from isolated DNA sequence of 805~#, the specific primers were designed and the 805~# cDNA sequence with 2 012bp was amplified by the method of rapid amplification of cDNA end. The cDNA sequence carries a long open reading frame with 1 851bp, which includes RGS domain and two DEP(disheveled, Egl-10, pleckstrin) domains. The sequences of both sides of RGS were designed into homologous borders and the mutants with RGS domain deletion was constructed with gene knock-out. The results showed that the mutants with RGS domain deletion produced little hongqu pigment and the isolated flb A positively regulates the hongqu pigment synthesis.
引文
1.Weigel,Detlef.拟南芥实验手册.北京:化学工业出版社,2004,1-354
    2.陈代杰.微生物药物学.上海:华东理工大学出版社,1999
    3.程江红,何汝良,程江浩,张志刚,张红斌.酯化红曲工艺研究及在酿酒上的应用.酿酒科技,2005,(9):36-37
    4.代春华,邓思珊,甘纯玑.红曲黄色素的分离纯化及光稳定性探讨.中国食品学报,2004,4(3):63-66
    5.傅金泉.中国红曲及其实用技术.北京:中国轻工业出版社,1997
    6.傅亮,周卫兵.红益色素高产菌株发酵条件研究.食品科学,1996,17(3):6-9
    7.高蓝.Monascus ruber 5031洛伐他汀合成酶基因的PCR分析.广东药学院学报,2006,22(1):82-84
    8.宫慧梅,赵树欣.红曲中橙色素的研究.食品研究与开发,2002,23(3):24-26
    9.郭红珍.山西老陈醋大曲红曲霉分离鉴定.中国食品添加剂,2006,99-103
    10.韩志勇,王新其,沈革志.反向PCR克隆转基因水稻的外源基因旁侧序列.上海农业学报,2001,17(2):27-32
    11.汉农主编,陈忠斌主译.RNAi——基因沉默指南/(美).化学工业出版社,2004
    12.洪智勇,毛宁.红曲霉降胆固醇有效成分的研究.海峡药学,2002,1:32-34
    13.胡晓清.红曲霉莫呐可啉K高产菌株的诱变选育及其发酵条件研究.[硕士学位论文].武汉:华中农业大学图书馆,2003
    14.黄艳,李从发,姚广龙,刘四新.红曲及其安全性研究进展.食品研究与开发,2006,27:217-221
    15.纪远中,红曲及红曲霉的研究现状及进展.天津药学,2005,17(2):65-67
    16.贾娟,张军.红曲霉菌的应用研究.农产品加工.学刊,2005,30(1):25-28
    17.蒋玲艳,王林果.反向遗传学技术及其应用.医学综述,2006,12(6):323-325
    18.蒋彦,王小行,曹毅,王喜忠,李刚,刘敏.基础生物信息学及应用.北京:清华大学出版社,2003
    19.金增辉.红曲米和红曲色素生产方法.粮食与油脂,2005(1):40-45
    20.赖卫华,许杨,熊勇华,李燕萍.利用抑制性削减杂交法筛选与红曲菌产桔霉素相关的基因.食品科学,2005(3):63-65
    21.赖卫华,熊勇华,许杨.红曲霉总RNA和mRNA的提取与测定.食品科学,2004,25(2):33-35
    22.赖卫华,许杨,熊勇华.红曲菌cDNA削减文库的构建.菌物系统,2003(3):466-473
    23.雷帮星,杨国彬,税小波,梁宗琦,刘爱英.红曲及其活性物质的研究进展.2004,29(5):12-15
    24.雷萍,金宗濂.红曲中生物活性物质研究进展.食品工业科技.2004,24(9):86-89
    25.李钟庆,郭芳.红曲菌的形态与分类学.北京:中国轻工业出版社,2003
    26.李子银,陈受宜.植物的功能基因组学研究进展.遗传,2000,22(1):57-60
    27.刘楠梅.基因功能研究方法浅介.生物技术通讯,2000,11(3):231-233.
    28.鲁佳慧,刘昕,王江海,袁建平.功能性红曲研究进展(2):红曲的生产工艺及monacolin K和桔霉素的检测.2003年全球华人保健(功能)食品科技大会论文集.中国,深圳
    29.路秀玲,赵树欣.红曲保健食品的市场分析.见2000年东方红曲国际学术研讨会论文集(2).2000年东方红曲国际学术研讨会,杭州工业大学,2000,杭州:浙江工业大学,2000,189-194
    30.孟凡立,张卫国,陈庆山.插入突变在功能基因组学研究中的应用.生物信息学,2006(4):38-40
    31.孟勤燕,张亚维,付万绪.高产酯力红曲霉筛选及在西凤浓香调味酒生产中的试用.酿酒科技,2006(5):52-54
    32.宓鹤鸣,程荣珍.随机扩增多态性DNA技术在中药红曲基原菌系统分类中的应用.第二军医大学学报,2000,21(10):944-946
    33.沈萍.微生物学.北京:高等教育出版社,2000,7(第一版).
    34.盛祖嘉,陈永青.微生物遗传学.北京:科学出版社,1987
    35.孙佰申.红曲霉发酵及某些生理活性物质的研究.[硕士学位论文].杭州:浙江工业大学,2004
    36.孙乃恩.分子遗传学.南京:南京大学出版社,2000
    37.谭效忠,尹昆,杜舟,王庆忠.RNA干扰及其应用.山东师范大学(自然科学版),2006,21(3):126-128
    38.王汝毅.根癌农杆菌介导红曲霉转化库的构建及转化子性质研究.[硕士学位论文].武汉:华中农业大学图书馆,2005
    39.王政逸,李德葆.限制酶介导的插入突变及其在丝状真菌中的应用.菌物系统,2001,21(1):142-147
    40.吴强恩,郑力行,谢芳,吴同郡,阮国洪,周志俊.反相高效液相荧光色谱法测定大鼠脑组织中氨基酸类神经递质.复旦学报(医学版).2005,32(3):355-358
    41.夏明,杜琪珍.溶剂与pH对红曲色素提取效率的影响.食品研究与开发,2003,24(6):125-126
    42.夏永军,许赣荣.不产桔霉素红曲菌株选育的研究进展.食品研究与开发,2006,27(3):130-133
    43.邢旺兴,宓鹤鸣,陈斌,陈士,贺祥,吴玉田.气象色谱模糊聚类分析法用于红曲基原菌的鉴别.中国中药杂志,2000,25(6):329-333
    44.熊晓辉,张李阳,韦策,熊强.红曲霉菌产monacolin K固体发酵条件的优化.无锡轻工大学学报,2004,23(1):9-12
    45.熊勇华,许杨,赖卫华.红曲霉SAGE文库中双标签的制备研究.中国生态农业学报.2004,1:19-22
    46.许赣荣,陈蕴,顾玉梅.低产桔霉素红曲霉菌种筛选.无锡轻工大学学报,2000,4:358-360
    47.许赣荣,傅金泉.红曲产品的合法化、菌种分类及有害物质桔霉素—当今欧洲红曲生产及应用的焦点.中国酿造,1998,(5):6-10
    48.许建军,江波,许时婴.γ-氨基丁酸(GABA)——一种新型的功能食品因子.食品工业科技,2003,(1):109-110
    49.杨胜远,陆兆新,吕风霞,别小妹.γ-氨基丁酸的生理功能和研究开发进展.食品科学,2005,26(9):546-551
    50.杨媛,王蒙.RNAi作用机制研究进展及其应用.免疫学杂志,2005,21(6):543-545
    51.袁勇芳,许杨,李思光,汤祖辉.红曲霉DNA提取及其RAPD-PCR反应体系的建立.食品科学,2002,12(1):2-4.
    52.张朝晖,王圆,周立平,Blank P J.不产桔霉素的红曲霉菌种深层发酵生产莫呐可林K.工业微生物,2005,35(4):1-5
    53.张帆,金维正,陈双燕,吴运荣,刘飞燕,吴平.质粒营救法和TAIL-PCR法获得水稻T-DNA旁邻序列的效率比较.农业生物技术学报,2004,12(1):13-18
    54.张慧娟,陶冠军,陈蕴,许赣荣.红曲橙色素的提取及其稳定性研究.食品与发酵工业,2005,31(12):129-133
    55.张纪忠.微生物分类学.上海:复旦大学出版社,1990
    56.张亮,张岩,周一名,安爽,果德安,周玉祥,曾令文,程京.用聚类法分析受抗真菌物质处理后的酵母细胞全基因表达谱.生物化学与生物物理进展,2002,24(4):538-542
    57.张徐兰,吴天祥,李鹏.红曲霉有效成分研究进展.酿酒科技,2006,9:78-81.
    58.张勇,植物功能基因组学研究.河西学院院报,2005,21(2):36-39
    59.赵斌,何绍江微生物学实验.北京:科学出版社,2002
    60.赵炳超,石波,李秀波,梁平,刘一峰.新型饲料添加剂-γ-氨基丁酸的制备及应用研究进展.中国畜牧兽医,2004,31(12):13-14
    61.中华人民共和国红曲米国家标准,GB4926-1985,中国国家质量监督局
    62.钟立人,蒋家新,毕丽君.红曲色素组分分离的研究.食品与机械,2000(1):20-21
    63.周礼红,李国琴,王正祥,诸葛健.红曲霉原生质体的制备、再生及遗传转化系统.遗传,2005,27(3):423-428
    64.周礼红,王正祥,诸葛健.红曲霉不同转化方法的比较.遗传,2006,28(4):479-485
    65. Abuodeh R O, Orbach M J, Mandel M A, Das A, Galgiani J N. Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J. Infect. Dis., 2000, 181: 2106-2111
    66. Ana M C, Richard A W, Jin W B, Nancy P K, Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Review, 2002, 66(3): 447-459
    67. Bahler J, Wu J Q, Longtine M S, Shah N G, McKenzie A, Steever A B, Wach A, Philippsen P, Pringle J R. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast, 1998, 14: 943-951
    68. Ballance D J, Buxton F P, Turner G. Transformation of Aspergillus nidulans by the ornithine-5' -phosphate decarboxylase gene of Neurospora crassa. Biochem. Biophys. Res. Commun., 1983, 112: 284-289
    69. Balzergue S, dubreucq B, Chauvin S, Le-Clainche I, Le Boulaire F, de Rose R, Samson F, Biaudet V, Lecharny A, Cruaud C, Weissenbach J, Caboche M, Lepiniec L. Improved PCR-walking for large scale isolation of plant T-DNA borders. Biotechniques, 2001, 30(3): 496-504
    70. Barreto C C, Alves L C, Aragao F J L, Rech E, Schrank A, Vainstein M H. High frequency gene transfer by microprojectile bombardment of intact conidia from the entomopathogenic fungus Paecilomyces fumosoroseus. FEMS Microbiol. Lett., 1997, 156: 95-99
    71. Baudin A, Ozier-kalogeropoulos O, Denouel A, LaCroute F, Cullin C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic. Acids Res.,1993, 21: 3329-3330
    72. Behr M A, Wilson M A, Gill W P, Salamon H, Schoolnik G K, Rane S, Small P M. Comparative genomics of BCG vaccines by whole genome DNA microarrays. Science, 1999,284:1520-1523
    73. Bird D, Bradshaw R. Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans. Mol. Gen. Genet., 1997, 255: 219-225
    74. Blanc, P J, Laussac J P, Le Bars P, Loret M O, Pareilleux A, Prome D, Prome J C, Santerre A L, Goma G. Characterization of monascidin A from Monascus as citrinin. Int. J. Food Microbiol, 1995, 27: 201-213
    75. Bolker M, Bohnert H U, Braun K H, Gorl J, Kahmann R .Tagged pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Mol.Gen.Genet., 1995, 248: 547-552
    76. Boutros M, Kiger A A, Armknecht S, Kerr K, Hild M, Koch B, Haas S A, Consortium H F A, Par R, Perrimon N. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science, 2004, 303(5659): 832-835
    77. Brown J S, Aufauvre-Brown A, Holden D W. Insertional mutagenesis of Aspergillus fumigatus. Mol. Gen. Genet., 1998, 259:327-335
    78. Brown, D H J, Slobodkin I V, Kumamoto C A. Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration. Mol. Gen. Genet., 1996, 251 : 75-80
    79. Bundock P, van Attikum H, Dulk-Ras A, Hooykaas P J. Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefaciens. Yeast, 2002, 19:529-536
    80. Bundock P, Hooykaas P J. Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc. Natl. Acad. Sci. USA, 1996, 93:15272-15275
    81. Bundock P, den Dulk-Ras A, Beijersbergen A Hooykaas P J J. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMMO J. 1995, 14: 3206-3214
    82. Calvo A M, Wilson R A, Bok J W, Keller N P. Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews, 2002, 66(3): 447-459
    83. Carels M and Shepherd D, the effect of different sources on pigment production and sprolation of monascus species in submerged, shaken culture. Can. J. Microbial., 1977, 23: 1360-1372.
    84. Caroline B M, Paul J J H, Cees A M, Arthur F J R. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr.Genet.,2005, 48:1-17
    85. Chen F S and Hu X Q. Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin, Inter. J. of Food Microbial. 2005, 103: 331-337
    86. Chen Y P, Liaw L L, Wang C L, et al. Monascus pilosus monacolin K biosynthetic gene cluster, complete sequence. Direct Submission (23-AUG-2005) [DB]. 序列号:DQ176595, Geneban [13-09-2005 ]
    87. Cogoni C, Macino G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature, 1999, 399(6732): 166-169.
    88. Combier J P, Melayah D, Raffler C, Gay G, Marmeisse R. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol. Lett., 2003, 220: 141-148
    89. Cottage A, Yang A, Maunders H, de Lacy R C, Ramsay N A. Identification of DNA sequences flanking T-DNA insertions by PCR-walking. Plant. Mol. Biol. Rep., 2001, 19: 321-327
    90. Cummings W J, Celerin M, Crodian J, Brunick L K, Zolan M E. Insertional mutagenesis in citrinin in the filamentous fungus Monascus ruber as revealed by ~13C nuclear magnetic resonance. Appl. Environ. Microbiol., 1999, 65:311-314
    105. Hammond S M, Caudy A A, Hannon G J. Post-transcriptional gene silencing by double-stranded RNA. Nat. Rev. Genet., 2001, 2:110-119
    106. Hawksworth D L, Pitt J L. A new taxonomy for Monascus species based on cultural and microscopic characters. Aust. J. Bot., 1983,31:51-61
    107. Hazell B W, Teo V S J, Bradner J R, Berquist P L, Nevalainen K M H. Rapid transformation of high secreting mutant strains of Trichoderma reesei by microprojectile bombardment. Lett. Appl. Microbiol., 2000, 30:282-286
    108. Hicks J, Lockington R A, Strauss J, Dieringer D, Kubicek C P, Kelly J, Keller N P. RcoA has pleiotropic effects on Aspergillus nidulans cellular development. Mol. Microbiol., 2001, 39: 1482-1493.
    109. Hoogt D, Luyten W H, Contrtreras R, Backer M D. PCR-and ligation-mediated synthesis of split-marker cassettes with long flanking homology regions for gene disruption in Candida albicans. Biotechniques, 2000, 28:1112-1116
    110. Hua-Van A, Langin T, Daboussi M J. Aberrant transposition of a Tcl-mariner element, impala, in the fungus Fusarium oxysporum. Mol. Genet. Genomics, 2002, 267:79-87
    111. Itoh Y, Scott B. Effect of de-phosphorylation of linearized pAN7-1 and of addition of restriction enzyme on plasmid integrationin Penicillium paxilli. Curr. Genet., 1997, 32: 147-151
    112. Izawa S, Harada N, Watanabe T, Kotokawa N, Yamamoto A, Hayatsu H, Arimoto-Inhibitory effects of food-coloring agents derived from Monascus on the mutagenicity of heterocyclic amines. Agricultural and Food Chemistry, 1997, 45(10): 3980-3984.
    113. Jeong-Gu K, Yang D C, Yung-Jin C, Soo-Un K. Genetic transformation of Monascus purpureus DSM1379. Biotechnology Letters, 2003, 25:1509-1514
    114. Jones D H, Winistorfer S C. Genome walking with 2-kb to 4-kb steps using panhandle PCR. PCR Methods Appl., 1993, 2:197-203
    115. Jong H K, Hyun J K, Chulyoung K, Heeyong J, Yong O K, Jae Y J, Chul S S. Development of lipase inhibitors from various derivatives of monascus pigment produced by Monascus fermentation. Food Chemistry, 2007, 101:357-364
    116. Joseph W. From DNA biosensors to gene chips. Nuel. Acids Res., 2000, 28:3011-3016
    117. Julie K H, Yu J H, Nancy P K, Adams T H. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA Ga protein-dependent signaling pathway. EMBO, 1997, 16:4916-4923
    118. Kadotani N, Nakayashiki H, Tosa Y, Mayama S. RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol. Plant-Microbe Interact., 2003, 16: 769-776
    119. Kalidas S , Smith D P. Novel genomic cDNA hybrids produce Vective RNA interference in adult Drosophila. Neuron., 2002, 33: 177-184
    120. Kamath R S, Fraser A G, Dong Y, Poulin G , Durbin R, Gotta M, Kanapink A, Bot N L, Moreno S, Sohrmann M, Welchman D P, Zipperlen P, Ahringer J. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003, 421: 231-237
    121. Kaufman G, Horwitz B A, Hadar R, Ullmann Y, Berdicevsky I. Green fluorescent protein (GFP) as a vital marker for pathogenic development of the dermatophyte Trichophyton mentagrophytes. Microbiology, 2004, 150: 2785-2790
    122. Kobayashi S. Inhibitory Effects of Food-Coloring Agents Derived from Monascus on the Mutagenicity of Heterocyclic Amines. J. Agric. Food Chem., 1997, 45 (10): 3980-3984
    123. Koncz C, Nemeth K, Redei G P, Schell J. T-DNA insertional mutagenesis in Arabidopsis. Plant Mol. Biol., 1992, 20: 963-976
    124. Kuo CY, Chou SY, Huang C T. Cloning of glyceraldehyde-3-phosphate dehydrogenase gene and use of the gpd promoterfor transformation in Flammulina velutipes. Appl. Microbiol. Biotechnol, 2004, 65: 593-599
    125. Ladendorf O, Brachmann A, Kamper J. Heterologous transposition in Ustilago maydis. Mol. Genet. Genomics., 200, 269: 395-400
    126. Lakrod K, Chaisrisook C. Transformation of Monascus purpureus to hygromycin B resistance with cosmid pMOcosX reduces fertility. Electronic Journal of Biotechnology, 2003, 62: 143-147
    127. Lakrod K, Chaisrisook D, Skinner D Z. Expression of pigmentation genes following electroporation of albino Monascus prupureus. J. Microbiol. Biotechnol., 2003, 30: 369-374
    128. Lakrod K, Chaisrisook C, Yongsmith B, Skinner D Z. RAPD analysis of genetic variation within a collection of Monascus spp isolated from red rice (ang-kak) and sofu. Mycil Res, 2000, 104(4): 403-408
    129. Lakrod K, Chaisrisook C, Yongsmith B. Genome analysis of red rice mold (Monascus spp.) by using RAPD assay. Proceedings of the 35th Kasetsart University Annual Conference, Bangkaen Bangkok Thailand, 1996, 267-277
    130. Leclerque A, Wan H, Abschutz A, Chen S, Mitina G V, Zimmerrnann G, Schairer H U. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Curr. Genet., 2003, 45: 111-119
    131. Leung W, Malkova A, Harber J E. Gene targeting by liner duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc Natl. Acad. Sci. USA, 1997,94: 6851-6856
    132. Lian X J, Wang C L, Guo K L. Identification of new red pigments produced by Monascus ruber. Dyes and pigments, 2007, 73 :121-125
    133. Linnemannstons P, Vob T, Hedden P, Gaskin P, Tudzynski B. Deletions in the gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme-mediated integration and conventional transformation-mediated mutagenesis. Appl. Environ. Microbiol, 1999, 65: 2558-2564
    134. Liu Y G, Chen Y L, Zhang QY. Amplification of genomicsequences flanking T-DNA insertions by thermal asymmetric interlaced polymerase chain reaction. In: Pena L, ed. Transgenic Plants: Methods and Protocols. Humana Press, Totowa.,2005, 341-348
    135. Liu Y G, Mitsukawa N, Oosumi T, Whittier R F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J., 1995, 8:457-463
    136. Lorito M, Hayes C K, Di Pietro A, Harman G E. Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr. Genet., 1993, 24: 349-356
    137. Marcel J A G de, Bundock P, Hooykaas P J J. Agrobacterium tumefaciens-mediated transformation of filamentous fungi .Nature Biotechnology, 1998, 16: 839-842
    138. Martinkova L. Biological activity of polyketide pigments produced by the fungus Monascus. J. Appl. Bacteriol., 1995, 79: 609-616
    139. Matsumura H, Nirasawa S, Terauchi, R. Technical advance:Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J,1999, 20:719-726
    140. Michielse C B, Arentshorst M, Ram A F J, Hondel C A M. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori. Fungal. Genet. Biol, 2005,42:9-19
    141. Michielse C B, Ram A F J, Hooykaas P J J, Hondel C A M J J van den. Agrobacterium-mediated transformation of Aspergillus awamori in the absence of full length VirD2, VirC2 or VirE2 leads to insertion of aberrant T-DNA structures. J. Bacteriol., 2004,186:2038-2045
    142. Mishra N C, Tatum E L. Non-Mendelian Inheritance of DNA-Induced Inositol Independence in Neurospora. 1973, 70(12): 3875-3879
    143. Mullins E D, Kang S. Transformation: a tool for studying fungal pathogens of plants. Cell Mol. Life Sci. 2001, 58: 2043-2052
    144. Negritto M T, Wu X, Kou T, Chu S, Bailis A M. Influence of sequence DNA identify on efficiency targeted gene replancement. Mol Cell boil, 1997, 17:278-286
    145. Nishikawa A, Poster J B, Jigami Y, Dean N. Molecular and phenotypic analysis of CaVRG4, encoding an essential Golgi apparatus GDP-mannose transporter. J. Bacteriol., 2002, 184:29-42
    146. Ochman H, Gerber A S, Hartl D L. Genetic applications of an inverse polymerase chain reaction. Genetics, 1988, 120:621-623
    147. Ozeki K, Kyoya F, Hizume K, Nunokawa Y. Transformation of intactAspergillus niger by electroporation. Biosci. Biotechnol. Biochem, 1994, 58:2224-2227
    148. Park H G, Stamenova E K, Jong S C. Phylogenetic relationships of Monascus species inferred fromthe ITS and the partial β-tubulin gene. Bot. Bull. Acad. Sin.,.2004, 4:325-330
    149. Park H G, Shung-Chang Jong. Molecular characterization of Monascus strains based on the D1/D2 region of LSU rRNA genes. Mycroscience, 2003, 44:25-32
    150. Patel J B, Batanghari J W, Goldman W E. Probing the yeast phase-specific expression of the CBP1 gene in Histoplasma capsulatum. J.Bacteriol., 1998, 180:1786-1792
    151. Peakall D, Shugar L. The human genome project(HGP). Ecotoxicology, 2002, 11 (1): 7-9.
    152. Redman R S, Rodriguez R J. Factors affecting the efficient transformation of Colletotrichum species. Experimental Mycol., 1994, 18:230-246
    153. Reyes I, Bernier L, Antoun H. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb. Ecol., 2002, 44:39-48
    154. Rho H S, Kang S, Lee Y H. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol. Cells, 2001, 12:407-411
    155. Richard J W, Kim M, Plummer Margaret A, Carpenter Hayley J R. Approaches to functional genomics in filamentous fungi. Cell Research, 2006, 16:31-44
    156. Rolland S, Jobic C, Fevre M, Bruel C. Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr. Genet., 2003, 44:164-171
    157. Roman K, Vladimir K. Determination-of lovastatin (mevinolin) and mevinolinic acid in fermentation liquids. Journal of Chromatography, 1993,630:415-417
    158. Ruiz-Diez B, Martinez-Suarez J V. Electroporation of the human pathogenic fungus Scedosporium prolificans mediated by repeditive rDNA sequences. FEMS Immunol. Med. Microbiol., 1999, 25:275-282
    159. Sambrook J and RusseII D w, 2002. Molecular cloning: a Laboratory Manual.北京:科学出版社,2002,8(第三版)
    160. Schaefer D G. Gene targeting in Physcomitrella patens. Curr. Opin. Plant. Biol., 2001, 4: 143-150
    161. Schiestl R H, Petes T D. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 1991, 88:7585-7589
    162. Schneweis I, Meyer K, Hormansdorfer S, Bauer J. Metabolites of Monascus tuber in silages. J. Anim. Physiol. Anita. Nutr., 2001, 85:38-44
    163. Shimizu T, Kinoshita H, Ishihara S, Sakai K, Nagai S, Nihira T. Polyketide Synthase Gene Responsible for Citrinin Biosynthesis in Monascus purpureus. Applied and Environmental Microbiology, 2005, 71 (7): 3453-3457
    164. Singer T, Burke E. High-throughput TAIL-PCR as a tool to identify DNA flanking insertions. Methods Mol. Biol., 2003 (236): 241-272
    165. Sonia C, Flor P, Juan F M, Santiago G, Paloma L. Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr. Genet., 2003, 43:447-452
    166. Steiner S, Wendland J, Wright M C, Philippsen P. Homologous Recombination as the Main Mechanism for DNA Integration and Cause of Rearrangements in the Filamentous Ascomycete Ashbya Gossypii. Genetics. 1995, 140(3): 973-987
    167. Sunagawa M, Magae Y. Transformation of the edible mushroom Pleurotus ostreatus by particle bombardment. FEMS Microbiol. Lett., 2002, 211: 143-146
    168. Sweigard J A, Carroll A M, Farrall L, Chumley F G, Valent B. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant Microbe. Interact., 1998, 11:404-412
    169. Te' o V S, Bergquist P L, Nevalainen KM. Biolistic transformation of Trichoderma reesei using the Bio-Rad seven barrels Hepta Adaptor system. J. Microbiol. Methods, 2002, 51:393-399.
    170. Thon M R, Nuckles. E M, Vaillancourt L J. Restriction enzymemediated integration used to produce pathogenicity mutants of Colletotrichum graminicola. Mol. Plant. Microbe. Interact., 2000,13(12): 135641365
    171. Tunlid A, Ahman J, Oliver R P. Transformation of the nematode-trapping fungus Arthrobotrys oligospora. FEMS Microbiol. Lett., 1999, 173(1): 111-116
    172. van Attikum H, Bundock P, Hooykaas P J J. Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO, 2001 (20): 6550-6558
    173. Veerasingham S J, Sellers K W, Raizada M K, functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertention. Prog. Biophys. Mol. Biol., 2004, 84(2-3): 107-123
    174. Velculescu V E, Zhang L, Zhou W, Vogelstein J, Basrai M A, Bassett D E, Hieter P, Vogelstein B, Kinzler K W Characterization of the Yeast Transcriptome. Cell, 1997, 88, 2: 243-251
    175. Velculescu V E, Zhang L, Vogelstein B, Kinzler K W. Serial analysis of gene expression. Science, 1995, 270 (5235): 484-487
    176. Vijayaraghavan Y, Kapoor M. Disruption of the NAD(+)-specific glutamate dehydrogenase gene of Neurospora crassa by means of the RIP (repeat-induced point mutations) process. Biochem. Cell Biol, 1996, 74: 29-40
    177. Ward M, Kodama K H, Wilson L J. Transformation of Aspergillus awamori and A, niger by electroporation. Experimental. Mycol., 1989, 13: 289-293
    178. Wilkins M R, Pasquali C, Appel R D, Keli O, Golaz O, Sanchez J C,Yan J X, Gooley A A , Hughes G, Humphery-Smith L, Williams K L, Hochstrasser D F. From Proteins to Proteomes: Large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Bio. Technology, 1996, 14: 61 -65
    179. Wong H C , Koehler P E. Production and isolation of an antibiotic from Monascus purpureus and its relationship to pigment production J. Food Sci., 1981,46 (2): 589-592
    180. Yang J H, Tseng Y H, Lee Y L, Mau J L.Antioxidant properties of methanolic extracts from monascal rice. LWT, 2006, 39: 740-747
    181. Yongsmith B V, Kitpreechavanich L, Chitradon C, Chaisrisook N, Budda. Color mutants of Monascus sp. KB9 and their comparative glucoamylases on rice solid culture. J. Mol. Catal. B: Enzymatic. 2000, 10: 263-272
    182. Youngsmith B, Tabloka W,Yongmanitghai W, Bavavoda R. Culture conditions for yellow pigment formation by monascus spKB10 grown on cassava medium. World J. Microbial. Biotechnol., 1993, 9: 85-90
    183. Yu J J, Cole G T. Biolistic transformation of the human pathogenic fungus Coccidioides immitis. J. Microbiol. Methods., 1998, 33: 129-141
    184. Yu. Heterotrimetric G protein signaling and RGSs in Aspergillus nidulans. Journal of Microbiology. 2006,44(2): 145-154
    185. Zhang C, Kim S H. Overview of structural genomics: from structure to function. Curr. Opin. Chem. Biol., 2003, 7(1): 28-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700