亚衍射表面等离激元波导的光学性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离激元学是基于表面等离激元(surface plasmon polaritons, SPP)的光子学。SPP是由金属一电介质界面支持的表面波。它是自由空间中的电磁波和金属表面附近电子等离子体振荡相耦合的结果。SPP的波矢大于电介质中相同频率光子的波矢。因此,利用SPP可以在亚波长尺度上实现对光的操纵。科研人员已经在理论上和实验上论证、分析了很多表面等离激元学器件。与受到衍射极限限制的经典光子学器件不同的是,表面等离激元学器件的尺度在可见光和近红外波段可以降低到微纳量级。
     在表面等离激元学器件中,表面等离激元波导对SPP的传导和局域起到了重要作用。一般地,适合芯片集成的表面等离激元波导可以分为三种基本类型:绝缘体一金属(IM)型、绝缘体一金属—绝缘体(IMI)型以及金属—绝缘体—金属(MIM)型(这里绝缘体和金属分别用字母I和M表示)。本论文理论研究了这些基本类型表面等离激元波导的光学性质。尤其是,研究了绝缘层折射率为阶跃分布的MIM型波导的光学性质,以及MIM和IMI型波导中纵向电场为对称分布的SPP本征模式的激发问题。
     研究发现,MIM型波导的功能可以通过在绝缘层中引入阶跃折射率调制而得到增强。此时,MIM波导变成了金属—多层绝缘体—金属(metal-multi-insulator-metal, MMIM)波导。我们系统地研究了两种包含三个绝缘层的对称的MMIM波导。给出了波导中SPP本征模式的有效折射率、能量局域化尺度、传播长度以及品质优值等光学性质随着波导几何参数的变化关系。由于受到阶跃调制折射率的影响,MMIM波导的这些光学性质不同于MIM波导。我们在MMIM波导中发现了三个厚度临界值。当相应绝缘层厚度等于厚度临界值时,本征模式的有效折射率的实部不随着其他绝缘层厚度的变化而变化。我们给出了厚度临界值所满足的关系式,并且根据MIM型波导的性质,对厚度临界值的存在做出了解释。另外,MMIM波导的光学性质取决于几何参数和芯层折射率分布。和MIM波导相比,MMIM波导可以实现更小的能量局域化尺度或者更大的传播长度。对于芯层厚度为几百个纳米的MMIM波导,可以实现高达103um的传播长度以及高达104的品质优值。
     对称的MIM和IMI波导可以支持两种表面等离激元本征模式。根据模式纵向电场分量的对称性,将它们分别命名为反对称束缚模和对称束缚模。在MIM波导中,反对称束缚模的损耗相对较低,所以更适合于用来传导信号;而对称束缚模具有较高的能量密度,更适合于实现光和物质相互作用。在IMI波导中,通常情况下,反对称束缚模和对称束缚模的传播长度都足以实现在表面等离激元学纳米器件中操纵光的目的。然而,与对称束缚模相比,反对称束缚模具有更大的模式宽度,限制了IMI波导的集成密度。在MIM和IMI波导中,模式的横向电场分量的对称性决定了反对称束缚模可以通过很多途径激发出来,而对称束缚模则难以被激发出来。
     为了便于在MIM波导中实现多功能光操纵以及提高IMI波导的集成密度,我们分别在MIM和IMI波导中设计了可以将反对称束缚模转换为对称束缚模的模式转换器。通过调整相位和功率密度分布,我们在两种对称性的SPP导模之间实现了高效率的模式转换。转换器是借助变换光学理论设计完成的,其中只包括由线性坐标变换得到的均匀的材料。我们在MIM波导中提出了两种实用的模式转换器结构。用有限元法模拟验证了转换器的功能。在不考虑传导损耗的情况下,实现了高达95%的模式转换效率。在考虑金属欧姆损耗的情况下,实现了超过80%的模式转换效率。同时,在IMI波导中,在考虑实际金属损耗的情况下,仅通过调整模式的相位分布,实现了~80%的模式转换效率。
Plasmonics is photonics based on surface plasmon polaritons (SPPs). SPPs, which are supported by metal-dielectric interfaces, are electromagnetic waves in the free space coupled to electron plasma oscillations in the metal surfaces. SPPs'wavevectors are greater than those of photons in the dielectrics with the same frequencies, enabling light manipulations in the sub-wavelength scales. A lot of plasmonic devices have been demonstrated and analyzed theoretically and experimentally. While conventional photonic devices suffer from the diffraction limit, their plasmonic counterparts can be downsized to micro-or nano-scales at visible and near infrared frequencies.
     In plasmonic devices, plasmonic waveguides play an essential role for guiding and confining SPPs. In general, plasmonic waveguides that are suitable for on-chip integration can be modeled into three basic types:insulator-metal (IM), insulator-metal-insulator (IMI), and metal-insulator-metal (MIM). In this dissertation, the optical properties of the basic types of plasmonic waveguides are theoretically investigated. Particular attention is paid to MIM type plasmonic waveguides with step refractive index insulators, and the excitation of the plasmonic eigenmodes with symmetric longitude electric fields in both MIM and IMI waveguides.
     The performances of MIM waveguides can be enhanced by introducing step refractive index modulation to the insulators, in which case the MIM waveguides change into metal-multi-insulator-metal (MMIM) waveguides. We systematically study two types of symmetric MMIM waveguides consisting of three insulators. The effective refractive index, energy confinement, propagation length, and figure-of-merit are given in terms of the geometric parameters. Due to the step refractive index modulation, these properties of MMIM waveguides differ from the MIM waveguides. Three critical thicknesses are found in MMIM waveguides. When the thickness of the associated insulator is equal to a critical thickness, the effective refractive index of the corresponding eigenmode keeps unchanged with the thickness of the other insulator. We give the expressions for the critical thicknesses and explain their existences by the properties of MIM type waveguides. Moreover, compared with the MIM waveguides, MMIM can possess either better energy confinement or larger propagation length, which depends on the geometric parameters and the refractive index distribution. Propagation length of up to103μm and figure-of-merit of up to104are observed for MMIM waveguide with core thickness of several hundred nanometers.
     Symmetric MIM and IMI waveguides can support two types of plasmonic eigenmodes, namely the anti-symmetric bound (ab) mode and the symmetric bound (sb) mode according to the symmetry of the longitude electric field component. In MIM waveguides, the ab mode has relatively low loss, hence is better for signal transmission; while the sb mode has larger energy density and is better for light-matter interactions. In IMI waveguides, typically, both the ab and sb modes'propagation lengths are large enough for light manipulations in nano-plasmonic devices. However, compared with the sb mode, the mode width of the ab mode is much larger, limiting the integration density of IMI waveguides. Due to the symmetries of the lateral field components, in both MIM and IMI waveguides, the ab mode can be easily excited by many approaches, but the sb mode is difficult to launch.
     In order to facilitate multifunctional manipulations of light in MIM waveguides and increase the integration density of IMI waveguides, we design mode converters in MIM and IMI waveguides that can convert the ab mode to the sb mode. Efficient conversion between the two types of modes can be achieved by reshaping both phase and power density distributions of the guided mode. The converters are designed with the assistance of transformation optics and only consist of homogeneous materials yielded from linear coordinate transformations. We propose two practical configurations of mode converter in MIM waveguides. The functionalities of the converters are demonstrated by finite element simulations. Without consideration of transmission loss, conversion efficiency of as high as95%can be realized. When ohm loss generated by the metallic regions is considered, the conversion efficiency is more than80%. In addition, conversion efficiency of-80%can be realized in IMI waveguides with real metals by only phase reshaping.
引文
[1]Barnes W L, Dereux A and Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003,424(6950):824-830
    [2]Zia R, Schuller J A, Chandran A, et al. Plasmonics:the next chip-scale technology. Mater. Today,2006,9(7-8):20-27
    [3]Zayats A V, Smolyaninov I I and Maradudin A A. Nano-optics of surface plasmon polaritons. Phys. Rep.,2005,408(3-4):131-314
    [4]Ebbesen T W, Genet C and Bozhevolnyi S I. Surface-plasmon circuitry. Phys. Today,2008, 61(5):44-50
    [5]Ritchie R H. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev.,1957,106(5): 874-881
    [6]Gruhlke R W, Holland W R and Hall D G Surface-Plasmon Cross Coupling in Molecular Fluorescence near a Corrugated Thin Metal Film. Phys. Rev. Lett.,1986,56(26): 2838-2841
    [7]Barchiesi D. Numerical retrieval of thin aluminium layer properties from SPR experimental data. Opt. Express,2012,20(8):9064-9078
    [8]Koutsioubas A G, Spiliopoulos N, Anastassopoulos D, et al. Nanoporous alumina enhanced surface plasmon resonance sensors. J. Appl. Phys.,2008,103(9):094521
    [9]Bennink R S, Yoon Y-K, Boyd R W, et al. Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures. Opt. Lett.,1999,24(20):1416-1418
    [10]Lu F F, Li T, Hu X P, et al. Efficient second-harmonic generation in nonlinear plasmonic waveguide. Opt. Lett.,2011,36(17):3371-3373
    [11]Li G X, Li T, Liu H, et al. Spectral analysis of enhanced third harmonic generation from plasmonic excitations. Appl. Phys. Lett.,2011,98(26):261909
    [12]Stockman M I. Ultrafast nanoplasmonics under coherent control. New J. Phys.,2008,10: 025031
    [13]Chang D E, Sfrensen A S, Demler E A, et al. A single-photon transistor using nanoscale surface plasmons. Nat. Phys.,2007,3(11):807-812
    [14]Lu H, Liu X, Wang L, et al. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express,2011,19(4):2910-2915
    [15]Min C, Wang P, Chen C, et al. All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials. Opt. Lett.,2008,33(8):869-871
    [16]Economou E N. Surface Plasmons in Thin Films. Phys. Rev.,1969,182(2):539-554
    [17]Sarid D. Long-Range Surface-Plasma Waves on Very Thin Metal Films. Phys. Rev. Lett., 1981,47(3):1927-1930
    [18]Stegeman G I, Wallis R F, Maradudin A A. Excitation of surface polaritons by end-fire coupling. Opt. Lett.,1983,8(7):386-388
    [19]Burke J J, Stegeman G I, Tamir T. Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B,1986,33(8):5186-5201
    [20]Prade B, Vinet J Y, Mysyrowicz A. Guided optical waves in planar heterostructures with negative dielectric constant. Phys. Rev. B,1991,44(24):13556-13572
    [21]Kawata S, Inouye Y and Verma P. plasmonics for near-field nano-imaging and superlensing. Nat. Photonics,2009,3(7):388-394
    [22]Genet C and Ebbesen T W. Light in tiny holes. Nature,2007,445(7123):39-46
    [23]Barnes W L. Comparing experiment and theory in plasmonics. J. Opt. A:Pure Appl. Opt., 2009,11(11):114002
    [24]Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature,1998,391(6668):667-669
    [25]Lezec H J, Degiron A, Devaux E, et al. Beaming Light from a Subwavelength Aperture. Science,2002,297(5582):820-822
    [26]Gay G, Alloschery O, Lesegno B V d, et al. The optical response of nanostructured surfaces and the composite diffracted evanescent wavemodel. Nat. Phys.,2006,2(4):262-267
    [27]Chen L, Robinson J T and Lipson M. Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface. Opt. Express,2006,14(26):12629-12636
    [28]Cakmakyapan S, Caglayan H, Serebryannikov A E, et al. Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit. Appl. Phys. Lett.,2011,98(5):051103
    [29]Garcia-Vidal F J, Lezec H J, Ebbesen T W, et al. Multiple paths to enhance optical transmission through a single subwavelength slit. Phys. Rev. Lett.,2003,90(21):213901
    [30]Bethe H A. Theory of diffraction by small holes. Phys. Rev.,1944,66(7-8):163-182
    [31]Garcia-Vidal F J and Martin-Moreno L. Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys. Rev. B,2002,66(15):155412
    [32]Aigouy L, Lalanne P, Hugonin J P, et al. Near-Field Analysis of Surface Waves Launched at Nanoslit Apertures. Phys. Rev. Lett.,2007,98(15):153902
    [33]Darmanyan S A and Zayats A V. Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films:An analytical study. Phys. Rev. B,2003,67(3):035424
    [34]Azad A K, Chen H-T, Kasarla S R, et al. Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature. Appl. Phys. Lett.,2009,95(1): 011105
    [35]Braun J, Gompf B, Weiss T, et al. Optical transmission through subwavelength hole arrays in ultrathin metal films. Phys. Rev. B,2011,84(15):155419
    [36]Astilean S, Lalanne P and Palamaru M. Light transmission through metallic channels much smaller than the wavelength. Opt. Commun.,2000,175(4-6):265-273
    [37]Egorov D, Dennis B S, Blumberg G, et al. Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures. Phys. Rev. B,2004,70(3): 033404
    [38]Cao Q and Lalanne P. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett.,2002,88(5):057403
    [39]Dintinger J, Klein S and Ebbesen T W. Molecule-surface plasmon interactions in hole arrays:enhanced absorption, refractive index changes, and all-optical switching. Adv. Mater.,2006,18(10):1267-1270
    [40]Lalanne P and Hugonin J P. Interaction between optical nano-objects at metallo-dielectric interfaces. Nat. Phys.,2006,2(8):551-556
    [41]Lalanne P, Hugonin J P, Liu H T, et al. A microscopic view of the electromagnetic properties of sub-X metallic surfaces. Surf. Sci. Rep.,2009,64(10):453-469
    [42]Lalanne P, Hugonin J P and Rodier J C. Theory of Surface Plasmon Generation at Nanoslit Apertures. Phys. Rev. Lett.,2005,95(26):263902
    [43]Liu H and Lalanne P. Microscopic theory of the extraordinary optical transmission. Nature, 2008,452(7188):728-731
    [44]Krasavin A V and Zheludev N I. Active plasmonics:Controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett.,2004,84(8): 1416-1418
    [45]Kitson S C, Barnes W L and Sambles J R. Full Photonic band gap for surface modes in the visible. Phys. Rev. Lett.,1996,77(13):2670-2673
    [46]Baudrion A-L, Weeber J-C and Dereux A. Influence of the filling factor on the spectral properties of plasmonic crystals. Phys. Rev. B,2006,74(12):125406
    [47]Marani R, Grande M, Marrocco V, et al. Plasmonic bandgap formation in two-dimensional periodic arrangements of gold patches with subwavelength gaps. Opt. Lett.,2011,36(6): 903-905
    [48]Andreev S N, Belotelov V I, Bykov D A, et al. Dynamics of surface plasmon polaritons in plasmonic crystals. J. Opt. Soc. Am. B,2011,28(5):1111-1117
    [49]Matsui T, Agrawal A, Nahata A, et al. Transmission resonances through aperiodic arrays of subwavelength apertures. Nature,2007,446(7135):517-521
    [50]Kim S, Jin J, Kim Y-J, et al. High-harmonic generation by resonant plasmon field enhancement. Nature,2008,453(7196):757-760
    [51]Chang D E, S(?)rensen A S, Hemmer P R, et al. Quantum optics with surface plasmons. Phys. Rev. Lett.,2006,97(5):053002
    [52]Lin Z-R, Guo G-P, Tu T, et al. Quantum bus of metal nanoring with surface plasmon polaritons. Phys. Rev. B,2010,82(24):241401
    [53]MacDonald K F, Samson Z L, Stockman M I, et al. Ultrafast active plasmonics. Nat. Photonics,2009,3(1):55-58
    [54]Chang P-E, Jiang Y-W, Chen H-H, et al. Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances. Appl. Phys. Lett.,2011,98(7): 073111
    [55]Akimov A V, Mukherjee A, Yu C L, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature,2007,450:402-406
    [56]An K H, Shtein M and Pipe K P. Surface plasmon mediated energy transfer of electrically-pumped excitons. Opt. Express,2010,18(5):4041-4048
    [57]Andrew P and Barnes W L. Forster Energy Transfer in an Optical Microcavity. Science, 2000,290(5492):785-788
    [58]Andrew P and Barnes W L. Energy transfer across a metal film mediated by surface plasmon polaritons. Science,2004,306(5698):1002-1005
    [59]Aubry A, Lei D Y, Fernandez-Dominguez A I, et al. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett.,2010,10(7):2574-2579
    [60]Devaux E, Ebbesen T W, Weeber J-C, et al. Launching and decoupling surface plasmons via micro-gratings. Appl. Phys. Lett.,2003,83(24):4936-4938
    [61]Kano H, Mizuguchi S and Kawata S. Excitation of surface-plasmon polaritons by a focused laser beam. J. Opt. Soc. Am. B,1998,15(4):1381-1386
    [62]Bouhelier A, Ignatovich F, Bruyant A, et al. Surface plasmon interference excited by tightly focused laser beams. Opt. Lett.,2007,32(17):2535-2537
    [63]Liu H, Lalanne P, Yang X, et al. Surface plasmon generation by subwavelength isolated objects. IEEE J. Sel. Top. Quantum Electron.,2008,14(6):1522-1529
    [64]Polyakov A, Cabrini S, Dhuey S, et al. Plasmonic light trapping in nanostructured metal surfaces. Appl. Phys. Lett.,2011,98(20):203104
    [65]Fang Z, Fan L, Lin C, et al. Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett.,2011,11(4):1676-1680
    [66]Kinzel E C and Xu X. High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures. Opt. Express,2009,17(10):8036-8045
    [67]Day J K, Neumann O, Grady N K, et al. Nanostructure-mediated launching and detection of 2D surface plasmons. ACS Nano,2010,4(12):7566-7572
    [68]Huang Y, Min C and Veronis G. Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides. Opt. Express,2012,20(20):22233-22244
    [69]Veronis G, Fan S. Theoretical investigation of'compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. Opt. Express,2007,15(3):1211-1221
    [70]Li Q, Qiu M. Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide. Opt. Express,2010,18(15): 15531-15543
    [71]Song Y, Wang J, Li Q, et al. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Opt. Express,2010,18(12):13173-13179
    [72]Chen X-W, Sandoghdar V and Agio M. Highly efficient interfacing of guided plasmons and photons in nanowires. Nano Lett.,2009,9(11):3756-3761
    [73]Ginzburg P, Arbel D, Orenstein M. Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing. Opt. Lett.,2006,31(22):3288-3290
    [74]Feng N-N, Negro L D. Plasmon mode transformation in modulated-index metal-dielectric slot waveguides. Opt. Lett.,2007,32(21):3086-3088
    [75]He X, Yang L and Yang T. Optical nanofocusing by tapering coupled photonic-plasmonic waveguides. Opt. Express,2011,19(14):12865-12872
    [76]Ha T-V-A, Park H-R, Son J-H, et al. Squeezed mode conversion in hybrid plasmon polariton waveguide using spin-coated silver film. J. Nanoscience Nanotech.,2012,12(7): 5474-5478
    [77]Xu X, Subbaraman H, Covey J, et al. Complementary metal-oxide-semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics. Appl. Phys. Lett.,2012,101(3):031109-031104
    [78]Chen L, Shakya J, Lipson M. Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt. Lett.,2006,31(4):2133-2135
    [79]Tian J, Yu S, Yan W, et al. Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Appl. Phys. Lett.,2009,95(1):013504
    [80]Chen W, Abeysinghe D C, Nelson R L, et al. Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Lett.,2009,9(12):4320-4325
    [81]Chen W and Zhan Q. Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam. Opt. Lett.,2009,34(6):722-724
    [82]Hu Z J, Tan P S, Zhu S W, et al. Structured light for focusing surface plasmon polaritons. Opt. Express,2010,18(10):10864-10870
    [83]Gjonaj B, Aulbach J, Johnson P M, et al. Active spatial control of plasmonic fields. Nat. Photonics,2011,5(6):360-363
    [84]Baumeier B, Huerkamp F, Leskova T A, et al. Scattering of surface-plasmon polaritons by a localized dielectric surface defect studied using an effective boundary condition. Phys. Rev. A,2011,84(1):013810
    [85]Bozhevolnyi S I. Localization phenomena in elastic surface-polariton scattering caused by surface roughness. Phys. Rev. B,1996,54(11):8177-8185
    [86]Bozhevolnyi S I and Pudonin F A. Two-dimensional micro-optics of surface plasmons. Phys. Rev. Lett.,1997,78(14):2823-2826
    [87]Bezus E A, Doskolovich L L and Kazanskiy N L. Scattering suppression in plasmonic optics using a simple two-layer dielectric structure. Appl. Phys. Lett.,2011,98(22):221108
    [88]Oulton R F, Pile D F P, Liu Y, et al. Scattering of surface plasmon polaritons at abrupt surface interfaces:Implications for nanoscale cavities. Phys. Rev. B,2007,76(3):035408
    [89]Elser J and Podolskiy V A. Scattering-free plasmonic optics with anisotropic metamaterials. Phys. Rev. Lett.,2008,100(6):066402
    [90]Baumeier B, Leskova T A and Maradudin A A. Cloaking from Surface Plasmon Polaritons by a Circular Array of Point Scatterers. Phys. Rev. Lett.,2009,103(24):246803
    [91]Gonzalez M U, Weeber J-C, Baudrion A-L, et al. Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors. Phys. Rev. B,2006,73(15):155416
    [92]Fu Z, Gan Q, Gao K, et al. Numerical investigation of a bidirectional wave coupler based on plasmonic Bragg gratings in the near infrared domain. J. Lightwave Technol.,2008, 26(22):3699-3703
    [93]Bozhevolnyi S I, Boltasseva A, Sendergaard T, et al. Photonic bandgap structures for long-range surface plasmon polaritons. Opt. Commun.,2005,250(4-6):328-333
    [94]Jette-Charbonneau S, Charbonneau R, Lahoud N, et al. Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides. Opt. Express,2005,13(12): 4674-4682
    [95]Boltasseva A, Bozhevolnyi S I, Nikolajsen T, et al. Compact Bragg Gratings for Long-Range Surface Plasmon Polaritons. J. Lightwave Technol.,2006,24(2):912-918
    [96]Mu W, Buchholz D B, Sukharev M, et al. One-dimensional long-range plasmonic-photonic structures. Opt. Lett.,2010,35(4):550-552
    [97]Wang B, Wang G P. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl. Phys. Lett.,2005,87(1):013107
    [98]Han Z, Forsberg E and He S. Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol. Lett.,2007,19(2):91-93
    [99]Liu J-Q, Wang L-L, He M-D, et al. A wide bandgap plasmonic Bragg reflector. Opt. Express,2008,16(7):4888-4894
    [100]Foresi J S, Villeneuve P R, Ferrera J, et al. Photonic-bandgap microcavities in optical waveguides. Nature,1997,390(6656):143-145
    [101]Chang Y-J. Design and analysis of metal/multi-insulator/metal waveguide plasmonic Bragg grating. Opt. Express,2010,18(12):13258-13270
    [102]Chang Y-J, Lo G-Y. A Narrowband Metal-Multi-Insulator-Metal Waveguide Plasmonic Bragg Grating. IEEE Photonics Technol. Lett.,2010,22(9):634-636
    [103]Gong Y, Wang L, Hu X, et al. Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide. Opt. Express,2009,17(16): 13727-13736
    [104]Gan Q and Bartoli F J. Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping. Appl. Phys. Lett.,2011,98(25):251103
    [105]Park J, Kim H, Lee B. High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt. Express,2008,16(1):413-425
    [106]Chilwell J and Hodgkinson I. Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J. Opt. Soc. Am. A,1984,1(7): 742-753
    [107]Li Z-Y and Lin L-L. Photonic band structures solved by a plane-wave-based transfer-matrix method. Phys. Rev. E,2003,67(4):046607
    [108]Hosseini A, Nejati H and Massoud Y. Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors. Opt. Express,2008,16(3):1475-1480
    [109]Zhong X-L, Li Z-Y, Wang C, et al. Analytical single-mode model for subwavelength metallic Bragg waveguides. J. Appl. Phys.,2011,109(9):093115
    [110]Ditlbacher H, Krenn J R, Schider G, et al. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett.,2002,81(10):1762-1764
    [111]Veronis G, Fan S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl. Phys. Lett.,2005,87(13):131102
    [112]Weeber J-C, Gonzalez M U, Baudrion A-L, et al. Surface plasmon routing along right angle bent metal strips. Appl. Phys. Lett.,2005,87(22):221101
    [113]Degiron A, Dellagiacoma C, McIlhargey J G, et al. Simulations of hybrid long-range plasmon modes with application to 90° bends. Opt. Lett.,2007,32(16):2354-2356
    [114]Krasavin A V, Zayats A V. Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides. Phys. Rev. B,2008,78(4):045425
    [115]Alam M Z, Meier J, Aitchison J S, et al. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Opt. Express,2010,18(12): 12971-12979
    [116]Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature,2006,440(7083): 508-511
    [117]Chen Z, Holmgaard T, Bozhevolnyi S I, et al. Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides. Opt. Lett.,2009,34(3):310-312
    [118]Nozhat N, Granpayeh N. Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits. Opt. Commun.,2011,84(13):3449-3455
    [119]Tanaka K, Tanaka M, Sugiyama T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt. Express,2005,13(1):256-266
    [120]Hu F, Yi H and Zhou Z. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt. Lett.,2011,36(8):1500-1502
    [121]Lu H, Liu X, Gong Y, et al. Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguides. J. Opt. Soc. Am. B,2011,28(7):1616-1621
    [122]Wang G, Lu H, Liu X, et al. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt. Express,2011, 19(4):3513-3518
    [123]Kou Y, Chen X. Multimode interference demultiplexers and splitters in metal-insulator-metal waveguides. Opt. Express,2011,19(7):6042-6047
    [124]Chen P, Liang R, Huang Q, et al. Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure. Opt. Express,2011,19(8):7633-7639
    [125]Delia Valle G, Longhi S. Graded index surface-plasmon-polariton devices for subwavelength light management. Phys. Rev. B,2010,82(15):153411
    [126]Miyazaki H T, Kurokawa Y. Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity. Phys. Rev. Lett.,2006,96(9):097401
    [127]Pile D F P, Gramotnev D K. Nanoscale Fabry-Perot Interferometer using channel plasmon-polaritons in triangular metallic grooves.Appl. Phys. Lett.,2005,86(16):161101
    [128]Sorger V J, Oulton R F, Yao J, et al. Plasmonic fabry-perot nanocavity. Nano Lett.,2009, 9(10):3489-3493
    [129]Bruckner R, Sudzius M, Hintschich S, et al. Hybrid optical Tamm states in a planar dielectric microcavity. Phys. Rev. B,2011,83(3):033405
    [130]Gong Y, Vuckovic J. Design of plasmon cavities for solid-state cavity quantum electrodynamics applications. Appl. Phys. Lett.,2007,90(3):033113
    [131]Seo M-K, Kwon S-H, Ee H-S, et al. Full Three-Dimensional Subwavelength High-Q Surface-Plasmon-Polariton Cavity. Nano Lett.,2009,9(12):4078-4082
    [132]Min B, Ostby E, Sorger V, et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature,2009,457(1):455-459
    [133]Balci S, Kocabas A, Kocabas C, et al. Localization of surface plasmon polaritons in hexagonal arrays of Moire cavities. Appl. Phys. Lett.,2011,98(3):031101
    [134]Balci S, Kocabas C and Aydinli A. Critical coupling in plasmonic resonator arrays. Opt. Lett.,2011,36(15):2770-2772
    [135]Citrin D S. Subwavelength nanoplasmonic ring resonators. J. Opt. Soc. Am. B,2005,22(8): 1763-1769
    [136]Holmgaard T, Chen Z, Bozhevolnyi S I, et al. Wavelength selection by dielectric-loaded plasmonic components. Appl. Phys. Lett.,2009,94(5):051111
    [137]Zhu S, Lo G Q and Kwong D L. Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths. Opt. Express,2012, 20(14):15232-15246
    [138]Nikolajsen T, Leosson K, Bozhevolnyi S I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett.,2004,85(24): 5833-5835
    [139]Yin L, Vlasko-Vlasov V K, Pearson J, et al. Subwavelength focusing and guiding of surface plasmons. Nano Lett.,2005,5(7):1399-1402
    [140]Steele J M, Liu Z, Wang Y, et al. Resonant and non-resonant generation and focusing of surface plasmons with circular gratings. Opt. Express,2006,14(12):5664-5670
    [141]Fang Z, Peng Q, Song W, et al. Plasmonic focusing in symmetry broken nanocorrals. Nano Lett.,2010,11(2):893-897
    [142]Lerman G M, Yanai A and Levy U. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. Nano Lett.,2009,9(5):2139-2143
    [143]Davoyan A R, Shadrivov I V, Zharov A A, et al. Nonlinear Nanofocusing in Tapered Plasmonic Waveguides. Phys. Rev. Lett.,2010,105(11):116804
    [144]Salgueiro J R and Kivshar Y S. Nonlinear couplers with tapered plasmonic waveguides. Opt. Express,2012,20(9):9403-9408
    [145]Volkov V S, Bozhevolnyi S I, Rodrigo S G, et al. Nanofocusing with Channel Plasmon Polaritons. Nano Lett.,2009,9(3):1278-1282
    [146]Bozhevolnyi S I and Nerkararyan K V. Adiabatic nanofocusing of channel plasmon polaritons. Opt. Lett.,2010,35(4):541-543
    [147]Garcia-Martin A, Ward D, Natelson D, et al. Field enhancement in subnanometer metallic gaps. Phys. Rev. B,2011,83(19):193404
    [148]Mason D R, Gramotnev D K and Kim K S. Plasmon nanofocusing in a dielectric hemisphere covered in tapered metal film. Opt. Express,2012,20(12):12866-12876
    [149]MacDonald K F and Zheludev N I. Active plasmonics:current status. Laser. Photon. Rev., 2010,4(4):562-567
    [150]Krasavin A V and Zayats A V. All-optical active components for dielectric-loaded plasmonic waveguides. Opt. Commun.,2010,283(8):1581-1584
    [151]Kumar A, Yu S F and Li X. Design and analysis of a surface plasmon polariton modulator using the electro-optic effect. Appl. Optics,2009,48(35):6600-6605
    [152]Dicken M J, Sweatlock L A, Pacifici D, et al. Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett.,2008,8(11):4048-4052
    [153]Diest K, Dionne J A, Spain M, et al. Tunable Color Filters Based on Metal-Insulator-Metal Resonators. Nano Lett.,2009,9(7):2579-2583
    [154]Min C and Veronis G. Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt. Express,2009,17(13):10757-10766
    [155]Noginova N, Yakim A, Soimo J, et al. Light-to-current and current-to-light coupling in plasmonic systems. Phys. Rev. B,2011,84(3):035447
    [156]Kossyrev P A, Yin A, Cloutier S G, et al. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett.,2005,5(10):1978-1981
    [157]Dickson W, Wurtz G A, Evans P R, et al. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett.,2008,8(1):281-286
    [158]Hsiao V K S, Zheng Y B, Juluri B K, et al. Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals. Adv. Mater.,2008,20(18):3528-3532
    [159]Dridi M and Vial A. Modeling of metallic nanostructures embedded in liquid crystals: application to the tuning of their plasmon resonance. Opt. Lett.,2009,34(17):2652-2654
    [160]Gilardi G, Asquini R, d'Alessandro A, et al. Widely tunable electro-optic distributed Bragg reflector in liquid crystal waveguide. Opt. Express,2010,18(11):11524-11529
    [161]Pala R A, Shimizu K T, Melosh N A, et al. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett.,2008,8(5):1506-1510
    [162]Pacifici D, Lezec H J and Atwater H A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photonics,2007,1(7):402-406
    [163]D'Aguanno G, de Ceglia D, Mattiucci N, et al. All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits. Opt. Lett.,2011,36(11):1984-1986
    [164]Cai W, White J S and Brongersma M L. Compact, High-speed and power-efficient electrooptic plasmonic modulators. Nano Lett.,2009,9(12):4403-4411
    [165]Dionne J A, Diest K, Sweatlock L A, et al. PlasMOStor:a metal-oxide-Si field effect plasmonic modulator. Nano Lett.,2009,9(2):897-902
    [166]Hu B, Gu B-Y, Zhang Y, et al. Transmission interference tuned by an external static magnetic field in a two-slit structure. Appl. Phys. Lett.,2009,95(12):121103
    [167]Blum C, Wolff C and Busch K. Photonic-crystal time-domain simulations using Wannier functions. Opt. Lett.,2011,36(2):307-309
    [168]Barwicz T, Watts M R, PopovicMilos A, et al. Polarization-transparent microphotonic devices in the strong confinement limit. Nat. Photonics,2007,1(1):57-60
    [169]Yang L, Ji R, Zhang L, et al. On-chip CMOS-compatible optical signal processor. Opt. Express,2012,20(12):13560-13565
    [170]Kim J T, Ju J J and Park S. Metal-slotted hybrid optical waveguides for PCB-compatible optical interconnection. Opt. Express,2012,20(9):10438-10445
    [171]Zayats A V, Elliott J, Smolyaninov I I, et al. Imaging with short-wavelength surface plasmon polaritons. Appl. Phys. Lett.,2005,86(15):151114
    [172]Balci S, Karademir E, Kocabas C, et al. Direct imaging of localized surface plasmon polaritons. Opt. Lett.,2011,36(17):3401-3403
    [173]Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens. Science,2005,308(5721):534-537
    [174]Liu Z, Lee H, Xiong Y, et al. Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects. Science,2007,315(5819):1686
    [175]Balci S, Kocabas A, Kocabas C, et al. Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves. Appl. Phys. Lett.,2010,97(13):131103
    [176]Gan Q, Fu Z, Ding Y J, et al. Ultrawide-bandwidth slow-light system based on thz plasmonic graded metallic grating structures. Phys. Rev. Lett.,2008,100(25):256803
    [177]Kocabas A, Senlik S S and Aydinli A. Slowing Down Surface Plasmons on a Moire Surface. Phys. Rev. Lett.,2009,102(6):063901
    [178]Zhang J, Cai L, Bai W, et al. Flat Surface Plasmon Polariton Bands in Bragg Grating Waveguide for Slow Light. J. Lightwave Technol.,2010,28(14):2030-2036
    [179]Srituravanich W, Pan L, Wang Y, et al. Flying plasmonic lens in the near field for high-speed nanolithography. Nat. Nanotechnol.,2008,3(12):733-737
    [180]Chamanzar M, Soltani M, Momeni B, et al. Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications. Appl. Phys. B,2010,101(1-2):263-271
    [181]Gifford D K and Hall D G Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling. Appl. Phys. Lett.,2002,81(23): 4315-4317
    [182]Koller D M, Hohenau A, Ditlbacher H, et al. Organic plasmon-emitting diode. Nat. Photonics,2008,2(11):684-687
    [183]Karar A, Das N, Leong Tan C, et al. High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors. Appl. Phys. Lett.,2011,99(13):133112
    [184]Linic S, Christopher P and Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater.,2011,10(12):911-921
    [185]Kim M W, Chen Y-H, Moore J, et al. Subwavelength surface plasmon optical cavity-scaling, amplification, and coherence. IEEE J. Sel. Top. Quantum Electron.,2009, 15(5):1521-1528
    [186]Gather M C, Meerholz K, Danz N, et al. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat. Photonics,2010,4(7):457-461
    [187]Noginov M A, Podolskiy V A, Zhu G, et al. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt. Express,2008,16(2): 1385-1392
    [188]Chen Y-H, Li J, Ren M-L, et al. Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces. Appl. Phys. Lett.,2011,98(26): 261912
    [189]Bergman D J and Stockman M I. Surface plasmon amplification by stimulated emission of radiation:quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett.,2003,90(2):027402
    [190]Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser. Nature,2009,460(7259):1110-1113
    [191]Noginov M A, Zhu G, Mayy M, et al. Stimulated Emission of Surface Plasmon Polaritons. Phys. Rev. Lett.,2008,101(22):226806
    [192]Hill M T, Oei Y-S, Smalbrugge B, et al. Lasing in metallic-coated nanocavities. Nat. hotonics,2007,1(10):589-594
    [193]Kitur J, Podolskiy V and Noginov M. Stimulated Emission of Surface Plasmon Polaritons in a Microcylinder Cavity. Phys. Rev. Lett.,2011,106(18):183903
    [194]Chen X, Bhola B, Huang Y, et al. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media:applications to plasmonic amplifiers and nano-lasers. Opt. Express,2010,18(16):17220-17238
    [195]Berini P, De Leon I. Surface plasmon-polariton amplifiers and lasers. Nat. Photonics,2012, 6(1):16-24
    [196]Jablan M, Buljan H and Soljacic M. Transverse electric plasmons in bilayer graphene. Opt. Express,2011,19(12):11236-11241
    [197]Jablan M, Soljacic M and Buljan H. Unconventional plasmon-phonon coupling in graphene. Phys. Rev. B,2011,83(16):161409
    [198]Hwang E H and Das Sarma S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B,2007,75(20):205418
    [199]Hwang E H and Das Sarma S. Plasmon modes of spatially separated double-layer graphene. Phys. Rev. B,2009,80(20):205405
    [200]Christensen J, Manjavacas A, Thongrattanasiri S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano,2011,6(1):431-440
    [201]Koppens F H L, Chang D E and Garcia de Abajo F J. Graphene plasmonics:a platform for strong light-matter interactions. Nano Lett.,2011,11(8):3370-3377
    [202]Pendry J B, Schurig D and Smith D R. Controlling Electromagnetic Fields. Science,2006, 312(5781):1780-1782
    [203]Leonhardt U. Optical Conformal Mapping. Science,2006,312(5781):1777-1780
    [204]Leonhardt U and Philbin T G (2009). Transformation Optics and the Geometry of Light. Prog. Opt. E. Wolf. Amsterdam, Elsevier Science Bv.53:69-152
    [205]Chen H, Chan C T and Sheng P. Transformation optics and metamaterials. Nat. Mater., 2010,9(5):387-396
    [206]Han S, Xiong Y, Genov D, et al. Ray optics at a deep-subwavelength scale:a transformation optics approach. Nano Lett.,2008,8(12):4243-4247
    [207]Liu Y, Zentgraf T, Bartal G, et al. Transformational Plasmon Optics. Nano Lett.,2010, 10(6):1991-1997
    [208]Huidobro P A, Nesterov M L, Martin-Moreno L, et al. Transformation Optics for Plasmonics. Nano Lett.,2010,10(6):1985-1990
    [209]Edwards B, Alu A, Silveirinha M G, et al. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett.,2009,103(15):153901
    [210]Kadic M, Guenneau S and Enoch S. Transformational plasmonics:cloak, concentrator and rotator for SPPs. Opt. Express,2010,18(11):12027-12032
    [211]Arigong B, Shao J, Ren H, et al. Reconfigurable surface plasmon polariton wave adapter designed by transformation optics. Opt. Express,2012,20(13):13789-13797
    [212]Huidobro P A, Nesterov M L, Martin-Moreno L, et al. Moulding the flow of surface plasmons using conformal and quasiconformal mappings. New J. Phys.,2011,13(3): 033011
    [213]Zhu W, Rukhlenko I D and Premaratne M. Linear transformation optics for plasmonics. J. Opt. Soc. Am. B,2012,29(10):2659-2664
    [214]Gharghi M, Gladden C, Zentgraf T, et al. A carpet cloak for visible light. Nano Lett.,2011, 11(7):2825-2828
    [215]Cai W, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials. Nat. Photonics,2007,1(4):224-227
    [216]Andkjaer J, Mortensen N A and Sigmund O. Towards all-dielectric, polarization-independent optical cloaks. Appl. Phys. Lett.,2012,100(10):101106-101103
    [217]Ergin T, Stenger N, Brenner P, et al. Three-Dimensional Invisibility Cloak at Optical Wavelengths. Science,2010,328(5976):337-339
    [218]Chen X, Luo Y, Zhang J, et al. Macroscopic invisibility cloaking of visible light. Nat. Commun.,2011,2:176
    [219]Gabrielli L H, Cardenas J, Poitras C B, et al. Silicon nanostructure cloak operating at optical frequencies. Nat. Photonics,2009,3(8):461-463
    [220]Chen H and Chan C T. Transformation media that rotate electromagnetic fields. Appl. Phys. Lett.,2007,90(24):241105-241103
    [221]Cheng Q, Cui T J, Jiang W X, et al. An omnidirectional electromagnetic absorber made of metamaterials. New J. Phys.,2010,12(6):063006
    [222]Driscoll T, Lipworth G, Hunt J, et al. Performance of a three dimensional transformation-optical-flattened Luneburg lens. Opt. Express,2012,20(12):13262-13273
    [223]Zentgraf T, Liu Y, Mikkelsen M H, et al. Plasmonic Luneburg and Eaton lenses. Nat. Nanotechnol.,2011,6(3):151-155
    [224]Gu C, Yao K, Lu W, et al. Experimental realization of a broadband conformal mapping lens for directional emission. Appl. Phys. Lett.,2012,100(26):261907-261903
    [225]Han T, Qiu C-W, Dong J-W, et al. Homogeneous and isotropic bends to tunnel waves through multiple different/equal waveguides along arbitrary directions. Opt. Express,2011, 19(14):13020-13030
    [226]Han T, Qiu C-W and Tang X. Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials. Opt. Lett.,2011,36(2):181-183
    [227]Li J and Pendry J B. Hiding under the carpet:a new strategy for cloaking. Phys. Rev. Lett., 2008,101(20):203901
    [228]Heiblum M and Harris J. Analysis of curved optical waveguides by conformal transformation. IEEE J. Quantum Electron.,1975,11(2):75-83
    [229]Chen H and Chan C T. Electromagnetic wave manipulation by layered systems using the transformation media concept. Phys. Rev. B,2008,78(5):054204
    [230]Chang Z, Zhou X, Hu J, et al. Design method for qu'asi-isotropic transformation materials based on inverse Laplace's equation with sliding boundaries. Opt. Express,2010,18(6): 6089-6096
    [231]Hu J, Zhou X and Hu G. Design method for electromagnetic cloak with arbitrary shapes based on Laplace's equation. Opt. Express,2009,17(3):1308-1320
    [232]Markov P, Valentine J G and Weiss S M. Fiber-to-chip coupler designed using an optical transformation. Opt. Express,2012,20(13):14705-14713
    [233]Dionne J A, Sweatlock L A, Atwater H A, et al. Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B,2005,72(7):075405
    [234]Dionne J A, Sweatlock L A, Atwater H A, et al. Plasmon slot waveguides:Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B,2006,73(3): 035407
    [235]Johnson P B and Christy R W. Optical Constants of the Noble Metals. Phys. Rev. B,1972, 6(12):4370-4379
    [236]Oulton R F, Sorger V J, Genov D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics,2008,2(8): 496-500
    [237]Almeida V R, Xu Q, Barrios C A, et al. Guiding and confining light in void nanostructure. Opt. Lett.,2004,29(11):1209-1211
    [238]Goykhman I, Desiatov B and Levy U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide. Appl. Phys. Lett.,2010,97(14):141106-141103
    [239]Zhu S, Liow T Y, Lo G Q, et al. Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits. Appl. Phys. Lett.,2011,98(2):021107
    [240]Zhu S, Liow T Y, Lo G Q, et al. Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. Opt. Express,2011,19(9):8888-8902
    [241]Dai D, He S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Opt. Express,2010,18(17):17958-17966
    [242]Park H-R, Park J-M, Kim M-s, et al. A waveguide-typed plasmonic mode converter. Opt. Express,2012,20(17):18636-18645
    [243]Hung Y-T, Huang C-B and Huang J-S. Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction. Opt.-Express,2012,20(18): 20342-20355

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700