合浦珠母贝微卫星DNA标记分离与遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合浦珠母贝广泛分布于中国、日本、印度、澳大利亚等国的热带和亚热带海区,是生产海水珍珠的主要贝类,具有极高的经济价值。本研究利用FIASCO法构建了合浦珠母贝的基因组微卫星富集文库,并设计引物进行PCR筛选,获得9个多态位点。利用这9个多态位点,对中国的野生和养殖合浦珠母贝群体以及中国、日本、澳大利亚的合浦珠母贝群体的遗传多样性和遗传分化进行了分析,目的是为合浦珠母贝的种质资源保护和遗传选育提供基础资料。
     1.用FIASCO法构建的合浦珠母贝基因组微卫星富集文库中共有近2000个单菌落,随机挑选1289个克隆用探针引物(CA)_(15)和载体引物进行第2次筛选,获得阳性候选克隆357个。测序结果表明,297个克隆(83.2%)含有明显的微卫星重复单元,通过序列比对分析,最终获得了280个具有特异微卫星序列的阳性克隆,共含有479个微卫星结构域。获得的微卫星序列长度范围是119-787bp,平均为408bp。其中两碱基(CA/GT)n重复单元出现的次数最多,占所有分离的微卫星数目的76%,此外还发现(AG)n、(AT)n、(GC)n、(CAA)n、(AAG)n、(ATT)n、(CCT)n、(ATTT)n、(GTTT)n、(CAGA)n、(GAGT)n、(CCGT)n、(GGGT)n、(CAAAA)n等多种重复类型,共占分离微卫星数目的24.0%,平均每种占1.7%。在获得的479个微卫星位点中,完美型微卫星370个,占77.3%;非完美型95个,占19.8%;复合型14个,占2.9%。用引物设计软件Primer premier 3.0设计引物219对,合成49对,筛选出31对有效扩增的引物,种群扩增获得9个多态位点,多态位点比例为29.03%。
     2.对我国北海野生与养殖群体、大亚湾野生与养殖群体、三亚野生与养殖群体进行PCR扩增后发现:6个群体在9个多态位点共检测出44个等位基因,每个位点的等位基因数从2-9个不等。平均期望杂合度和平均观察杂合度分别介于0.590-0.649和0.393-0.516之间。平均多态信息含量P/C值在0.530-0.586之间。平均杂合子偏离度D值均为负,表明6个群体存在一定的杂合子缺失现象。Hardy-Weinberg平衡的卡方检测发现,在所检测的54个数据中(6个种群×9个位点),有40个偏离遗传平衡状态。两两群体之间的遗传分化指数介于0.002-0.012之间,并且大部分差异显著。AMOVA分析表明,94.59%的遗传变异存在于群体内,群体间的遗传变异仅为总变异的5.41%。研究结果表明,6个群体的遗传多样性水平都比较高,适合进行遗传选育。
     3.中国、日本、澳大利亚合浦珠母贝群体遗传多样性的微卫星分析表明:北海群体、大亚湾群体、三亚群体、澳大利亚群体和日本群体的平均等位基因数分别是4.889、4.889、4.889、4.000和4.111;平均期望杂合度分别是0.592、0.605、0.649、0.575、0.564;平均观察杂合度分别是0.400、0.516、0.485、0.390、0.433。Shannon多样性指数分别是1.131、1.177、1.251、1.028、1.025;平均多态信息含量PIC值分别是0.530、0.545、0.586、0.498、0.483,表明日本和澳大利亚群体的遗传多样性低于中国群体。Hardy-Weinberg平衡的卡方检测发现,大多数位点偏离平衡状态(34个)。两两群体之间的F_(ST)值在0.010-0.075之间。除北海与大亚湾群体之间、北海与三亚群体之间差异不显著外,其余两两之间差异极显著。AMOVA分析表明,96.22%的遗传变异存在于群体内,群体问的遗传变异仅为总遗传变异的3.78%,但群体间遗传分化显著(F_(SC)=0.038,P<0.001)。将5个群体分成中国、日本、澳大利亚3组后发现,组问的遗传变异仅为总变异的3.04%,但组间差异并不显著(F_(CT)=0.030,P=0.104)。两两群体间的遗传距离为0.062-0.269。UPGMA系统树显示,北海群体单独为一支,其他4个群体为一支。结果表明,5个群体之间的遗传分化水平较低,其遗传隔离与群体之间的地理间隔无关。
The pearl oyster Pinctada fucata is widely distributed in tropic and subtropic oceans and seas of China, Japan, Indian and Australia. It is an economically important species that is cultured for pearl production in these areas. In the present study, microsatellite-enhanced genomic library of the pearl oyster was constructed. 219 pairs of primers were designed using Primer premier 3.0. After screening, nine polymorphic loci were obtained. Genetic diversity and differentiation in the wild and cultured populations in China as well as within and among five populations from China (Beibu Bay, Daya Bay, Sanya Bay), Japan (Mie Prefecture) and Australia (Port Stephens) were studied using the nine polymorphic loci. The purpose is to provide some information for the protection ofgermplasm resources and genetic improvement of the animal.
     There are almost 2000 colonies in the enriched library. The second PCR screening was performed using the primers of (CA)_(15) probe and T vector, and 357 positive clones were obtained. Sequencing results showed that 297 clones contained microsatellite repeat unit. By alignment, 280 microsatellite sequences were obtained after excluding redundancy, including 479 microsatellite doman. The sequence length ranged from 119 to 787bp with an average of 408bp. The (CA/GT)_n repeat unit was the most abundant motifs with a percentage of 76%. Several other repeat types were also detected, such as (AG)_n, (AT)n, (GC)n, (CAA)n, (AAG)n, (ATT)n, (CCT)n, (ATTT)n, (GTTT)n, (CAGA)n, (GAGT)n, (CCGT)n, (GGGT)n, (CAAAA)n, accounting for 24%, 1.7% for each type. Among all the 479 microsatellites, 370 (77.3%) sequences were perfect type, 95 (19.8%) were imperfect type and 14 (2.9%) were compound type. 219 pairs of primers were designed using Primer premier 3.0 and 49 pairs were synthized. As a result, 31 pairs of primers were screened effective for PCR amplification and nine loci showed polymorphism as tested by a population, and the percentage of polymorphic loci accounted for 29.03%.
     Genetic diversity in the wild and cultured populations from Beibu Bay, Daya Bay, Sanya Bay was studied using the nine polymorphic markers. A total number of 44 alleles were detected and allele numbers varied from 2 to 9 among loci. The average expected heterozygosity ranged from 0.590 to 0.649, while the average observed heterozygosity ranged from 0.393 to 0.516 among populations. PIC value ranged from 0.530 to 0.586. The negative mean value of D indicated an overall deficit of heterozygotes for the six populations. Forty out of 54 tests were significantly deviated from Hardy-Weinberg equilibrium. AMOVA indicated that 94.59% variation resided within population, while genetic vatiation among populations was only 5.41%. The results showed that genetic diversity was high in all of the six populations, and these populations were competent for selective breeding.
     Genetic diversity within and among five populations of the pearl oyster from China (Beibu Bay, Daya Bay, Sanya Bay), Japan (Mie Prefecture) and Australia (Port Stephens) was studied using nine microsatellite DNA markers. The average numbers of alleles for the five populations were 4.889, 4.889, 4.889, 4.000 and 4.111. The average expected heterozygosities were 0.592, 0.605, 0.649, 0.575, 0.564 respectively. And the mean levels of obsevered heterozygosity were 0.400, 0.516, 0.485, 0.390 and 0.433, respectively. Shannon's information indexes were 1.131, 1.177, 1.251, 1.028, 1.025. The average polymorphism information contents were 0.530, 0.545, 0.586, 0.498 and 0.483, respectively. These results indicated that genetic diversity of Japanese and Australian populations was lower than the three populations of China. Chi-square tests showed that most of the cases (34) in five populations deviated from Hardy-Weinberg equilibrium. Pairwise F_(ST) ranged from 0.010 to 0.075. Genetic differentiation among the five populations was significant except the values between Beihai and Daya Bay, and between Beihai and Sanya. AMOVA showed that 96.22% variation resided within populations, genetic vatiation among populations was only 3.78%,but significant (F_(SC)=0.038, P<0.001). After dividing the five populations into three groups, the results showed that genetic differentiation among the groups was 3.04% but not significant (F_(CT)=0.030, P=0.104). Pairwise genetic distances among populations ranged from 0.062 to 0.269. An UPGMA tree demonstrated that the population of Beihai was clustered into one group, and the other four populations were clustered into another group. All the results showed that genetic differentiation among the five populations was low, and the genetic distance was not correlated with the geographic distance.
引文
1.杜晓东,叶富良.合浦珠母贝基因组DNA多态性的RAPD标记.湛江海洋大学学报,2000,20(2):83-84
    2.杜晓东,李广丽,刘志刚,叶富良,王如才.合浦珠母贝2个野生种群的遗传多样性.中国水产科学,2002,9(2):100-104
    3.高国庆,He G H,李杨瑞.花生微卫星DNA分离方法的研究.中国油料作物学报,2003,25(3):30-33
    4.黄桂菊,曲妮妮,喻达辉,李莉好.合浦珠母贝热休克蛋白hsp70基因的克隆与表达分析.中国水产科学,2007,14(9):726-732
    5.姜卫国,谢玉坎,司徒竞.合浦珠母贝的多毛虫寄生病继发性脓疡的研究Ⅱ.饱和盐水的杀虫防治,珍珠贝论文集,北京,科学出版社,1984,74-78
    6.匡刚桥,刘臻,鲁双庆,刘红玉,张建柱,唐建洲.FIASCO法筛选鳜鱼微卫星标记.中国水产科学,2007,14(4):608-614
    7.黎辉,金启增,郭澄联,练建生.合浦珠母贝幼虫、幼苗的摄食率和摄食节律研究.热带海洋,1997,16(3):41-48
    8.李莉,孙振兴,常林瑞,李云玲,张明青.皱纹盘鲍野生与养殖群体遗传多样性的研究.海洋通报,2005,24(6):83-86
    9.凌立,谢莉萍,张勇,蒲训,张荣庆.合浦珠母贝β-2肌动蛋白基因的克隆和序列分析.海洋科学,2006,8(30):64-70
    10.李琪,木岛明博.长牡蛎微卫星克隆快速分离及特征分析.海洋与湖沼,2004,35(5):364-370
    11.刘必谦,戴继勋,喻子牛.RAPD标记在大连湾牡蛎种群研究中的应用.青岛海洋大学学报,1998,28(1):82-88
    12.刘志毅,相建海.微卫星DNA分子标记在海洋动物遗传分子中的应用.海洋科学,2001,25(6):11-13
    13.黎中宝,田柱,朱冬蕊,叶承义.九孔鲍和杂色鲍等位酶的生化遗传分析.海洋科学,2004,28(2):27-31
    14.鲁翠云,孙效文,梁利群.鳙鱼微卫星分子标记的筛选.中国水产科学,2005,12(2):192-196
    15.罗文永,胡骏,李晓方.微卫星序列及其应用.遗传,2003,25(5):615-619
    16.蒙钊美.关于合浦珠母贝插核后留核的研究.广东水产科技论文汇编[五],海水养殖专辑,1983,1:101-105
    17.蒙钊美,李有宁,邢孔武.珍珠养殖理论与技术.北京:科学出版社,1996
    18.潘磊,郑鹏,徐杰,全志武,李双梅,刘宏高,柯卫东,丁毅.磁珠富集法制备莲藕基因组的微卫星分子标记.中国蔬菜,2007(增刊):7-13
    19.宋林生,李俊强,李红蕾,崔朝霞,李成华,胥炜,常亚青.用RAPD技术对我国栉孔扇贝野生种群与养殖群体的遗传结构及其遗传分化的研究.高技术通讯,2002,12(7):83-86
    20.孙效文,鲁翠云,梁利群.磁珠富集法分离草鱼微卫星分子标记.水产学报,2005,29(4):482-486
    21.苏天凤,蔡云川,张殿昌,江世贵.合浦珠母贝3个养殖群体的RAPD分析.中国水产科学,2002,9(2):106-109
    22.谭杰,孙慧玲,刘萍,杨爱国,燕敬平,刘志鸿,周丽青.3个仿刺参地理种群遗传变异的微卫星DNA分析.水产学报,2007,31(4):437-442
    23.佟广香,闫学春,匡友谊,梁利群,孙效文,王爱民,王嫣.马氏珠母贝微卫星快速分离及遗传多样性分析.海洋学报,2007,29(4):170-176
    24.王爱民,邓凤娇.马氏珠母贝遗传多样性的RAPD分析.武汉大学学报(自然科学版),2000,46(4):467-470
    25.王爱民,阎冰,叶力.马氏珠母贝不同地理种群内白繁和种群间杂交子一代主要性状的比较.水产学报,2003a,27(3):200-206
    26.王爱民,丁小雷,邓凤姣.马氏珠母贝大亚湾和三亚野生种群内自繁及种群间杂交一代的RAPD分析.海洋水产研究,2003b,24(4):19-25
    27.王梅林,郏家声,来丽岩,戴继勋.我国海洋鱼类和贝类染色体组型研究进展.青岛海洋大学学报,2002,30(2):277-284
    28.王小玉,喻达辉,郭奕惠,黄桂菊,龚世园.七种珍珠贝RAPD鉴别标记的初步研究.南方水产,2006,2(1):18-22
    29.夏军红,朱彩艳,苏天凤,周发林,江世贵.斑节对虾基因组微卫星分离及其序列特征分析.南方水产,2006,2(6):1-7
    30.徐鹏,周岭华,相建海.中国对虾微卫星DNA的筛选.海洋与湖沼,2001,32 (3):255-259
    31.杨锐,喻子牛.山东沿海褶牡蛎与太平洋牡蛎等位基因酶的遗传变异.水产学报,2000,24(2):130-133
    32.喻达辉,陈竞春,苏天凤,朱海,江世贵.合浦珠母贝精子的实验生物学初步研究.热带海洋,1998,17(1):83-87
    33.喻达辉,江世贵,苏天凤,陈竞春.海水主要离子在合浦珠母贝精子激活中的作用.海洋学报,1999a,21(6):134-137
    34.喻达辉,江世贵,陈竞春等.合浦珠母贝精子激活机制的初步研究.热带海洋,1999b,1(2):5-10
    35.喻达辉,江世贵,陈竞春,苏天凤.合浦珠母贝精子激活的离子性选择.中国水产科学,1999c,6(3):101-103
    36.喻达辉,李有宁,吴开畅.中国、日本和澳大利亚珍珠贝的ITS2序列特征分析.南方水产,2005,1(6):1-6
    37.喻达辉,王小玉,黄桂菊,郭亦惠,龚世园,王爱民.合浦珠母贝遗传连锁图谱的构建.中国水产科学,2007,14(5):361-368
    38.张国范.珠母贝幼虫行为生物学研究.热带海洋研究,海洋出版社,1984,121-148
    39.张国范,张福绥.贝类遗传多样性及其永续利用(Ⅰ).海洋科学,1993,5:17-21
    40.赵金良.我国海水鱼和咸淡水鱼染色体组型研究概述.上海水产大学学报,2002,9(4):344-347
    41.赵莹莹,朱晓琛,孙效文,梁利群.磁珠富集法筛选虾夷扇贝微卫星序列.中国水产科学,2006,13(5):749-755
    42.邹志华,黎中宝.斑节对虾等位酶遗传分析.水产养殖,2002,23(6):31-33
    43.Adamkewicz L,Taub S R,Wall J R.Genetics of the clam Mercenaria mercenaria Ⅱ:Size and genotype.Malacologia,1984,25(2):525-533
    44.Agresti J J,Seki S,Cnaani A.Breeding new strains of tilapia:development of an artificial center of origin and linkagemap based on AFLP and microsatellite loci.Aquaculture,2000,185(1-2):43-56
    45.Atsumi T,Komaru A,Okamoto C.Genetic relationship among the Japanese pearl oyster Pinctada fucata martensii and other pearl oyster.Aquatic Breeding,2004,33:135-142
    46.Barbuiarii G,Pigliucei M.Geographical patterns of karyotype polymlorphism in Itahan populations of Ornithogalura moncanum(liluicese). Heredity, 1989, 62(2): 67-75
    47. Beaumont A R, Khamdan S A A. Electrophoretic and morphometric characters in population of the pearl oyster, Pinctada radiata(Leach), from around Bahrain. Journal of Molluscan Study, 1991, 57(4): 433-441
    48. Botstein D, White R. L, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32(3): 314-331
    49. Boudry P, Collet B, Cornette F. High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by microsatellite based parentage analysis of multifactorial crosses. Aquaculture, 2002, 204(3-4): 283-296
    50. Brenner S, Elgar G, Sandford R. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature, 1993, 366(6452): 256-259
    51. Brooker A L, Cook D, Bentzen P et al. Organization of microsatellites differs between mammals and cold-water teleost fishes. Canadian Journal of Fisheries and Aquatic Sciences, 1994,51(9): 1959-1966
    52. Chistiako D A, Helleman B, Volckaert F A M. Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. Aquaculture, 2006, 255(1-4): 1-29
    53. Christian S, Bill A, Diethard T. Conservation of polymorphic simple sequence loci in cetacean species. Nature, 1991, 354(6348): 63-65
    54. Colgan D J, Ponder W F. Genetic discrimination of morphologically similar, sympatric species of pearl oyster (Mollusca: Bivalvia: Pinctada) in eastern Australia. Australian Journal of Marine and Freshwater Research, 2002, 53(3): 697-709
    55. Erickson R O. The Clematis fremontii Var. Riehlii population in the Ozarks. Annals of the Missouri Botanical Garden, 1945, 32(4): 413-460
    56. Evans B S, Knauer J, Taylor J U, Gerry D R. Development and characterization of six new microsatellite markers for the silver-or gold-lipped pear oyster, Pinctada maxima (Pteriidae). Molecular Ecology Notes. 2006, 6(3): 835-837
    57. Evans B, Bartlett J, Sweijd N. Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra ) and South Africa (Haliotis midae). Aquaculture, 2004, 233(1-4): 109-127
    58. Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 1992, 131(2): 479-491
    59. Fairbrother J E, Beaumont A R. Heterozygote deficiencies in a cohort of newly settled Mytilus edulis spat. Journal of the Marine Biological Association of the United Kingdom, 1993, 73(3): 647-653
    60. Harris H. Enzyme polymorphism in man. Proceedings of the Royal Society of London B, 1966, 164(995): 298-310
    61. Haiti D L, Clark A G. Principles of population genetics, third edition. Sinauer Associates, Sunderland MA, 1997
    62. Heale S M, Petes T D. The stabilization of repetitive tracts of DNA by variant repeats requires a functional DNA mismatch repair system. Cell, 1995, 83(4): 539-545
    63. Hedgecock D, Sly F L. Genetic drift and effective population sizes of hatchery propagated stocks of the Pacific oyster(Crassastrea gigas). Aquaculture, 1990, 88(1): 21-38
    64. Herbinger C M, Smith C A, Langy S. Development and characterization of novel tetra- and dinucleotide microsatellite markers for the French Polynesia black-lipped pearl oyster, Pinctada margaritifera. Molecular Ecology Notes 2006, 6(1): 107-109
    65. Herbinger C M , Vercaemer B M, Gjetvaj B, et al. Absence of genetic differentiation among geographically close sea scallop(Placopecten magellanicus G.) beds with cDNA and microsatellite markers. Journal of Shellfish Research, 1998, 17(1): 117-122
    66. Holland B S. Invasion without a bottleneck: Microsattellite variation in natural and invasive populations of the brown mussel Perna perna (L). Marine Biotechnology, 2001, 3(5): 407-415
    67. Huang B X, Peakall R, Hanna P J. Analysis of genetic structure of blacklip abalone (Haliotis rubra) populations using RAPD, minisatellite and microsatellite markers. Marine Biotechnology, 2000, 136(2): 207-216
    68. Hubby J L, Lewontin R C. A molecular approach to the study of genetic heterozygosity in nature populations.I The number of alleles at different loci in Drosophila pseudobscura. Genetics, 1966, 54(2): 577-594
    69. Hubert S, Hedgecock D. Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics, 2004, 168(1): 351-362
    70. Huvet A, Lapegue S, Magoulas A, Boudry P. Mitochondrial and nuclear DNA Phylogeography of Crassostrea angulata, the Portuguese oyster endangered in Europe. Conservation Genetics, 2000, 154(1): 251-262
    71. Jeffs P. Multiple sequence alignment with Clustal X. Computer Corner, 1998, 23(1): 78-80
    72. Jones A G, Stockwell C A, Walker D. The molecular basis of a microsatellite null allele from the white sands pupfish. Journal of Heredity, 1998, 89(4): 339-342
    73. Karagyzov L, Kalchieva I D, Chapman V M. Construction of random small-insert genomic libraries highly enriched for simple sequence repeats. Nucleic Acids Research, 1993, 21(16): 3911-3912
    74. Kelly M W, Rhymer J M. Population genetic structure of a rare unionid (Lam psilis cariosa) in a recently glaciated landscape. Conservation Genetics, 2005, 6(5): 789-802
    75. Kenton A. Giemsa C-bangding in Gibasis(Commelinaceae). Chromosoma, 1978, 65(4): 309-324
    76. Kocher T D, Lee W, Sobolewska H. A genetic linkagemap of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics, 1998, 148(3): 1225-1232
    77. Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics, 2004, 5(2): 150-163
    78. Launey S, Ledu C, Boudry P, Bonhomme F. Geographic structure in the European flat oyster, (Ostrea edulis L.), as revealed by microsatellite polymorphism. Journal of Heredity, 2002, 93(5): 331-351
    79. Learn G H, Schaal B A. Population subdivision for ribosomal DNA repeat variants in Clematis fremontii. Evolution, 1987,41(2): 433-438
    80. Lewontin R C, Hubby J L. A molecular approach to the study of genetic heterozygosity in natural populations II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics, 1966, 54(2): 595-609
    81. Lian C, Zhou Z, Hogetsu T. A simple method for developing microsatellite makers using amplified fragments of inter-simple sequence repeat (ISSR). Journal of Plant Research, 2001, 114(1115): 381-385
    82. Liao X L, Zhu B, Yu X M, Tan D Q, Chang J B, Tong J G. Isolation and characterization of polymorphic microsatellites in a Yangtze River fish, brass gudgeon (Coreius heterodon Bleeker). Molecular Ecology Notes, 2006, 6(2): 393-395
    83. Li Q, Kijima A. Identification of novel microsatellite loci in the Pacific oyster (Crassastrea gigas) by magnetic bead hybridization selection. Tohoku Journal of Aqricultural Research, 2002, 53(1-2): 25-32
    84. Li Q, Park C, Kijima A. Allelic transmission of microsatellites and application to kinship analysis in newly hatched Pacific abalone larvae. Fisheries Science, 2003a, 69(5): 883-889
    85. Li Q, Park C, Kobayashi T. Inheritance of microsatellite DNA markers in the Pacific abalone Haliotis discus hannai. Marine Biotechnology, 2003b, 5(4): 331-338
    86. Li Q, Park C, Endo T, Kijima A. Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone {Haliotis discus hannai). Aquaculture, 2004, 235(1-4): 207-222
    87. Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics, 1989, 44(3): 397-401
    88. Liu Z, Li P, Kucuktas H, Nichiols A, Tan G, Zheng X, Argue B J, Yant R, Dunham R A. Development of amplified fragment length polymorphism (AFLP) markers suitable for genetic linkage mapping of catfish. Transactions of the American Fisheries Society, 1999, 128(2): 317-327
    89. Li Y, Byrne K, Miggiano E. Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture, 2003, 219(1-4): 143-156
    90. Li Y C, Abraham B K, Tzion F. Microsatellites within genes: structure, function, and evolution. Molecular Biology and Evolution, 2004, 21 (6): 991-1007
    91. Lunt D H, Hutchinson W F, Carvalho G R. An efficient methord for PCR-based identification of microsatellite arrays (PMA). Molecular Ecology, 1999, 8(5): 893-894
    92. Ma Z Q, Roder M, Sorrells. Frequencies and sequence characteristics of di, tri-, and tetra-nucleocide microsatellite in wheat. Genome, 1996, 39(1): 123-130
    93. Miyamoto J, Kurlta S. C-band polymorphism in the karyotype of Paris tetraphylla A Gray (Liliaceae). Cytologia, 1990, 55(2): 301-313
    94. Nei M. Genetic distance between populations. American Naturalist, 1972, 106(949): 283-292
    95. O'Connor W A, Lawler N F. Reproductive condition of the pearl oyster, Pinctada imbricata, Roding, in Port Stephens, New South Wales, Australia. Aquaculture Research, 2004, 35(4): 385-396
    96. Parakash S, Lewontin R C, Hubby J L. A molecular approach to the study of genic heterozygosity in natural populations. IV. Patterns of genic variation in central, marginal and isolated populations of Drosophila pseudoobscura. Genetics, 1969, 61(4): 841-858
    97. Pauaud O, Biair M W. Development of a microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L ). Molecular and General Genetics, 1996, 252(5): 597-607
    
    98. Pemberton J M, Slate J, Bancroft D R. Nonamplifying aleles at microsatellite loci: A caution for parentage and population studies. Molecular Ecology, 1995, 4(2): 249-252
    
    99. Perez-Losads M, Guerra A, Carvalho G B. Extensive population subdivision of the cuttlefish Sepia Officinalis (Mollusca: Cephalopoda) around the Iberian Peninsula indicated by microsatellite DNA variation. Heredity, 2002, 89 (6): 417-424
    
    100.Reece K S, Ribeiro W L, Gaffney P M. Microsatellite marker development and analysis in the eastern oyster (Crassostrea virginica): Confirmation of null alleles and non-Mendelian segregation ratios. Journal of Heredity, 2004, 95(4): 346-352
    101. Richardson T, Cato S, Ramser J. Hybridization of microsatellites to RAPD: a new source of polymorphic markers. Nucleic Acid Research ,1995, 23(18): 3798-3799
    102.Rosenbaum H C, Egan M G. An effective method for isolating DNA from historical specimens of baleen. Molecular Ecology, 1997, 6(7): 677-681
    103.Roy S C. Polymorphism in Gremsa banding patterns in Allium sativarn. Cytologia, 1978,43:97-100
    104.Sakamoto T, Danzmann R G, Gharbi K. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics, 2000, 155(3): 1331-1345
    105.Schneider S, Roessli D, Excoffierd L. Arlequin version 2.000: A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland, 2000
    106.Sekino M, Hara M. Microsatellite DNA loci in Pacific abalone Haliotis discus discus (Mollusca, Gastropoda, Haliotidae). Molecular Ecology Notes, 2001a, 1(1-2): 8-10
    107.Sekino M, Hara M. Application of microsatellite markersto population genetics studies of Japanese flounder Paralichthys olivaceus. Marine Biotechnology, 2001b, 3(6): 572-589
    108.Sekino M, Hamaguchi M, Aranishi F. Development of novel microsatellite DNA markers from the Pacific oyster Crassostrea gigas. Marine Biotechnology, 2003, 5(3): 227-233
    109.Selvamani M J P, Degnan S M, Degnan B M. Microsatellite genotyping of individual abalone larvae: Parentage assignment in aquaculture. Marine Biotechnology, 2001, 3(5): 478-485
    110.Slatkin M. Gene flow and the geographic structure of natural populations. Science, 1987, 236(4803): 787-792
    111.Silva E F, Reha-Krantz I J. Dinueleotide repeat expansion catalyzed by bacteriophage T4 DNA polymerase in vitro. Journal of Biological Chemistry, 2000, 275(40): 31528-31535
    112.Smuldersm J M. Use of short microsatellites from detabase sequences to generate polymorphisms among Lycopersicon esculentum cultivates and accessions of other Lycopersicon species. Theoretical and Appllied Genetics, 1997, 94(2): 264-272
    113.Sugaya T, Ikeda M, Mori H. Inheritance mode of microsatellite DNA markers and their use for kinship estimation in kuruma prawn Penaeus japonicus. Fisheries Science, 2002, 68(2): 299- 305
    114.Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 1989, 17(16): 6463-6471
    115.Valdes A M. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics, 1993, 133(3): 737-749
    116.Velayudhan T S, Chellam S, Dharmaraj S, Victor A C C, Kasim M. Comparison of growth and shell attributes of four generations of the pearl oyster Pinctada fucata (Gould) produced in the hatchery. Indian Journal of Fisheries, 1996,43: 69-77
    117.Wada K T, Komaru A. Inheritance of white coloration of the prismatic layer of shells in Japanese pearl oyster, Pinctada fucata martensii and its importance in the pearl culture industry. Nippon Suisan Gakkaishi, 1990, 56(11): 1787-1790
    118.Wada K T, Komaru A. Effect of selection for shell coloration on growth rate and mortality in the Japanese pearl oyster Pinctada fucata martensii. Aquaculture, 1994,126(1): 59-65
    119.Wada K T, Komaru A. Color and weight of pearls produced by grafting the mantle issue from a selected population for white shell color of the Japanese pearl oyster Pinctada fucata martensii. Aquaculture, 1996, 142(1): 25-32
    120.Wang Y, Guo X. Chromosomal rearrangement in Pectinidae revealed by rRNA loci and implications for bivalve evolution. Biological Bulletin, 2004, 207(3): 247-256
    121.Wang Z, Weber J L, Zhing G, Tanksley S D. Survey of plant short tandem DNA repeat. Theoretical and Applied Genetics, 1994, 88(1): 1-6
    122.Waldbieser G C, Bosworth B G, Nonneman D J. A microsatellite based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics, 2001, 158(2): 727-734
    123.Wansuk Senanan, Anne R. Kapuscinski, Uthairat Na-Nakorn. Genetic impacts of hybrid catfish farming (Clarias macrocephalusxC. gariepinus) on native catfish populations in central Thailand. Aquaculture, 2004, 235(1-4): 167-184
    124.Weber J L, May P E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. American Journal of Human Genetics, 1989, 44(3): 388-396
    
    125.Weber J L. Informativeness of human (dC-dA) n (dG-dT)n ploymorphisms. Genomics, 1990, 7(3): 524-530
    
    126.Weir B S, Cockerham C C. Estimating F-statistics for the analysis of population structure. Evaluation, 1984,38(6): 1358-1370
    127.Williams J G, Kubelik A R, Livak K J. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Research, 1990, 18(22): 6531-6535
    128.Wilson K, Li Y, Whan V. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture, 2002, 204(3-4): 297-309
    129.Wright S. Evolution and the genetics of population, variability within and among natural populations. Chicago: The University of Chicago Press, 1978
    130.Yeh F C, Boyle T J B. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany, 1997, 129: 157-157
    131.Young W P, Wheeler P A, Coryell V H. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 1998, 148(2): 839-850
    132.Yu D H, Chu K H. Low genetic differentiation among widely separated populations of the pearl oyster Pinctada fucata as revealed by AFLP. Journal of Experimental Marine Biology and Ecology, 2006b, 333(1): 140-146
    133.Yu D H, Chu K H. Genetic variation in wild and cultured populations of the pearl oyster Pinctada fucata in southern China. Aquaculture, 2006a, 258(1-4): 220-227
    134. Yu H, Li Q. Genetic variation of wild and hatchery populations of the Pacific oyster Crassostrea gigas assessed by microsatellite markers. Journal of Genetics and Genomics, 2007, 34(12): 1114-1122
    135.Zouros E, Foltz D W. Possible explanations of heterozygote deficiency in bivalve mollusks. Malacologia, 1984, 25 (2): 541-583

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700