黄瓜远缘群体分子遗传连锁图谱的构建及始花节位性状的定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构建高密度的黄瓜分子遗传连锁图谱对遗传育种有着重要的研究意义,不仅是分子标记辅助选择,QTL精确定位的基础,也是基因图位克隆的关键,是加快黄瓜育种进程,提高黄瓜育种水平的重要途径。
     本研究以天津科润黄瓜研究所提供的野生黄瓜品种U4和普通栽培品种Hm60-1以及由它们杂交配制得到的F2后代群体为材料,应用AFLP、SSR、SRAP等三种分子标记技术构建了黄瓜的分子遗传连锁图谱,对雌花节位性状进行了QTL定位,对黄瓜育种有着重要的指导意义。主要研究结果如下:
     1.利用双亲进行引物筛选,从259对AFLP引物中筛选出有差异的引物159对,多态性比列为61.4%,其中多态性位点大于3的引物有53对;75对SRAP引物中有差异的引物为71对,多态性比列为94.6%,其中多态性好的引物有20对;113对SSR引物中,有差异的引物仅14对,多态性比列为12.4%。
     2.对AFLP、SRAP、SSR等三种分子标记的多态性进行了分析,AFLP的53对引物共扩增出160个多态性位点,平均每对引物3.2个;20对SRAP引物共产生58的多态性位点,平均每对引物2.9个;在亲本间有多态性的14对SSR引物得到了14个多态性位点,平均每对引物1个,得出三者的多态性大小为:AFLP>SRAP>SSR。
     3.利用JoinMap3.0对得到的160个AFLP标记,58个SRAP标记,14个SSR标记进行连锁分析,得到了一个包含10个连锁群的遗传图谱,其中包括112个AFLP标记,39个SRAP标记,8个SSR标记,该图谱覆盖基因组743.11cM,平均图距为4.67cM,每个连锁群上标记数在3~41之间,长度在8.02~140.16cM之间。
     4.利用Map QTL 4.0区间作图法对雌花节位性状进行定位,共找到8个控制雌花节位的QTL位点:ff-1、ff-2、ff-3、ff-4、ff-5、ff-6、ff-7、ff-8,分别位于LG2、LG3、LG6、LG7连锁群上,这些QTL位点对雌花节位性状表型变异的贡献率分别为81.6%、81.0%、81.0%、80.0%、80.6%、81.1%、81.0%、80.7%,其中ff-1、ff-2、ff-5、ff-6、ff-7、ff-8加性效应值为正,为增效加性效应,ff-3、ff-4加性效应值为负,是减效加性效应。
A high-density molecular genetic linkage map holds an important status in cumcumber breeding. It helps molecular assisted selection, QTL mapping and map based gene cloning. In our research, a molecular genetic linakage map of cucumber were constructed by taking parents U4 ,Hm60-1 and their cross F2 population as materials. Parent U4 is a wide cultivar which found in china, Hm60-1 is a common cultivar which cultivated widely. The parents are different from each other distinctly in plant size, branches, the first female flower node, disease resistance et al.
     The AFLP markers, SRAP markes, SSR markers were employed in the construction of the genetic linkage map, and Joinmap 3.0 software was used to construct the map in this study. The first female flower node trait was mapped on this linkage map by QTL mapper 4.0 software. The main results of this study were as follows:
     1. 159 polymorphic primer combinations between the two parents were found from 259 AFLP primer combinations, the polymorphic ratio was 61.4%; 71 polymorphic primer combinations between the two parents were found from 75 SRAP primer combinations, the polymorphic ratio was 94.6%; 14 polymorphic primer combinations between the two parents were found from 113 SSR primer combinations, the polymorphic ratio was just 12.4%.
     2. The polymorphism of the AFLP markers, SRAP markers, SSR markers were analyzed. 53 AFLP primer combinations generated 160 polymorphic locus, 3.2 per primer combination; 20 SRAP primer combinations generated 58 polymorphic locus, 2.9 per primer combination; 14 SSR pimer combinations generated 14 polymorphic locus, 1 per primer combination. The polymorphism is AFLP>SRAP>SSR.
     3. Using Joinmap3.0 software, a molecular genetic linkage map which included 10 linkage groups and contained 112 AFLP markers, 39 SRAP markers, 8 SSR markers respectively was obtained. This map covering the cumcumber genome 743.11cM, the average distance between two markers is 4.67cM, which can be used for QTL mapping.
     4. Mapping of the quantitative trait loci of the first female flower node was executed by Interval mapping in QTL mapper 4.0 software. The total 8 QTLs were found on the map, named them as ff1, ff2, ff3, ff4, ff5, ff6, ff7, ff8. ff1, ff2 located on linkage group2; ff3, ff4 located on linkage group3; ff5, ff6 located on linkage group6 and ff7, ff8 located on linkage group7. All of the QTLs showed positive additive effect except ff3, ff4 locus which showed negative additive effect.
引文
[1] 候锋.黄瓜.天津科学技术出版社.1999.
    [2] 邢永忠,徐才国.作物数量性状基因研究进展.遗传,2001,23:498-502.
    [3] 方宣均,吴为人,唐纪良.作物标记辅助选择育种.北京科学出版社,2002.
    [4] Bernatzky R,Thanksley SD.Toward a saturated linkage map in tomato based on isozyme and random cDNA sequence.Genetics,1986,112,:887-898.
    [5] 刘树兵,贾继增.高等植物的遗传作图.山东农业大学学报,1999,30:73-78.
    [6] 席章营,朱芬菊,台国琴,李志敏等.作物分析的原理与方法,中国农学通报,2005,21:88-92.
    [7] 吴为人,李维明,卢浩然等.建立一个重组自交系群体所需的自交代数.福建农业大学学报1997,26:129-132.
    [8] 梁明山,曾宇,周翔.遗传标记及其在作物品种鉴定中的应用.植物学通报.2001,18(3):257-265.
    [9] 乔爱民,傅家瑞,刘佩瑛.分子标记在植物上的应用. 长江蔬菜.1999,4:1-5.
    [10] 刘勋甲,郑用琏,尹艳.遗传标记的发展及分子标记在农作物遗传育种中的运用[J]. 湖北农业科学,1998,1:33-39.
    [11] 李竞雄,宋同明.植物细胞遗传学[M]. 北京:科学出版社,1988,286-300.
    [12] 张兴平.甜瓜种质资源的同工酶分析.西北农业大学学报.1998,(2):5-11.
    [13] 周延清.遗传标记的发展[J].生物学通报,2000,35(5):17-18.
    [14] 沈法富,刘凤珍,于元杰.分子标记在植物遗传育种中的应用[J]. 山东农业大学学报(自然科学版),1997,28(1):83-91.
    [15] 刘旭.遗传标记和遗传图谱构建.作物品种资源,1997,3:29-32.
    [16] Heun M,AE Kennedy,JA Anderson,etal.Construction of a restriction fragment length polymorphism map for barley[J].Genome,1991,34:437-447.
    [17] LIU Y G,TSUNEWAKIK.Restriction fragment length polymorphism analysis in wheat II Linkage maps of the RFLPsites in common wheat[J].Jpn,Jgenet,1991,66:617-633.
    [18] 郑用琏,李建生,刘纪麟等.玉米 S 组 CMS 育性恢复基因的分子标记定位[J].作物学报,1997,23(1):1-6.
    [19] 刘玉梅,方智远,Michael D.等.一个与甘蓝显性雄性不育基因连锁的 RFLP 标记[J].园艺学报,2003,30(5):549-553.
    [20] 李平,周开达,李仁端,等.利用 RFLP 标记定位水稻重要农艺性状的主效基因与微效基因[J].中国科学(C 辑),1996,26(3):257-263.
    [21] 翁跃进,贾继增,董玉琛等.利用 RFLP 分子标记鉴定小麦-顶芒山羊草异代换系[J],遗传学报,1997,24(3):248-254.
    [22] 许云 , 沈洁 .DNA 分子标记技术及其原理 [J]. 连云港师范高等专科学校学报,2003,9(3):78-82.
    [23] Michelmore R. W., Paranand I., Kessali R. V. Identification of markers linked to disease resistance gene by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9829-9832.
    [24] 许勇,欧阳新星,张海英,等.与西瓜种质抗枯萎病基因连锁的 RAPD 标记[J]. 植物学报,1999,41(9):952-955.
    [25] 傅 俊 江 , 李 麓 云 , 徐 湘 等 . 一 种 提 高 RAPD 扩 增 效 率 的 有 效 方 法 [J]. 遗传,2000,22(4):251-252.
    [26] Arnedo-Andres S,Gil-Ortega R,Luis-Arteaga M,etc. Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper(Capsicum annuum L.)[J]. Theor Appl Genet.,2002,105(6):1067-1074.
    [27] 王晓武.甘蓝显性雄性不育基因的分子标记及延长随机引物扩增 DNA 标记的建立[D].北京: 中国农科院蔬菜花卉研究所, 1998. 23-25.
    [28] Caetano-Anolles G et al. Bio/Technology 1991, 9: 553-557.
    [29] 杜胜利,张桂华等.黄瓜抗白粉病基因 AFLP 标记的 SCAR 转换.园艺学报,2005.
    [30] 闫乃红,陈静,马欣荣,等.小麦抗禾谷类根线虫基因 Rkn-mnl 的 SCAR 标记.应用与环境生物学报.2003,(3) :523-528.
    [31] 雷永,廖伯寿.花生黄曲霉侵染抗性的 SCAR 标记.遗传,2006,28(9) :1107-1111.
    [32] Vos P, Hongers R, Bleeker M,etal. AFLP : a new technique for DNA fingerprinting[J].Nucleic Acidsres,1995,23(21):4407-4414.
    [33] 陈大霞,司马杨虎,赵爱春等.影响家蚕 AFLP-银染的因素及其对策[J]. 蚕学通报,2002,22(4):37-42.
    [34] Bachem C.,vander Hoeven R.,De Bruijn M.,etc.Visualization of differential gene expression using a novel method of RNA finger-printing based on AFLP:annlysis of gene expression during potato tuber development [J]. Plant ,1996, 9:745-753.
    [35] Van der Wurff AWG,Chan YL,van Straaln NM etc .TE-AFLP:combining rapidity and robustness in DNA fingerprinting[J]. Nucleic Acids Res,2000, 28(24):5005-5009.
    [36] 肖兴国.一种经济快速高效的 DNA 指纹新技术--TE-AFLP 评介[J].农业生物技术学报,2001,9(2):202-204.
    [37] Litt M, Luty J A. Hypervariable microsattelite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. American Journal of Human Genet, 1989, 44:391-401.
    [38] Tautz D.Hypervariability of simple sequence as a general source for polymorphic DNA markers [J]. Nucleic Acid Rearch,1989(17):6463-6471.
    [39] 何平.真核生物中的微卫星及应用[J].遗传,1998,20(4):42-47.
    [40] 张学勇,李大勇.小麦及其近亲基因组中的 DNA 重复序列研究进展[J].中国农业科学,2000,33(5 ):14-24.
    [41] Gilsinger J, Kong L, Shen X, etc. DNA markers associated with low Fusarium head blight incidence and narrow flower opening in wheat [J]. Theor Appl Genet, 2005, 5 (5):1.
    [42] Dietrich W F,Miller J C.A comprehensive genetic map of the mouse genome[J]. Nature,1996(380 ):149-152.
    [43] Akagi H.Highly polymorphic microsatellite of consisit of A Trepeat and a classification of closely related cultivars with these microsatellite loci[J].Theor Appl Genet,1997(94):61-67.
    [44] Wu, KS, Tanksley, SD. Abundance, polymorphism and genetics mapping of microsatellites in rice. Mol Gen Genet, 1993, 241:225-2353.
    [45] Wu, KS, Tanksley, SD. Abundance, polymorphism and genetics mapping of microsatellites in rice. Mol Gen Genet, 1993, 241:225-2353
    [46] Zietkie Wicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification [J].Genomics,1994,20:176-183.
    [47] Wu K S, Jones R, Danneberger L, Scolnik P A. Detection of microsatellite polymorphisms without cloning. Nucleic Acids Research, 1994, 22:3257-3258.
    [48] Davila J A, Loarce Y, Ramsay L, Waugh R,Ferrer E. Comparison of RAMP and SSR markers for the study of wild barley genetic diversity. Hereditas, 1999, 131: 5-13.
    [49] Dávila J A, Loarce Y, Ferrer E. Molecular characterization and genetic mapping of random amplified microsatellite polymorphism in barley. Theoretical and Applied Genetics, 1999, 98:265-273.
    [50] Sánchez de la Hoz M P, Dávila J A, Loarce Y, Ferrer E. Simple sequence repeat primers used in polymerase chain reaction amplifications to study genetic diversity in barley. Genome, 1996, 39:112-117.
    [51] 候永翠,颜泽洪,兰秀锦,等.利用 RAMP 和 ISSR 标记分析大麦种质资源的遗传多样性. 中国农业科学.2005,38(12):2555-2565.
    [52] 蓝贤勇.西农萨能奶山羊经济性状的 DNA 分子标记及 5 个山羊品种 DNA 多态性研究[D].西北农林科技大学,2004.
    [53] Li G, Quiros C F. Sequence-related amplified polymorphism(SRAP),A new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103:455-461.
    [54] 任羽,王德元等.相关序列扩增多态性(SRAP)一种新的分子标记技术.中国农学通报,2004,Vol20(6):11-13.
    [55] 林忠旭,张献龙,聂以春等.棉花 SRAP 遗传连锁图构建.科学通报.2003,(15).
    [56] 王刚,潘俊松,李效尊等.黄瓜 SRAP 遗传连锁图的构建及侧枝基因定位.中国科学 C辑.2004,34(6):510-516.
    [57] 潘俊松,王刚,李效尊等.黄瓜 SRAP 遗传连锁图的构建及始花节位的基因定位. 自然科学进展.2005,(2):167-172..
    [58] 文雁成,王汉中等.用 SRAP 标记分析中国甘蓝型油菜品种的遗传多样性和遗产基础.中国农业科学,2006,39(2):246-256.
    [59] 吴杰 , 谭文芳 . 甘薯 SRAP 连锁图构建淀粉含量 QTL 检测 . 分子植物育种,2005,Vol3(6):841-845.
    [60] JINGUO HU, BRADY A. VICK. Target Region Amplified Polymorphism: A Novelmarker technique for plant genotyping. Plant Molecular Biology Report 21: 289-294. september,2003.
    [61] 金梦阳,刘列钊.甘蓝型油菜 SRAP、SSR、AFLP 和 TRAP 标记遗传图谱构建.分子植物育种,2006,Vol.4,No.4,520-526.
    [62] 曹 哲 明 , 张 志 伟 等 .TRAP 及 SSCP 检 测 草 鱼 微 卫 星 序 列 多 态 性 . 生物 技术,2005,Vol.15,No.6:22.
    [63] Taillon-Miller P, Piernot EE, Kwok PY. Efficient approach to unique single-nucleotide polymorphism discovery [J]. Genome Res, 1999, 9(5):499-505.
    [64] 金基强,崔海瑞等.用 EST-SSR 标记对茶树种质资源的研究.遗传,2007,29(1):103-108.
    [65] 张照远,甘四明.EST-CAPS 标记在尾叶桉和细叶桉遗传图谱构建中的应用.林业科学研究,2007,20(2):230-234.
    [66] Moreno-Gonzalez J.Genetic models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques. Theor.Appl.Genet. 1992,85:435-444.
    [67] Lander ES,Bostein D.Mapping Mendelian facters underlying quantitative traits using RFLP Linkage maps.Genetics,1989,121:185-199.
    [68] Zeng ZB.Precision mapping of quantitative trait loci.Genetics,1994,136:1457-1468.
    [69] 朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(工学版),1999,33:327-335.
    [70] 赵茂俊,张志明等.玉米 SSR 连锁图谱的构建及抗纹枯病基因定位.高技术通讯,2005,Vol.15(5):71-74.
    [71] Yasuhisa K,Hidetoshi A,Mamko Y.RAPD marker linked to a clubroot-resistance locus in Brassica rapa L[J].Euphytica,1997,98:149-154.
    [72] Matsunomoto E,Yasui C,Ohi M,Tsukada M.Linkage analysis of RFLPmarkers for clubroot resisitance and pigmentation in Chinese cabbage(Brassica rapa ssp.pekinensis)[J].Euphytica,1998,104(2):79-86.
    [73] Caranta C,Palloix A Lefebvre V,Daubeze A M,QTLs for a component of partial resistance to cucumber mosic virus in pepper restriction of virus installation in hosr-cells.Theor Appl.Genet,1997,94:431-438.
    [74] Zhang B X,Huang S W,Yang G M,Guo J Z,Two RAPD markers linked to a major fertilityrestore gene in pepper.Euphytica,2000,11(3):155-166.
    [75] Wang L H,Zhang B X,Lefebvre V,Huang S W.Daubeze A M,Palloix.QTL analysis of fertility restoration in cytoplasmic male strile pepper.Theor Appli Gene,2004,109:1058-1063.
    [76] 尹小燕,王庆华,杨继良等.玉米大斑病抗性基因 Ht2 的精细定位[J].科学通报,2002,47(23):1811-1814.
    [77] 刘章雄,王守才,戴景瑞等.玉米 P25 自交系抗锈病基因的遗传分析[J].遗传学报,2003,30(8):706-710.
    [78] 周奕华等.分子标记在植物学中的应用及前景.武汉植物学研究,1999,17(1):75-86.
    [79] Kristin A S etal.Marker assisted selection to improve drought resistance in common bean.Crop sci.1997(37):51-60.
    [80] Thomas Horejsi , Jack E. Staub , Claude Thomas . Linkage of random amplified polymorphic DNA markers to downy mildew resisrance in cucumber (Cucumis sativus L.)[J].Euphytica, 2000, 115:105-113.
    [81] 鞠秀芝.黄瓜(Cucumis sativus L.)霜霉病抗性相关基因的分子标记研究[D]. 西北农林科技大学,硕士论文,2004.
    [82] Stuber G R.Inheritance of chlorotic cotyledon in corn.Can.J.plant Sci.,1995,60:331-335.
    [83] 沈立爽,朱立煌.植物的比较基因组研究和大遗传系统.生物工程进展,1995,15:23-28.
    [84] 胡 会 庆 , 李 子 银 . 分 子 标 记 在 植 物 遗 传 研 究 中 的 应 用 进 展 . 生 物 工 程 进展,1997,14(80):32-34.
    [85] CAUSSE M A,FUITON T M,CHO Y G,et al.Saturated molecular map of the rice genome based on an interspecific backcross population.Genetics,1994,138:1251-1274.
    [86] COE E H.New gene-new mapped genes-new markers.Maize Genet Crop Newsl,1996,70:99-109.
    [87] NAKAMURA Y,TANAKA T,TAKIGUCHIT,et al.Hybridization of rice DNA markers to other plant genomes.Rice Genome,1995,4(2):5-7.
    [88] DEVOS K M,BEALES J,NAGAMURA Y,et al.Arabidopsis-rice:will colinearity allow gene prediction across the eudicot-monocot divide.Genome Rearch,1999,9:825-829.
    [89] Pierce L K.,and Wehner T.C.,1990,Review of genes and linkage groups in cucumber, Hort.Science,25(6):605-615.
    [90] Arumuganathan K.,and Earle E.D.,1991,Nuclear DNA content of some important plant species, Plant Mol.Bio.Rep.,9:208-218.
    [91] Knerr L.D.,Staub J.E., Holder D.J., and May B.P.,1989,Genetic diversity in Cucumis sativus L.assessed by variation at 18 allozyme coding loci.Theor.Appl.Genet, 78:119-128.
    [92] 张洁,陈学好.黄瓜遗传图谱研究进展.分子植物育种,2006,Vol.4,NO.3:23-29.
    [93] Fanourakis N.E, and Simon P.W.,1987, Analysis of genetic linkage in the cucumber, J. Heredity,78(4):238-242.
    [94] Walters S.A., Shetty N.V., and Wehner T.C., 2001,Segregation and linkage of several genes in cucumber,J.Amer.Soc. Hort Sci, 126(4):442-450.
    [95] Knerr L. D., and Staub J.E., 1992, Inheritance and linkage relationships of isozyme loci in cucumber (Cucumis sativus L.), Theor Appl. Genet, 84:217-224.
    [96] Melic V., and Staub J.E., 1996, Inheritance and linkage relationships of isozyme and morphological loci in cucumber, Theor. Appl. Genet,92:865-872.
    [97] Kennard W.C., Poetter K., Dijkhuizen A., Meglic V.,Staub J.E., and Havey M.J., 1994, Among RFLP, RAPD, isozyme, disease resistance and morphological markers in narrow and wide cross of cucumber, Theor.Appl.Genet,89:42-48.
    [98] Serquen F.C., Bacher J., and Staub J.E., 1997, Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber using random-amplified polymorphic DNA markers. Mol.Breed,3(4):257-268.
    [99] Park Y.,Sensoy S.,W ye C.,Antonise R,Peleman J,and Havey M.J.,2000,A genetic map of cucumber composed of RAPDs RFLPs AFLPs and loci condition resistance to papaya ringspot and zucchini yellow mosaic viruses .Genome,43(6):1003-1010.
    [100] 张海英,葛风伟,王永健,等.黄瓜分子遗传图谱的构建.园艺学报.2004,31(5):617-622.
    [101] 李效尊,潘俊松.黄瓜侧枝基因和全雌基因的定位及 RAPD 遗传图谱的构建.自然科学进展,2004,Vol.14,11:1225-1229.
    [102] 王刚,潘俊松,李效尊等.黄瓜 SRAP 遗传连锁图的构建及侧枝基因定位.中国科学 C辑.2004(6):1123-1127.
    [103] Bradeen J.E. Staub, C. Wye. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.) [J].Genome, 2001,44:111-119.
    [104] Fazio G, Staub JE,Srevens MR. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines[J]. Theor Appl Genet, 2003,107(5):864-874.
    [105] 蔡长春,傅廷栋等.甘蓝型油菜遗传图谱的构建及开花期的 QTL 分析.中国油料作物学报,2007,29(1):1-8.
    [106] 黄 焕 焕 , 张 桂 华 等 . 黄 瓜 作 图 亲 本 间 分 子 标 记 的 多 态 性 分 析 . 华 北 农 学报.2007,22(2):47-49
    [107] Konish T, Abe K, Matsuura S, Yano Y, Distorted segregation of the esterase isozyme genotypes in barley(Hordeum vulgare L.). JPN.J.Genet. 1990,65:411-416
    [108] Liu LZ, Meng JL, Lin N, Chen L, Tang ZL.QTL mapping of seed coat color for yellow seeded Brassica napus. Yi Chuan Xue Bao,2006,33:181-187.
    [109] 王建设,姚建春等.利用中国香瓜与哈密瓜的 F2 群体构建 SRAP 连锁遗传图谱.园艺学报,2007,34(1):135-140.
    [110] 金梦阳,刘列钊等.甘蓝型油菜 SRAP,SSR,AFLP 和 TRAP 标记遗传图谱构建.分子植物育种.2006, Vol4(4):520-526
    [111] 付福友.甘蓝型油菜遗传图谱的构建和品质相关性状的 QTL 分析.西南大学.博士学位论文.2007.
    [112] 王美,张凤兰.中国白菜 AFLP 分子遗传图谱的构建.华北农学报,2004,19(1):28-33.
    [113] 张晓芬,王晓武 .利用大白菜 DH 群体构建 AFLP 遗传连锁图谱 . 园艺学报,2005,32(3):443-448.
    [114] Ramachandran C.Seshadri V.s. Cytological analysis of the genome of cucumber (Cucumis sativus L.) and musk melon(Cucumis melon).Z. Pflanenzuecht.1986,96:25-38.
    [115] 宋晓飞.大白菜分子遗传连锁图谱的构建及农艺性状的 QTL 定位.河北农业大学.硕士论文,2006.
    [116] Lark K G, orf J L M. Epistate expression of quantitative trait loci in soybean Glycine max(L.) Merr. Determined by QTL association with RFLP allets. Theor Appl Genetic, 1994,88:486-489.
    [117] 周奕华等.分子标记在植物学中的应用及前景.武汉植物学研究[J],1999, 17( 1): 75-86.
     [118] Kristin A S et al. Marker assisted selection to improve drought resistance in common bean. Crop sci. 1997(37):51-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700