硅对生姜生长及生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生姜(Zingiber officinale Rosc.)是生长期较长且需肥量较高的作物,长期以来,生姜栽培多注重氮、磷、钾肥的投入,致使其茎秆变软,抗病虫能力下降,产量品质降低。前人研究表明,硅可延缓作物基部叶片的衰老,提高光合速率,并增强作物的抗逆性。但关于生姜对硅素的反应尚未见报道。为此,本研究采用营养液加硅水培方法〔CK(0)、T1(1.0 mmol/L)、T2(1.5 mmol/L)、T3(2.0 mmol/L)〕和大田增施硅肥试验〔CK’(0)、T’1(50 kg/666.7m2)、T’2(100 kg/666.7m2)、T’3(150 kg/666.7m2)〕相结合,研究了硅对生姜矿质元素吸收分配特性的影响,分析了硅与生姜的生长发育、产量品质及光合荧光特性的关系。主要研究结果如下:
     1.生姜植株含硅量达2%~5%,可判定为喜硅作物,但器官硅含量由高及低依次:根>叶>根茎>茎。营养液补充硅素,可提高植株各器官的硅(SiO2)含量,各器官硅含量与植株平均硅含量密切相关,但综合分析,上位叶硅含量作为诊断生姜硅素营养状况较为理想。
     2.营养液水培试验证明,施硅提高了植株中N、P含量及吸收量。生姜长至115 d后,T1、T2、T3处理生姜幼苗氮、磷吸收量分别比CK增加13.1%、27.1%、35.2%和18.6%、39.5%、52.3%。同时降低了植株中K含量,但由于施硅促进了植株的生长,从而植株对钾的吸收量并未降低。
     3.硅对生姜有明显的促长作用,大田和水培试验均证明,施硅可增加生姜株高、茎粗及各器官的生物量。大田增施硅肥还可增加植株的叶片数和分枝数。生姜收获时,T’1、T’2、T’3的分枝数分别比CK’增加了8.3%、18.3%、13.3%,其产量分别达76926.9、86542.8和78850.1 kg/hm2,分别比CK’产量66926.4 kg/hm2增加14.9% , 29.3%和17.8%。
     4.施硅对生姜叶片叶绿素含量没有显著影响,但可提高叶片类胡萝卜素含量,增强了植株对强光的利用能力,显著提高了生姜叶片光合作用的饱和光强、CO2羧化效率(CE)及光合速率。另外,硅素还提高了生姜叶片原初光能转换效率、光合电子传递量子效率,光化学猝灭系数,降低午间光抑制程度。
     5.施硅降低了生姜叶片的蒸腾速率(Tr),提高了水分利用效率(WUE)。11:00点T1、T2、T3的生姜叶片Tr分别比CK低6.3%、17.1%和19.2%,WUE分别比CK高23.1%、55.9%和54.8%。
     6.施硅显著提高了生姜抗逆性。高温、干旱胁迫后施硅显著提高了生姜叶片的CAT、POD活性,同时降低了叶片MDA含量。高温胁迫下,T1、T2和T3的叶片丙二醛含量较对照降低8.8%、19.2%和23.8%,从而降低了生姜膜伤害程度。
     7.硅肥不仅提高了生姜的产量,还改善了生姜品质。T’1、T’2和T’3处理根茎干物质含量分别比CK’增加了17.5%、20.1%和8.7%。同时挥发油含量也以T’2处理较高,比对照增加25.0%。
     8.通过综合分析,生姜营养液水培的硅素水平以1.5~2.0 mmol/L较为适宜;生姜大田硅肥(有效SiO2含量28%)合理施用量为100 kg/666.7m2左右。
Ginger (Zingiber officinale Rosc.) demands for large numbers of mineral elements and has a long growth time, but in along time, people only pay much attention to using the fertilizer of nitrogen, phosphorus and potassium. This way reduced stem of ginger softened and anti-pest ability of plant. Menwhile reduced the yield and quality. Through previous studies, we know that silicon could delay premature senility blade in base; improve photosynthesis of leaves and enhance plant stress resistance. Gingers (Zingiber officinale Rosc.cv. shannong No1) were grown at different levels of silicon in both solution culture and soil culture experiment. The experiment of solution culture design consisted of a control (no added Si) and three treatments (1.0 mM, 1.5 mM and 2.0 mM Si) and also four treaments in soil culture (50 kg/666.7m2, 100 kg/666.7m2, 150 kg/666.7m2 and a control). Effects of silicon on absorption and distribution of mineral elements of ginger were studied in different levels of silicon. Meanwhile, relationship between silicon and plant growth, yield and quality , photosynthesis and chlorophyll fluorescence characteristics were analyzed. The main results were as follows:
     1. Silicon content in ginger plant reached between 2% and 5%, so ginger was considered as a higher accumulator. Acording to analysis silicon content in different organs, silicon content in size order was root > leaf > rhizoma > stem. Silicon application increased silicon content of ginger plant. Average silicon content of plant was closely related to silicon content of different organs. But based on a comprehensive analysis, it was suggested that the upper leaves was the most ideal indicator to diagnose Si status and make Si fertilization recommendation at seeding stage in ginger.
     2. Application of silicon increased content and absorption of silicon (SiO2). Meanwhile, nitrogen and phosphorus content in different organs of ginger were also increased. Nitrogen increased by 13.1%、27.1%、35.2% and phosphorus increased by 18.6%、39.5%、52.3%. Although the experiment proved silicon application decreased potassium content of ginger, due to increase of the biomass of ginger plant, its absorption was not reduced.
     3. The study proved silicon had an obvious effect on the growth of ginger. Plant height and stem diameter of ginger and biomass of different organs were increased both in culture and soil solution experiments. Number of leaves and branches were also improved in field experiment. At harvest time, Compared with non-silicon treatments, number of branches increased by 8.3%, 18.3% and 13.3% in T’1、T’2 and T’3 treatments. The yield of T’1、T’2 and T’3 were 76926.9、86542.8 and 78850.1 kg/hm2 respectively, compared with that of CK’66926.4 kg/hm2, the increasing rates were14.9% , 29.3% and 17.8% separately.
     4. Silicon improved carotenoid content. heightened photosynthetic rate of ginger leaves, prolonged the period of high-light-effect. However, no differences in chlorophyll content were observed. Otherwise, silicon improved intrinsic photochemical efficiency (Fv/Fm), quantum yield of PSⅡ(φPSⅡ) and photochemical quenching (qP), decreased photoinhibition of photosynthesis of ginger in midday.
     5. Silicon treatment also increased water use efficiency(WUE) in leaves, but decreased the transpiration rate (Tr). Compared with non-silicon treatments, T1、T2 and T3 treatments improved WUE by 23.1%, 55.9% and 54.8% but decreased Tr by 6.3%, 17.1% and 19.2% at 11:00 o,clock.
     6. Silicon could significantly enhance the fastness of ginger. Activities of CAT and POD were significantly improved and MDA content was decreased in drought and high temperature stress. Compared with non-silicon treatments, T1、T2 and T3 treatments reduced mlondiadehyde content of ginger leaves by 8.8%、19.2% and 23.8% especially, so silicon application lessened the extent of membranes injury of ginger.
     7. Silicon had a significant effect on the yield and quality of ginger. Dry matter of rihzoma increased by 17.5%、20.1% and 8.7% in T’1、T’2、T’3 respectively. Volatized oil content in T’2 was also improved by 25.0%
     8. Based on a comprehensive analysis, we concluded the suitable silicon concentration for ginger ranged between 1.5 and 2.0 mmol/L in solution culture and 100 kg/666.7m2 in soil culture.
引文
敖光明等译.高井康雄.植物营养与技术[M].北京:农业出版社,1988
    鲍士旦,杨学荣,李铁群等.石灰性土壤上小麦的硅素营养及硅、锌、锰肥对小麦产量的影响[J].土壤,1996,28(6):311~315
    蔡永萍,李玲,李合生,等.霍山石斛叶片光合速率和叶绿素荧光参数的日变化[J].园艺学报,2004(06):141~146
    曹锡清.膜质过氧化作用对细胞有机替代作用[J].生物化学与生物物理学进展,1986(2):17~23
    陈贵,胡文玉,谢捕缇等.提取植物体内MDA的溶剂及MDA作为衰老指标的探讨[J].植物生理学通讯,1991,27(1):44~46
    崔德杰,王月富,高静等.硅钾肥对不同水分条件下冬小麦光合日变化的影响.土壤通报,1999,30(1):38-39
    丁燕芳,梁永超等.硅对干旱胁迫下小麦幼苗生长及光合参数的影响.植物营养与肥料学报,2007,13(3):471~478
    房江育,马雪泷.硅对马铃薯试管苗生长及其细胞壁形成的影响[J].作物学报,2006,32(1)152~154
    房江育,王贺,张福锁.硅对盐胁迫烟草悬浮细胞的影响.作物学报,2003,29 (4):610~614
    冯元琦.硅肥应成为我国农业发展中的新肥料[J].化肥工业,2000,27(4):9~11
    高明,魏朝富,陈世正等.紫色水稻土对硅酸盐吸咐与解吸特性研究[J ].土壤通报,1998,29(4):178~181
    高桥英一,三宅靖人.日本土壤肥料科学杂志,1976,47:296~306
    高淑萍,昝林生.硅肥对小麦养分吸收与光合物质生产的影响.土壤肥料, 2001(5):35~37
    关义新,林葆,凌碧莹.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响[J].植物营养与肥料学报,2000,6(2):152~158
    管恩太,蔡德龙.硅营养[J ].磷肥与复肥,2000,15(5):64~66
    韩光,王春荣.硅对水稻茎叶解剖结构的影响[J ].黑龙江农业科学,1998,(4):4~7
    何电源.土壤和植物中的硅[J].土壤学进展, 1980, 5(6):1~10
    贺立源,江世文.小麦施用硅钙肥效应研究[J].土壤肥料,1999,3:8~11
    侯嫦英,方升佐,薛建辉等.干旱胁迫对青檀等树种苗木生长及生理特性的影响[J].南京林业大学学报,2003,27(6):103~106
    侯彦林,郭伟,朱永官.非生物胁迫下硅素营养对植物的作用及其机理[J].土壤通报,2005,36(3):426~429
    胡克伟,关连珠,颜丽,贾冬艳.施磷对水稻土硅素吸附与解吸特性的影响[J].植物营养与肥料学报,2002,8(2):214~218
    胡克伟,颜丽,关连珠,贾冬艳.施磷对水稻土硅素吸附与解吸特性的影响[J].植物营养与肥料学报,2003,9(3):299~302
    黄昌勇,沈冰.硅对大麦铝毒的消除和缓解作用研究[J].植物营养与肥料学报,2003,9(1):98~101
    黄湘源,季明德,张霖林.硅元素对甘蔗增产和增糖作用机理的研究[J].甘蔗糖业,1992,2:13~18
    江立庚,曹卫星,甘秀芹等.水稻氮素吸收、利用与硅素营养的关系[J].中国农业科学,2004,37(5):648~655
    金戈.未结冰低温胁迫下小麦叶细胞质膜透性的变化过程及性质[J].植物生理学报,1991,17(13):295~300
    李春俭,王震宇,张福锁等译. Marschner H.高等植物的矿质营养[M].北京:中国农业大学出版社,2001,289~306
    李德明,朱祝军. Si对Cd胁迫下小白菜生长及叶绿素荧光德影响[J].浙江农业学报,2006,18(4):212~215
    李发林,张锦元.云南省烟草施用硅肥试验研究[J].云南农业科技,1997,(2):15~17
    李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000:220~223
    李合生主编.现在植物生理学[M].北京:高等教育出版社,2002:188~420
    李清芳,马成仓,李韩平等.土壤有效硅对大豆生长发育和生理功能的影响[J].应用生态学报,2004,15(1)73~76
    李清芳,马成仓,尚启亮.干旱胁迫下硅对玉米光合作用和保护酶的影响[J].应用生态学报,2007,18(3):531~536
    李清芳,马成仓.土壤有效硅对棉花幼苗营养代谢的影响[J].中国农业科学, 2003,36(6):726~730
    李清芳,马成仓.土壤有效硅对棉花幼苗营养代谢的影响[J].中国农业科学,2003,36(6):726~730
    李霞,刘友良,焦德茂.不同高产水稻品种叶片的荧光参数的日变化和光适应特性的关系[J].作物学报,2002(3):145~153
    梁永超,丁瑞兴,刘谦.硅对大麦耐盐性的影响及其机制[J].中国农业科学. 1999, 32(6):75~83
    梁永超,钱在仁,陈兴华等.硅对番茄生长、产量及品质的影响[J].江苏农业科学,1993,4:48~50
    梁永超,沈其荣,张爱国等.钙、硅对酸雨胁迫下小麦生长和养分吸收的影响[J].应用生态学报,1999,10(5):589~592
    梁永超,张永春,马同生.植物的硅素营养[J].土壤学进展,1993,21(3):7~14
    刘春生,杨守祥.农业化学分析[M].中国农业大学出版社,1996:158~183
    刘平,何继英,贺宁等.硅浓度对水稻生长、含水量、根冠比和过氧化物酶活性的影响[J].贵州农业科学,1987,16(3):6~9
    刘树堂,韩效国,东先旺.硅对冬小麦抗逆性影响的研究[J].莱阳农学院学报,1997,14(1):21~25
    卢存福,贲桂英.海拔对植物光合特性的影响[J].植物学通报,1995,12(2): 38~42
    鲁嘉,陈斌,赵峰.硅肥在小麦上的应用效果[J].土壤肥料,1997,5:42~43
    陆景陵.植物营养学(上册) [M].北京:中国农业大学出版社,1994,80
    马同生.我国水稻土中硅素丰缺原因[J].土壤通报,1997,28(4)196~197
    毛知耘.肥料学[M].北京:中国农业出版社,1997
    南京农学院主编.土壤农化分析[M].北京:农业出版社,1980:191~198
    饶立华,覃莲祥,朱玉贤等.硅对杂交水稻形态结构和生理的效应[J].植物生理学通讯,1986,22(3):20~24
    孙曦.土壤养分、植物营养与合理施肥[M].北京:农业出版社,1983
    汤玉玮,森振武.硝酸还原酶在农业应用上的研究动态[J].农业科技动态,1985,(141):1~5
    汤章城.逆境条件下Pro的积累及可能的意义[J].植物生理学通讯,1984,(1):15~21
    田福平,陈子萱,张自和等.硅对植物抗逆性作用的研究[J].中国土壤与肥料, 2007(3):10~14
    王富华.我国硅肥应用生产与分析方法研究近况[J].湖北农业科学,1993,(6):39~41
    王晓芸,程炳嵩,张国珍.锌、硼对生姜增产效果及吸收、分配规律的研究[J].山东农业大学学报,1994,25(1)77~81
    王永锐,陈平.水稻对硒吸收、分布及硒与硅共施效应[J].植物生理学报,1999,30(3):121~122
    王永锐,成艺,胡智群.硅营养抑制钠盐及铜盐毒害水稻秧苗的研究[J].中山大学学报(自然科学版),1997,36(3):72~75
    王永锐.王永锐水稻文集[M].广州:中山大学出版社,1999,17~21
    魏朝富,谢德体,杨剑虹,廖东波.氮钾硅肥配施对水稻产量和养分吸收的影响[J].土壤通报,1997,28(3):121~123
    文树基.基础生物化学实验指导[M].西安:陕西科学技术出版社,1994
    吴魏,张宽,王秀芳等.硅对水稻养分吸收及产量的影响[J].吉林农业科学,1996,21(3):61~65
    吴英,魏丹,高洪生.硅在水稻营养中的作用及有效条件的研究[J].土壤肥料,1992,3:25~27
    武海,张树源,许大全等.珊瑚树叶片叶绿素荧光非光化学猝灭的日变化和季节变化[J].植物生理学报,1997,23(2):145~150
    夏石头,萧浪涛,彭克勤.高等植物中硅元素的生理效应及其在农业生产中的作用[J].植物生理学通讯,2001,37(4):356~360
    邢雪荣,张蕾.植物的硅素营养研究综述[J].植物学通报,1998, 15 (2):33~40
    徐呈祥,徐锡增.硅对盐胁迫下金丝小枣叶绿素荧光参数和气体交换的影响[J].南京林业大学学报,2005,29(1):25~28
    徐坤,康立美,赵德婉.生姜对氮磷钾吸收分配规律研究[J].山东农业科学,1992,(3):14~16
    徐坤,赵德婉.生姜农艺性状与产量的关系分析[J].河北农技师范学院,1994,12:5~8
    许大全,徐宝基,沈允钢. C3植物光合效率的日变化[J].植物生理学报,1990,16:1~5
    张翠珍,邵长泉,孟凯等.水稻施用硅肥效果及适宜用量的研究[J].山东农业科学,1997,(3):44~45
    张翠珍,邵长泉,孟凯等.水稻吸硅特点及硅肥效应研究[J].莱阳农学院学报,2000,20 (2):111~113
    张翠珍,邵长泉,孟凯等.小麦吸硅特点及效果的研究[J].山东农业科学,1998,(4):29~31
    张国良,戴其根,张洪程等.水稻硅素营养研究进展[J].江苏农业科学,2003,3:8~12
    张兴梅,邱忠祥,刘永菁.春小麦硅肥效应的研究[J].土壤肥料,1997,1:39~41
    赵世杰,刘华山,董新纯.植物生理学实验指导[M].北京:中国农业大学科学技术出版社,1998
    浙江农业大学主编.农业化学分析[M].上海:山海科技出版社,1987:174~182
    郑光华.植物栽培生理[M].济南:山东科技出版社,1980:24~26
    周青,潘国庆,施作家.不同时期用硅肥对水稻群体质量及产量的影响[J].耕作与栽培,2001,(3):25~27
    朱佳,梁永超等.硅对低温胁迫下冬小麦幼苗光合作用及相关生理特性的影响[J].中国农业科学,2006,39(9): 1780~1788
    朱有勇.生物多样性持续控制作物病害理论与技术[M].昆明:云南科技出版社,2004, 175~184
    邹邦基,何雪晖.植物的营养[M].北京:农业出版社,1985
    邹春琴,高霄鹏,刘颖杰等.硅对向日葵水分利用效率的影响[J].植物营养与肥料学报,2005,11(4):547~550
    邹春琴,高霄鹏,张福锁.施硅对玉米生长及蒸腾速率的影响[J].中国生态农业学报,2007,15(3):55~57
    Agarie S, Hanaoka N, Ueno O, MiyazakiI A, Kubora F, Agata W, et al. Effects of silicon on tolerance to water dificit and heat stress in rice plants(Oryza sativa L.), Monitered by electrolyte leakage [J]. Plant Production Science, 1998, 1: 96~103
    Barman K K, Tomar K P, Biswas A K. Sorptive interaction of phosphate and silicate in a red soil as affected by pH [J] . Journal of the Indian Society of Soil Science.1998, 46 (2): 299~301
    Chance M. Assay of calatare and peroxide [J]. Methods Enzymol. 1955, 2: 764~775
    Cherif M, Masselin A, Belanger R R. Defense responses induced by soluble cucumber roots infects by Pythium spp [J]. Phytopathology, 1994, 84 (3): 236~242
    Cherif M, Menxies J G, Bhret D L. Yield of cucumber infected with Pythium aphanideruatuum when growth with soluble silicon [J]. Horticulture Science, 1994, 29(8): 236~242.
    Epstein E. The anomaly of silicon in plant biology Proc [J]. Natl. Acad. Sci. USA, 1994, 91: 11~17
    Gao X P, Zou C Q, Wang L J, et al . Silicon improves water use efficiency in maize plants [J]. Journal of Plant Nutrition, 2004, 27 (8): 1457~1470
    Genty B, Briantais J M, Baker N B. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochem Biophys Acta, 1989, 990: 87~92
    Giannopolitic CN, Ries SK. Superoxide dismutases. I. Occurrence in higher plants [J]. Plant physiol. 1977, 59: 309~314
    Hossain M T, Morir, Soga K, Wakaba Bayshi K et al. Growth promotion and an increase in cell wall extensibility by silicon in rice and some otherPoaceae seedlings [J].Journal of plant reserch, 2002, 115: 23~27
    Ishiguro K. Review of research in Japan on the roles of silicon in conferring resistance against rice blast [J]. Elsevier Science, 2001: 277~287
    Joseph Wang, Najih Naser. Improved performance of carbon paste ampermeric biosensors through the incorporation of fumed silica [J]. Electroanalysis , 1994, 6(7): 571~575
    Kathryn E Richmond Michael Sussman. Got silicon? The non-essential beneficial plant nutrient [J]. Current Opinion in Plant Biology. 2003, 6: 268~272
    Khan M H, Singha K L B, Panda S K. Changes in antioxidant levels in Oryzasativa L. roots subjected to NaCl-salinity stress [J]. Acta Physiologiae plantarum, 2002, 24(2): 145~148
    Korndorfer G H, Lepsch I. Effect of silicon on plant growht and crop yield [J]. Elsevier Science, 2001: 133~147
    Lewin J, Reinmann B. E. F. Silicon and plant growth. Annual Review of Plant Physiology, 1969, 20: 289~304
    Liang Y C. Effects of silicon on leaf ultrastructure, chlorophyll content and photosynthetic activity of barley under salt stress [J]. Pedosphere, 1998, 8: 289~296
    Ma J F, Takahashi E. Effect of silicon on the growth and phosphorus uptake of rice [J]. Plant and Soil, 1990, 126(1): 115~119
    Maj F, Takahashi E. Interaction between calcium and silicon in water-cultured rice plants [J]. Plant Soil,1993, 148: 107~113
    May L, vun sarford DA, Mickown C T, et al. Cenetic Variation for nitrogen use in soft red X hard red in winter wheat population [J]. Crop Science. 1991, 31: 626~630
    Meyer J H, Keeping M G. Past, present and future research of the role of silicon for sugarcane in southern Africa [J]. Elsevier Science, 2001, 257~275
    Neumann D, Zur Nieden U. Silicon and heavy metal tolerance of higher plants [J]. Phytochemistry, 2001, 56: 685~692
    Newell W R,Van Ameronger H,Barber J, et al,1991 Spectroscopic characterization of the reaction center of photosystemⅡusing polarizedlight: evidence forβ-carotene excitons in PSⅡreaction centers [J]. Biochim Biophys Acta, 1057(2):232~238
    Ocuda A, Takahashi E. The role of silicon[A]. In: The mineral nutrition of the rice plant [M]. Baltimore, Md: TheJohns Hopking Press, 1964, 123~146
    Okuda A , Takahashi E. Studies on the physiological role of silicon in crop plant [J]. Science Soil and Manure in Japanese, 1962, 33: 1~8
    Omran R G. Peroxide levels and the activity of catalase, peroxidase and indoleacetic acid oxidase during and after chilling cucumber seedling [J]. Plant Physiol. 1980, 65: 407~408
    Rothbuhr L, Scott F. A study of the uptake of silicon and phosphorus by wheat plants , with radiochemical methods [J]. Biochem. J., 1957, 65: 241~245
    Samuels A L, Glass A D M, Bhret D L. Mobility and deposition of silicon in cucumber plants [J]. Plant Cell and Environment, 1991, (14) : 485~492
    Savant N K, KorndorFer G H, Datnoff L E, Snyder G H, Silicon nutrition and sugarcane production: a review [J]. Journal of Plant Nutrition, 1999, 22(12): 1853~1903
    Savant N K, Sayder G H , Datnoff L E. Silicon management and sustainable rice production [J] . Adv. Agron. 1997, 58: 151~1991
    Simte H C, Dasgupta D R. Sequential changes in proteins of soybean, inoculated with the root-knot nematode, Meloidogyne incognita [J]. Indian journal of nematology, 1987,17(2): 247~253
    Sistanik R, Savantn K, Reddyk C. Effect of rice hull ash silicon on rice seedling growth [J]. Journal of Plant Nutrition, 1997, 2(1): 195~201
    Takahashi E, Miyake Y. Distribution of silica accumulator plants in the plant kingdom(1) Monocotyledons [J]. Science of Soil and Manure, 1976, (47): 296~300
    Thialingam K. Effect of calcium silicate on yield and nutrient uptake in plants grown on a humic ferruginous latosol [C]. In: Conference on Chemistry and Fertility of Tropical Soils. Malaysian Society of Science, Kuala Lumpur, Mnlaysia, 1977, 149~155
    Tsugoshi, Horigushi. Mechanism of manganese toxicity and tolerance of plants IV. effect of silicon on alleviation of manganese toxicity of rice plants [J]. Soil Science and Plant Nutrition, 1988, 34(1): 65~73
    Van der Vorm PDJ. Dry ashing of plant material and dissolution of the ash in HF for the colorimatric determination of silicon [J]. Communications in Soil science and Plant Analysis, 1987, 18: 1181-1189
    Wagner, Richard R B, Patricia A B. Soluble silicon its role in crop and disease management of greenhouse crops [J]. Plant Disease, 1995, 4: 329~336
    Winslow M D, Okada K, Correa Victoria F. Silicon deficiency and the adaptation of tropical rice ecotypes [J]. Plant Soil,1997, 188: 239~248
    Yamauchi M, Winslow M D. Effect of silica and magnesium on yield of upland rice in the humid tropics [J]. Plant Soil,1989, 113: 265~269
    Yoshida S, Ohnishi Y, Kitagishi K. Chemical forms, mobility and deposition of silicon in rice plant [J]. Soil Science and Plant Nutrition, 1962, 8: 15~21
    Yoshida S, Ohnishi Y, Kitagishi K. Histochemistry of silicon in rice plantⅢ: The presence of cuticule-silica double layer in the epidermal tissue [J]. Soil Science and Plant Nutrtion, 1962, 8: 1~5
    Yoshida S, Ohnishi Y, Kitagishi K. Histochemistry of silicon in rice plant II: Localization of silicon within plant tissues [J]. Soil Science and Plant Nutrition, 1962, 8: 36~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700