用户名: 密码: 验证码:
不同成土母质条件下土壤养分空间变异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在地理信息系统(Geographical Information System, GIS)技术支持下,以重庆市梁平县的粮食主产区作为研究对象,结合成土母质因素(新冲积物,沙溪庙组和遂宁组),分析土壤养分的空间变异性特征,利用平均预测误差MPE (Mean prediction error)和均方根预测误差RMSPE (root mean squared prediction error)两个指标对土壤养分空间分布插值结果进行精度比较,探讨在考虑土壤母质条件下与不考虑土壤母质条件下,土壤养分空间插值精度,为研究土壤养分空间分布提供依据。主要研究结果如下:
     (1)在不考虑土壤母质情况下,对研究区730个土壤样品养分进行统计分析,结果表明:各养分变异系数的大小顺序为土壤磷>氮>钾>有机质。在各土壤养分含量的空间变异性结构中,土壤有机质的变程最大,为50940m,其次为土壤氮、钾和磷,其变程分别为21480m、2910m和1710m。土壤养分中土壤磷的块金值最小;土壤氮的块金值较大。从块金系数来看,有机质、土壤氮、土壤磷和土壤钾的比值在25%到75%之间,说明四种均具有中等的空间相关性,其空间变异是由结构性因素和人为因素共同影响的。
     (2)在考虑土壤母质影响区域,土壤养分变异特征分析。
     ①新冲积物母质区域。各养分变异系数的大小顺序为土壤磷>土壤钾>土壤氮>有机质。在各土壤养分含量的空间变异性结构中,土壤钾含量的变程最大,为57240m,其次为土壤氮、磷和有机质,其变程分别为1320m、1520m和3240m。有机质、土壤氮、土壤磷和土壤钾的块金系数分别为43.7%、35.4%、26.5%和29.8%,均在25%-75%之间,表明其空间变异是由结构性因素和人为因素共同影响的。
     ②沙溪庙组母质区域。各养分变异系数的大小顺序为土壤磷>土壤钾>土壤氮>有机质。在各土壤养分含量的空间变异性结构中,土壤有机质含量的变程最大,为4560m,其次为土壤磷、钾和氮,其变程分别为1080m、850m和730m。有机质、土壤氮、土壤磷和土壤钾的块金系数分别为35.7%、36.1%、34.9%和30.8%,均在25%到75%之间,表明具有中等的空间相关性,其空间变异是由结构性和随机性因素共同作用的结果。
     ③遂宁组母质区域。各养分变异系数的大小顺序为土壤磷>土壤氮>土壤钾>有机质。在各土壤养分含量的空间变异性结构中,土壤有机质含量的变程最大,为27660m,其次为土壤氮、钾和磷,其变程分别为2370m、1430m和1100m。从Co/(C0+C)来看,土壤OM和土壤氮的块金系数分别为17.2%和20.2%,小于25%,表明土壤属性具有强烈的相关性;土壤磷和钾的比值分别为41.7%和31%,在25%-75%之间,表明具有中等的空间相关性。
     (3)预测精度分析。当不考虑母质因素时,土壤有机质、氮、磷和钾含量的平均预测误差MPE为0.001424、0.149、0.1701和0.19968,标准化均方根预测误差RMSPE分别是0.9108、0.8054、0.8603和0.8811。在不同的成土母质区,各养分的平均预测误差MPE值要更小,标准化均方根预测误差RMSPE指标RMSPE更接近于1。其中,在新冲积物母质区域,土壤有机质、氮、磷和钾含量的MPE分别是-0.000941、0.01799、-0.1466和-0.1712,RMSPE分别是0.987、0.9712、1.048和0.9343;沙溪庙组母质区域,土壤有机质、氮、磷和钾含量的MPE分别0.0009544、-0.02857、-0.1682和-0.1741,RMSPE分别是1.057、0.9168、0.9837和1.028;遂宁组母质区域,土壤有机质、氮、磷和钾含量的MPE是0.001404、0.02087、-0.1533和-0.1735,RMSPE分别是1.037、1.004、1.114、和1.023。因此,在该研究区域进行土壤养分空间预测插值时应考虑土壤母质因素的影响。
     (4)分别对研究区三种母质土壤养分进行空间插值,将其结果进行拼接。结果表明,研究区土壤有机质比较缺乏,其含量介于0.6-1.3%之间;土壤氮含量很低,含量范围在10.9-33.9mg/L之间,均低于临界值50mg/L;土壤磷含量介于2.9-19.0mg/L之间,低于临界值(12mg/L)的区域占研究区的94.7%;土壤钾含量介于37.2-90.6mg/L之间,低于临界值(78.2mg/L)的区域占95.5%。
Spatial variability of soil nutrients under different parent materials (New Alluvium, Shaximiaozu, and Suiningzu) was conducted in the main grain production areas of Liangping, Chongqing. Two indicators, namely, Mean Prediction Error (MPE) and Root Mean Squared Prediction Error (RMSPE), were used to evaluate the accuracy of spatial interpolation of soil nutrients. The main results were as follows:
     (1) On average, the order of coefficients of variation of soil nutrients was soil P> soil N> soil K> organic matter (OM). The spatial variability structure of soil nutrients was explored using GS+. The range of OM was 50940m, followed by soil N (21480m), K (2910m) and P (1710m). Soil P had lowest nugget value while OM had largest one. In terms of nugget to sill ratio, OM, soil N, and K showed moderate spatial autocorrelation suggesting that their spatial variability were affected by natural factors as well as human activities, whereas soil P presented weak spatial autocorrelation indicating that P was mainly associated with human activities.
     (2) The variability of soil nutrients under different parent materials.
     ①New Alluvium region. The coefficients of variation of soil nutrients originated from New Alluvium showed in the order of soil P> soil K>soil N>OM. Soil K had the largest range of 57240m followed by OM (3240m), P (1520m), and soil N (1320m). In terms of nugget to sill ratio, soil P presented weak spatial autocorrelation indicating that P was mainly associated with human activities, whereas OM, soil N, and K showed moderate spatial autocorrelation suggesting that their spatial variability were affected by natural factors as well as human activities.
     ②Shaximiaozu region. The coefficients of variation of soil nutrients developed from Shaximiaozu hold the rank of soil P> soil K>soil N>OM. Organic matter had the largest range of 4560m followed by soil P (1080m), K (850m), and N (730m). In terms of nugget to sill ratio, soil N presented weak spatial autocorrelation indicating that N was mainly associated with human activities, whereas OM, soil P, and K showed moderate spatial autocorrelation suggesting that their spatial variability were affected by natural factors as well as human activities.
     ③Suiningzu region. The coefficients of variation of soil nutrients originated from Suiningzu were in the order of soil P>soil K>soil N>OM. Organic matter had the largest range of 27660m followed by soil N (2370m), K (1430m), and P (1100m). In terms of nugget to sill ratio, soil N, P, and K presented weak spatial autocorrelation indicating that their spatial variability were mainly associated with human activities, whereas OM showed moderate spatial autocorrelation suggesting that OM was affected by natural factors as well as human activities.
     (3) Analysis of prediction accuracy. In the case of eliminating the effect of parent materials, MPEs were 0.001424,0.149,0.1701 and 0.19968 and RMSPEs were 0.9108,0.8054,0.8603 and 0.8811 for OM, soil N, P and K, respectively.
     Nevertheless, MPE was lower and RMSPE was much closer to 1 with respect to the effect of parent material. In New Alluvium region, MPEs were-0.000941,0.01799,-0.1466 and-0.1712 and RMSPEs were 0.987,0.9712,1.048 and 0.9343 for OM, soil N, P and K, respectively. In the area of Shaximiaozu, MPEs were 0.0009544,-0.02857,-0.1682 and-0.1741, RMSPEs were 1.057,0.9168, 0.9837 and 1.028 for OM, soil N, P and K, respectively. In Suiningzu region, MPEs were 0.001404, 0.02087,-0.1533 and-0.1735, and RMSPEs were 1.037,1.004,1.114 and 1.023, respectively. Consequently, it was of great necessity to take into account the effects of parent materials to study the spatial interpolation of soil nutrients.
     (4) Through spatial interpolate and splice the soil nutrients under three parent materials, we could come to the conclusion that OM ranged between 0.6-1.3%, the content of OM was deficient in the study area. Content of soil N was below the critical value (50mg/L), changed between 10.9-33.9%. Soil P ranged between 2.9-19.0%, there were approximately 94.7% of study area in which the content of soil P were below the critical value (12mg/L). Soil K changed between 37.2-90.6%, and about 95.5% of study area where the content were below the critical value (78.2mg/L).
引文
[1]世界农业发展现状和问题[J],中国瓜菜,2005,4:72~73.
    [2]刘逸浓,杨居荣.马太和,农业与环境[M],北京:化学工业出版社.
    [3]李忠武,蔡强国,唐政洪.精准农业及其在我国的研究应用[J],地理科学,2001,21(6):565-566.
    [4]喻歌农,周泳.试沦精确农业及我国行动对策[J],自然资源学报,1999,14(1):69~74.
    [5]王克林,李文祥.精确农业发展与农业生态工程创新[J],中国农业资源与区划,2000,.21(1):25~28.
    [6]奉公,高雪莲.相准农业——用信息技术改善资源利用[J].中国农业资源与区划.1999.20[6];27~30.
    [7]Blackmore,B.S., Precision Farming.An Introduce.Outlook on Agriculture,1994.23(4)275-280.
    [8]Blackmore,B.S.,An Information System for Precision Farming. Presented at the Brighton Conference Pests and Diseases. British Crop Protection Council.November,1996,18-21.
    [9]Johannsen C.J..Precision Farming:An Overview.Department of Agronomy.Purdue University.April 1995.
    [10]Reetz H.Z..Maintenance Buildup Nutrient Management for Site-specfic system.Better Crops with Plant Food,1996,80(3)9-11.
    [11]Reetz H.Z.,Site-specific Nutrient Management System for the 1990s.Better Crops with Plant Food,1994,78(4)14-19.
    [12]金继运.精准农业及其在我国的应用前景[J].植物营养与肥料学报,2000,37(4),289-295.
    [13]李仁德.空间信息技术与农业发展.大自然探索[J].1999,18(1),1-6.
    [14]陈建能.21世纪精确农业的新内涵及我国的发展对策.福建农林大学学报(哲学社会科学院),2003,6(1):8-11.
    [15]金继运.精确农业和信息农业技术座谈会[J],世界农业,1998,11:54.
    [16]刘刚.精细农业的技术组成、决策分析及在我国的应用实践[J].农业现代化研究.2000,21(1):57~60.
    [17]邝朴生,刘刚,邝继双.精细农业技术体系初探[J].农业工程学报.1999,15(3):1-4.
    [18][18]喻歌农,周泳.试沦精确农业及我国行动对策[J].自然资源学报,1999,14(1):69~74.
    [19][19]黎香兰,赵文祥,焦喜东.我国精准农业的研究应用现状和发展对策[J].2002,5:1-2.
    [20][20]熊雪梅,姬长英,Claudio Moraga.基于参数化遗传神经网络的植物病虫害预测方法.农业机械学报,2004,35(6):110-114.
    [21]Diaz 0 A,etal.Soil nutrient variability and soil sampling in the Everglandes agricultural area.Communication of Soil Science and Plant Analysis,1992,23(17-20):2313-2337.
    [22]金继运.“精准农业”及其在我国的应用前景.植物营养与肥料学报,1998.4(1):1-7.
    [23]石元春.土壤学的数字化和信息化革命.土壤学报,2000.37(4):289-295.
    [24]Rgary Kachanoski,Gordon L Fairchild.Field scale fertilizer recommendation and spatial variability of soil test values.Better Crops with Plant Food.1994,78(4):20-21.
    [25]Jin Ji-yun,Jiang Cheng.Spatial variability of soil nutrients and site-specific nutrient management[A].Proceeding of international conference on engineering and technologicalscienencest:New world Press,2000.137-141.
    [26]杨俐苹.评价与改善土壤肥力的系统研究法.中国农业出版社,2005.
    [27]白由路,金继运,杨俐苹等.农田土壤养分变异与施肥推荐.植物营养与肥料学报,2001,7(2):129-133.
    [28]黄绍文,金继运,杨俐苹等.土壤养分空间变异的影响因素,精准农业与土壤养分管理.北京:中国大地出版社.2001,39-49.
    [29]Stafford.J.V.,Implementing precision agriculture in the 21st century. Journal of Agricultural,Engineering Research,2000.76,267-275.
    [30]梁春祥,姚贤良.华中丘陵红壤物理性质空间变异性的研究,土壤学报,1993,30(1):69~78.
    [31]张少良.哈尔滨市农田黑土养分空间分布特征分析[D].哈尔滨:黑龙江八—农垦大学,2007
    [32]Burrough PA,1993. Soil variability: a late 20th century view. Soils and Fertilizers.56 (5):529~562.
    [33]王学锋.土壤特性时空变异性研究方法的评述与展望.土壤学进展[J],1993,21(4);42-49.
    [34]黄绍文,金继运.土壤特性空间变异研究进展.土壤肥料,2002,(1):8-14.
    [35]秦耀东.土壤空间变异研究中的定量分析.地球科学进展[J],1992,7(1):44-49.
    [36]沈思渊.土壤空间变异研究中地统计学的应用及其展望.土壤学年进展[J],1989.17(3):11-24.
    [37]雷志栋,杨诗秀等.土壤水动力学.清华大学出版,1988:321-376.
    [38]王政权.地统计学及在生态学中的应用.北京:科学出版社,1999.
    [39]Burgess T.M. and Webster R.1980. Optimal interpolation and isarithmic mapping of soil properties. I. The semi-variogram and punctual kriging. J. Soil Sci; 31:315-331.
    [40]Mallarino AP. Patterns of spatial variability for phosphorus and potassium in no-tilled soils for two sampling scales[J]. Soil Sci. Soc. Am. J.1996,60:1473-1481
    [41]Ahn C-W, Baumgardner MF and Biebl LL. Delineation of soil variability using geostatistics and fuzzy clustering analyaes of hyperspectral data[J]. Soil Sci. Am. J.1999,63:142-150.
    [42]Kamgar A, Hopmans JW, Wallender WW and Wendroth 0,1993. On plotsize and sample number of neutron probe measurements in small field trials, Soil Sci.156:213-224
    [43]Pierce FJ and Sadler EJ(eds),1997. The State of Site Specific Management for Agriculture. ASA Miscellaneous Publication. American Society of America, Madison, WI
    [44]Jose,A.A.,Yong W.,et al.Fine-scale spatial variability of physical and biological soil properties in Kingston, Rhode Island. Geoderma 2000,98,83-94.
    [45]Souza.L.C.de,Queiroz.J.E.,et al.Spatial variability of soil salinity in an alluvial soil of the semi-arid region of Paraiba state. Pevista Brasileira.de. Engenharia Ambiental,2000,4(1):35-44.
    [46]Lawrence D.. Schlesinger W.H. Changes in the distribution of soil phosphorus during 200 years of shifting cultivation[J].Ecology,2001,82(10):269-278.
    [47]C.H.E.Stark.L.M.Condron, A.Stewart. Small-scale spatial variability of selected soil biological properties[J].Soil Biochemistry,2004,36:601-608.
    [48]Corre M.D.,Schnabel,R.Stout. Spatial and seasonal variation of gross nitrogen transformations and microbial biomass in a northeastern US grassland [J].Soil Biology and Biochemistry,2004,36:601-608.
    [49]Solie JB, Raun WR and Stone ML,1999. Submeter spatial variability of selected soil and bermudagrass production variables. Soil Sci. Soc. Am. J.63:1724-1733
    [50]Miller PM, Singer MJ and Nielsen DR.1988. Spatial variability of wheat yield and soil properties on complex hills. Soil Sci. Soc. Am. J.52:1133-1141
    [51]Boyer DQ Wright RJ, Feldhake CM and Bligh DP,1991, Soil spatial variability in steeply sloping acid soil environment. Soil Sci.161:278-287
    [52]Yost RS, Uehara G and Fox R L,1982. Geostatistical analysis of soil chemical properties of large land areas. I, Semivariograms. Soil Sci. Soc. Am. J.46:1028-1037
    [53]Webster R and McBratney AB,1987. Mapping soil fertility at Broom's Barn by simple kriging. J. Sci. Food Agric.38:97-115
    [54]Mulla DJ,1989. Soil spatial variability and methods of analysis. In Renard CM et al (ed). Soil, crop. And water management systems for rained agriculture in the Sudano-Sahelian zone:Proc. Int. Workshop. Niamey. Niger, 7-11 Jan.1987. ICRISAT, Patancheru, Andhra Pradesh, India. Pp241-252
    [55]Cahn MD, Hummel JW and Brouer BH,1994. Spatial analysis of soil fertility for site-specific crop management Soil Sci. Am. J.58:1240-1248
    [56]Nolin MC, Guertin SP and Wang C,1996, Within-field spatial variability of soil nutrients and com yield in a Montreal lowlands clay soil. In Robert PC(ed) Proc of the third international conference on precision agriculture. Minneapolis, MN.23-26 June 1996. ASA, CSSA, and SSSA, Msdison, WI. Pp257-270
    [57]Dahiya IS, Anluf R, Kersebaum KC and Richter J,1985. Spatial variability of some nutrient constituents of an Alfisol from loess, Ⅱ. Geostatistical analysis. Z. Pflanzenermachr. Bodenkd,148:268-277
    [58]White RE, Haigh RA and Macduff JH,1987. Frequency distributions and spatially dependent variability of ammonium and nitrate concentrations in soil under grazed and ungrazed grassland. Fert. Res.11:193-208
    [59]Van Merivenne M and Hofman G,1989. Spatial variability of soil nitrate nitrogen after potatoes and its change during winter. Plant Soil,120:103-110
    [60]Gupta PK, Motaghimi S, McClellan PW, Alley MM and Brarm DE,1997, Spatial variability and sampling, Trans, ASAE.40:337-343
    [61]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999:102-04,177-185.
    [62]孙英君,王劲峰,柏延臣.地统计学方法进展研究[J].地球科学进展,2004,19(2):268-274.
    [63]汪景宽,李双异,张旭东,等.20年来东北典型黑土地区土壤肥力质量变化[J].中国生态农业学报,2007,15(1):19-24.
    [64]甘海华,彭凌云.江门市新会区耕地土壤养分空间变异特征[J].应用生态学报,2005,16(8):1437-1442
    [65]郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的土壤养分空间变异特征研究.应用生态学报,2000,,11(4):555-563.
    [66]郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的土壤养分空间变异特征研究—以河北省遵化市为例[J].应用生态学报.2000,,11(4):557-563.
    [67]雷咏雯,危常州,李俊华,等.不同尺度下土壤养分空间变异特征的研究[J].土壤,2004.36(4):376-381.
    [68]廖桂堂,李廷轩,王永东,等.基于GIS和地统计学的低山茶园土壤肥力质量评价[J].生态学报,,2007,27(5):1978-1986.
    [69]Mallarino AP. Patterns of spatial variability for phosphorus and potassium in no-tilled soils for two sampling scales[J]. Soil Sci. Soc. Am. J.1996; 60:1473-1481
    [70]Ahn C-W, Baumgardner MF and Biehl LL. Delineation of soil variability using geostatistics and fuzzy clustering analyaes of hyperspectral data[J]. Soil Sci. Sci. Am. J.1999,63:142-150
    [71]黄绍文,金继运.土壤特性空间变异研究进展.土壤肥料,2002(1):8-14.
    [72]Tening AS and Omueti JI.Potassium status of some selected soils under different land-use systems in the subhumid Zone of Nigeria. Commun. Soil Sci.Plant Anal.1995,26(5):657-672.
    [73]Brewer R.Fabric and mineral analysis. Chaper 4 Calculations of soil formation. Krieger publ,NewYork.l976
    [74]Berndtsson R,Bahri A,Jinno K.Spatial dependence of geochemical elements in semiarid agricultural field;Ⅱ, Geostatistical properties[J].Soil Sci,1993,57:1323-1329.
    [75]徐尚平,陶澍,徐福留.内蒙土壤微量元素含量的空间结构特征.地理学报,2000,55(3):337-345.
    [76]Itaru Okuda,Masanori Okazaki and Takusei Hashitani.Spatial and temporal variations in the chemical weathering of Basaltic Pyroclastic materials.Soil Sci.Soc. Am.J.1995,59:887-894.
    [77]Miller PM,Singer MJ and Nielsen DR. Spatial variability of wheat yield and soil properties on complex hills,Soc.Am.J.1988,52:1133-1141.
    [78]Mulla DJ.Mapping and managing spatial patterns in soil fertility and crop yield. In:Robert PC,Rust RH and larson WE,eds. Soil specific crop management.ASA,CSSA,SSSA,Madison,WI.1993,15-26
    [79]Beckett PHT and Webster R,1971.Soil variability: A review. Soils and Fertilizers,34:1~15
    [80]Kitchen NR, Havlin JL and Westfall DG,1990. Soil sampling under no-till banded phosphorus. Soil Sci. Soc. Am. J.54:1661~1665
    [81]加拿大磷钾研究所北京办事处,土壤养分状况系统研究法[M].北京:中国农业科技出版社,1992.
    [82]杨俐苹,金继运,梁鸣早等.ASI法测定土壤有效钾与我国常规化学方法的相关研究[J].土壤通报,2000,31(6):277-297.
    [83]赵鹏大.定量地学方法及应用.北京:高等教育出版社.2004
    [84]陈亚新,史海滨,魏占民.土壤水盐信息空间变异的预测理论与条件模拟.北京:科学出版社.2005
    [85]王仁铎,胡光道.线性地质统计学.北京:地质出版社,1988
    [86]加拿大钾磷研究所北京办事处,土壤养分状况系统研究法[M].北京:中国农业科技出版社,1992
    [87]王绍强,朱丽松,周成虎.中国土壤土层厚度的空间变异特征.地力研究,2001,20(2):161-169
    [88]张仁铎.空间变异理论及应用.北京:科学出版社,2005.
    [89]Cambardella. C.A.Moorman T.B Novak, J.M.1994.Field-scale variability of soil properties in central low a soils J. Soil Sci.58,1501-1511
    [90]Chien. YJ,Lee,D.Y, Guo, H.Y,1997. Geostatistical analysis of soil properties of mid-west Taiwan soil. J. Soil Science.162.291-298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700