航空发动机热端部件模拟环境下3D C/SiC的微结构演变和失效机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续碳纤维增强碳化硅基复合材料(C/SiC)是一种在航空航天与能源领域具有广泛应用价值的战略性轻质热结构材料,具有高比强与不发生灾难性断裂等优异特性,成为高推重比航空发动机热端部件材料的重要候选,有望满足耐高温抗氧化长寿命的目标需求。
     本文针对高推重比航空发动机热端部件多因素复杂环境,采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)与高分辨电子显微镜(HRTEM)等多种分析手段,跨尺度表征了三维编织连续碳纤维增强碳化硅基复合材料(3D C/SiC)在热物理化学模拟条件和应力模拟条件下的微结构演变,围绕微结构演变-性能演变之间的关系,系统研究了3D C/SiC的环境行为演变规律,获得了3D C/SiC的失效机制和微结构控制单元与要素。在此基础上,综合归纳出材料的失效本质,成功地分析了3D C/SiC在各种模拟环境中的失效模式与机理。主要研究内容与结果如下:
     1.发现“簇”是连续纤维增强陶瓷基复合材料(CFCC)中普遍存在的结构特征,提出“纤维簇”是控制CFCC强韧化的主要结构单元之一。纤维簇与单根纤维、纤维束三者之间的竞争与协同,形成了CFCC的跨尺度微结构控制准则框架,可实现CFCC的最佳强韧化,并成功应用于3D C/SiC的制备、性能控制、力学分析和失效机制中,有效地提高了材料的综合效能。
     2.首次提出CFCC的“仿生基本结构模型”和“功能失效机制”,详细阐述了其内涵与主要内容,统一了3D C/SiC在各种复杂坏境中的失效机制和失效模型,成功应用于3D C/SiC的失效分析和材料优化设计中。其与跨尺度微结构控制准则一起,成为陶瓷基复合材料新型强韧化理论的主要部分。
     3.通过对3D C/SiC在不同模拟环境的微结构进行系统观察,特别是从TEM和HRTEM角度深入对大量样品分析,观察到诸多具有普遍性的微观机制和新现象,从而为分析3D C/SiC的环境行为演变与获得失效机制奠定了坚实基础。
     (1)首次得到C/SiC所特有的典型微观机制—缺口状氧化—的TEM直观证据,完善了国际上有关缺口状反应的模型和认识,分析了缺口状氧化机制的形成过程。该机制属多部位的非均匀氧化,普遍存在于热物理化学介质的环境中,是组元本征氧化性质差异与应力/热物理化学介质在微观尺度交互作用的结果,对3D C/SiC复杂耦合环境的行为有重要影响。
     (2)TEM观察到700℃下3D C/SiC中的基体和纯水反应生成SiO_2非晶膜,形膜温度低于以往研究中所确定的温度,从而对含水气氛下3D C/SiC环境行为与温度变化之间的关系有了新的理解。
     (3)提出界面区的概念,完善了对CFCC界面结构和作用的认识,系统研究了C/SiC内界面区与裂纹的相互作用机理及其影响因素,建立起裂纹偏斜和界面脱粘的物理模型,从而推进了对C/SiC增韧机制和力学行为的理解。
     4.从微结构演变-性能演变之间关系的角度,通过对不同分压纯氧气氛、纯水气氛和纯熔盐、不同分压比含氧耦合气氛下3D C/SiC环境行为的比较研究,建立起3D C/SiC在含氧气氛中的失效综合示意图,同时确定出:
     (1)氧化温度区间及纯氧气氛下各区间的动力学控制要素。
     (2)微结构控制性单元和要素—涂层、热历史与含碳组元。
     (3)热物理化学环境主导因素—氧和盐(Na_2SO_4)以及影响3D C/SiC最为严重的条件—水氧盐耦合环境。
     (4)含氧气氛中的失效本质—氧(和SO_3)对碳相的损伤破坏。
     5.从结构的角度,深入分析了3D C/SiC的两大结构特征(即纤维束交叉处(交界孔处)的SiC基体弱约束和应力集中,以及强的弱界面结合)对力学行为的影响。在此基础上,从宏观断口形貌,纤维束、簇和单丝的拔出与断裂特征、裂纹特征、界面区的脱粘和滑移、界面区与各组元结构/织构的变化等多个方面,对不同温度不同应力参数下3D C/SiC单调拉伸、疲劳和蠕变的微结构演变进行了系统观察与比较,确定出微结构控制单元与要素,得出具体的失效机制。讨论了3D C/SiC疲劳与蠕变失效机制的多尺度特性与相互差异,表明两者机理相似,微结构变化特征难以区分,仅在各种机制发生顺序和比例上有所不同。
     6.基于上述各种模拟环境的失效分析和“仿生结构模型”与“功能失效机制”,确定出分区间的重量变化率是C/SiC环境性能表征最直观和最基本的指标,并用于建立失效判据,分析了3D C/SiC热物理化学介质/应力条件耦合环境中的失效机制并经实验验证。
Continuous carbon fiber reinforced silicon carbide matrix composites (C/SiC)were a high-temperature lightweight structural materials which were strategic innational defense and have the potentials in many fields including aerospace, space,and nuclear reactor. C/SiC were non-catastrophic with pseudo-plastic behavior andhad some advantage such as high strength-weight ratio, which made it a key candidateto aim at use with oxidation-protection and long life at high temperature when appliedas hot-section component in aero-engine with high thrust-weight ratio.
     The complicated multi-factor environments in hot-section component inadvanced aero-engine were selected as objective environment in this dissertation.Multi-scale characterization including optical microscopy (OM), scanning electronmicroscopy (SEM), transmission electron microscopy (TEM) and high resolutiontransmission electron microscopy (HRTEM) were made use to investigatemicrostructural evolving of 3-dimensional C/SiC (3D C/SiC) served in thermo-physical and chemical simulated atmosphere and simulated stress condition. Therelationship between the multi-scale structural change and properties change, and thecorresponding response to environment in 3D C/SiC were systematically explored, sothe failure behavior were clearly understood and microstructural controlling unit andelement were obtained. These failure and microstructure investigate induced theessential failure model and mechanism which were used to predict and analysis thefailure behavior in environments much more complicated. The prediction fitted wellwith experimental phenomena. The main results are as follows:
     1. "Fiber cluster" were first proposed to be a main kind of structural unit tocontrol strength and toughness of continuous fiber-reinforced ceramic composite(CFCC). The competition among fiber cluster, single fiber and fiber yarn formed themulti-scale microstructural control criterion which was successfully applied inprocessing, improving properties, mechanical behavior and failure mechanism for 3DC/SiC and which made the performance of C/SiC used in this thesis improved largely.
     2. Biomimetic "basic structural model" and "function failure mechanism" ofCFCC were first proposed and introduced to 3D C/SiC, which were successfullyapplied in failure analysis and materials design and optimization. The definition anddetailed content of biomimetic "basic structural model" and "function failuremechanism" were given. The biomimetic model and mechanism became a simplifiedand unified model and mechanism for in-service analysis of 3D C/SiC in allcomplicated simulated environments and became a main part of new strengtheningand toughening theory of ceramic matrix composites.
     3. The microstructure of 3D C/SiC in different simulated environments weresystematically studied, especially in TEM and HRTEM. Many microscopicmechanism and new phenomena were observed directly and statistically whichformed some bases for analysis of environmental behavior evolving.
     (1) Notch-like oxidation mechanism of C/SiC was first observed in TEM andthen were modified in understanding and model. The form mechanism of notch-likeoxidation mechanism was discussed in detail. This mechanism occurred frequently inthe environment with high temperature chemical medium and influenced heavily thebehavior of 3D C/SiC.
     (2) SiO_2 amorphous films were found in TEM in 3D C/SiC served in H_2O at700℃, which corrected the react temperature between SiC and H_2O and led to newunderstanding of the relationship between environmental behavior and temperaturechange for 3D C/SiC in H_2O-containing atmosphere.
     (3) Interfacial zone were defined. The interactions of the interfacial zone withcracks were systematically investigated whose physical models were established,which advanced the understanding in toughening mechanism and mechanicalbehavior of C/SiC.
     4. Considering the relationship between microstructure evolving and propertiesevolving, the environment behavior of 3D C/SiC in pure oxygen with different partialpressure, pure water, pure molten salt, and O_2-containing coupled atmosphere withdifferent partial pressure were comparatively studied and the failure map of 3D C/SiCin O_2-containing atmosphere. Also below were obtained:
     (1) The oxidation temperature zone and kinetics determining factor in pure O_2.
     (2) The microstructural controlling unit and element—coating, heat history andcarbonaceous constituent.
     (3) The dominant factor in thermo- physical and chemical environment—oxygenand salt (Na_2SO_4). H_2O-O_2-Na_2SO_4 coupled environment became the most severeservice condition for 3D C/SiC.
     (4) The failure essence of 3D C/SiC in O_2-containing atmosphere—the attack ofoxygen (and SO_3) upon carbonaceous constituent.
     5. From structure, the effects of two structural characteristic of 3D C/SiC onmechanical behavior, which were weak restrict of SiC matrix at the crossover pore orcrossover between fiber yarns and strong weak-interface bond, were analysis detailed.Based these two structural characteristic, the monotonic tensile behavior, fatiguemechanism and creep behavior of 3D C/SiC under different parameter and variedtemperature were systematically investigated and compared from many aspectsincluding macroscopic fractograph, pull-out and fracture characteristic of single fiber,fiber cluster and yarn, crack characteristic, debonding and sliding in interfacial zone,and texture/structure change of interfacial zone and constituents. The microstructuralcontrolling unit and element and corresponding failure mechanism were obtained. Thefatigue failure and creep failure were both multi-scale and the difference betweenthem were discussed. They were similar in mechanism and microstructuralcharacteristics, and different only in order and proportion of every type.
     6. Based on the failure analysis and biomimetic model and mechanism discusseddetailed above, it was established that relative weight change in different temperaturezone was the most direct and basic characterization parameter of C/SiC in serviceenvironments. The biomimetic model and mechanism also were used to predict thefailure behavior of 3D C/SiC when in the coupled environments between stressconditions and themo- physical and chemical conditions, and the prediction resultswere accordant with experiments.
引文
1 P. Ball. Life's Lessons in Design. Nature. 2001, 409:413-416
    2 B. Bensaude-Vincent, A. Hessenbruch. Materials Science: A Field about to Explore? Nature Materials. 2004, 3:345-347
    3 P. Ball. Material Witness: What's so Pure about Science? Nature Materials. 2004, 3(6): 359
    4 R.W. Cahn. The Science of Dirt. Nature Materials. 2002, 1 : 3-4
    5 National Materials Advisory Board, National Research Council. Advancing Materials Research. National Academy Press, Washington D.C., 1986
    6 曾汉民等编.高技术新材料要览.中国科学技术出版社,北京,1993
    7 师昌绪,李恒德,周廉主编.材料科学与工程手册(下卷).化学工业出版社,北京,2004:9-7
    8 http://mst-online.nsu.edu/mstonline/composites/composite.htm
    9 G.B. Olson. Designing a New Material World. Science. 2000, 288:993-998
    10 E.P. Scala. A Brief History of Composites in the U.S.. JOM-Journal of the Minerals Metals & Materials Society. 1996, 2:45-48
    11 D. Malakoff. Pentagon Agency Thrives on In-Your-Face Science. Science. 1999, 285: 1476-1479. Also in: DARPA. ARPA-DARPA: The History of the Name. www.darpa.mil.
    12 A. R. Boccaccini. Glass and Glass-Ceramic Matrix Composite Materials. Journal of the Ceramic Society of Japan. 2001, 109(7): S99-S109
    13 P. Ball. Natural Strategies for the Molecular Engineer. Nanotechnology. 2002, 13:15-2814 K.E. Drexler. Engines of Creation. Anchor, Doubleday, NY. 1986
    15 J. -M. Lehn. Supramolecular Chemistry—Scope and Perspectives: Molecules-Supermolecules-Molecular Devices. Nobel Lecture, Dec 8 1987.
    16 J. Halpern, J. -M. Lehn, et al. Supramolecular Chemistry and Self-Assembly Special Feature. Proceedings of the National Academy of Sciences. 2002, 99(8)
    17 Special Issue: Supramolecular Chemistry and Self-Assembly. Science. 2002, 295:2395-2421
    18 S. Zhang, et al. Design of Nanostructured Biological Materials through Self-Assemly of Peptides and Proteins. Current Opinion in Chemical Biology. 2002, 6(6): 865-871
    19 M. Sarikaya. Biomimetics: Materials Fabrication through Biology. Proceedings of the National Academy of Sciences. 1999, 96(25): 14183-14185
    20 M. Sarikaya, et al. Molecular Biomimetics: Nanotechnology through Biology. Nature Materials. 2003, 2:577-585
    21 S. Mann. Molecular Tectonics in Biomineralization and Biomimetic Materials Chemistry. Nature. 1993, 365:499-505
    22 A. H. Heuer, et al. Innovative Materials Processing Strategies: A Biomimetic Approach. Science. 1992, 255:1098-1105
    23 S. Mann. Molecular Recognition in Biomineralization. Nature. 1988, 332(6): 119-123
    24 M. Sarikaya, I. A. Aksay, eds. Biomimetics: Design and Processing of Materials. Am. Inst. Phy., New York. 1995
    
    25 S. Mann, ed. Biomimetic Materials Chemistry. VCH, New York. 1996
    
    26 National Materials Advisory Board, National Research Council. Hierarchical Structures in Biology as a Guide for New Materials Technology. National Academy Press, Washington D.C., 1994
    
    27 B. S. Mitchell. An Introduction to Materials Engineering and Science: For Chemical and Materials Engineers. John Wiley& Sons, Inc., Hoboken, New Jersey, 2003: 101
    
    28 Y. Kagawa. Expectation and Achivement of Ceramic Matrix Composites. Materia Japan.1999, 38(5): 408-411
    
    29 National Materials Advisory Board, National Research Council. High-Performance Synthetic Fibers for Composites. National Academy Press, Washington D.C., 1992: 39
    
    30 S. Nishikiori, S. Masaki. Development and Application of Advanced Materials, Cast Gamma Titanium Aluminides and Silicon Carbide Matrix Composites, for Improved Performance Aero-Space Engines. Journal of the Japan Institute of Metals. 2000, 64(11): 992-998
    
    31 H. Nakayama, R. Tanaka. The Feature of Composite Materials. Materia Japan. 2001, 40(2):106-110
    
    32 J. E. Sheehan, K.W. Buesking, B. J. Sullivan. Carbon-Carbon Composites. Annual Review of Materials Science. 1994,24: 19-44
    
    33 J. F. Jamet, P. Lamicq. Composite Thermostructures: An Overview of the French Experience.In R. Naslain, J. Lamon, D. Doumeingts, eds. High Temperature Ceramic Matrix Composites.Bordeaux, Woodhead Publishing Limited, 1993: 735-742
    
    34 J. J. Choury. Thermo-Structural Composite Materials for Aeronautical and Spatial Applications. Nouvelle Revue Aeronautique Astronautique. 1995, (6): 41-47
    
    35 F. Christin. Design, Fabrication, and Application of Thermostructural Composites (TSC) like C/C, C/SiC, and SiC/SiC Composites. Advanced Engineering Materials. 2002, 4(12): 903-912
    
    36 R. A. Ellis, M. Berdoyes. An Example of Successful International Cooperation in Rocket Motor Technology. Acta Astronautica. 2002, 51(1-9): 47-56
    
    37 S. J. Park, M. K. Seo. The Effects of MoSi_2 on the Oxidation Behavior of Carbon/Carbon Composites. Carbon. 2001, 39(8): 1229-1235
    
    38 S. J. Park, M. K. Seo. Studies on the Mechanical and Mechanical Interfacial Properties of Carbon-Carbon Composites Impregnated with an Oxidation Inhibitor. Carbon. 2003, 41(15):2991-3002
    
    39 G. Savage. In: Carbon-Carbon Composites, London: Chapman & Hall, 1993: 157-191
    
    40 K. L. Luthra. Oxidation of Carbon/Carbon Composites - A Theoretical Analysis. Carbon.1988, 26(2): 217-224
    
    41 P. Ehrburger, P. Baranne, J. Lahaye. Inhibition of the Oxidation of Carbon-Carbon Composite by Boron Oxide. Carbon. 1986, 24(4): 495-499
    42 D. W. Mckee. Chemistry and Physics of Carbon. New York: Marcel Dekker, 1981.
    
    43 D. W. Mckee. Borate Treatment of Carbon Fibers and Carbon/Carbon Composites for Improved Oxidation Resistance. Carbon. 1986, 24(6): 737-741
    
    44 D. W. Mckee. Oxidation Behavior of Matrix-Inhibited Carbon/Carbon Composites. Carbon.1988, 26(5): 659-664.
    
    45 V. Raman, O. P. Bahl, U. Dhawan. Synthesis of Silicon Carbide Incorporated Carbon-Carbon Composites by Sol-Gel Process. Journal of Materials Science Letters. 1995, 14(16): 1150-1152
    
    46 T. Ogasawara, T. Ishikawa. Oxidation Behavior of Silicon-Infiltrated Carbon/Carbon Composites in High-Enthalpy Convective Environment. Journal of the American Ceramic Society. 2001,84(7): 1559
    
    47 R. Luo, Z. Yang, L. Li. Effect of Additives on Mechanical Properties of Oxidation-Resistant Carbon/Carbon Composite Fabricated by Rapid CVD Method. Carbon. 2000, 38(15): 2109-2115
    
    48 L. M. Manocha, S. Manocha, K. B. Patel, et al. Oxidation Behaviour of Carbon/Carbon Composites Impregnated with Silica and Silicon Oxycarbide. Carbon. 2000, 38(10): 1481-1491
    
    49 Y. -C. Zhu, S. Ohtani, Y. Sato, et al. Formation of a Functionally Gradient (Si_3N_4+SiC)/C Layer for the Oxidation Protection of Carbon-Carbon Composites. Carbon. 1999, 37(9):1417-1423
    
    50 R. Naslain, F. Christin, J. J. Choury, et al. In: Proc. 3rd Int. Conf. Composite Materials, 1980
    
    51 W. Liu, Y. Wei, J. Deng. Carbon-Fiber-Reinforced C-SiC Binary Matrix Composites. Carbon.1995, 33(4): 441-447
    
    52 K. Nakano, K. Suzuki, M. Drissi-Habti and Y. Kanno. Processing and Characterization of 3D Carbon Fiber Reinforced Silicon Carbide and Silicon Nitride Matrix Composites. Ceramic Transaction. 1998,99: 157-166
    
    53 K. Suzuki, S. Kume, K. Nakano and T. W. Chou. Fabrication and Characterization of 3D-C/SiC Composites via Slurry and PCVI Joint Process. Key Engineering Materials. 1999, 164-165:113-116
    
    54 B. J. Oh, Y. J. Lee, D. J. Choi, et al. Fabrication of Carbon/Silicon Carbide composites by Isothermal Chemical Vapor Infiltration, Using the In Situ Whisker-Growing and Matrix Filling Process. Journal of the American Ceramic Society. 2001, 84(1): 245-247
    
    55 W. B. Hillig. Making Ceramic Composites by Melt Infiltration. American Ceramic Society Bulletin. 1994, 73(4): 56-62
    
    56 A. Kohyama, S. -M. Dong, Y. Katoh. Development of SiC/SiC Composites by Nano-Infiltration and Transient Eutectic (NITE) Process. Ceramic Engineering and Science Proceedings. 2000:311-318
    
    57 殷小玮. 3D C/SiC 复合材料的环境氧化行为.西北工业大学博士学位论文. 2001
    58 刘文川,邓景屹,杜海峰等.C/C,C/C-SiC梯度基,纳米基,双元基复合材料微观结构特征.中国科学(B辑).1998,28(5):471-476
    59 F. Lamouroux, S. Bertrand, R. Naslain, et al. Oxidation-Resistant Carbon-Fiber-Reinforced Ceramic-Matrix Composites. Composites Science and Technology. 1999, 59(7): 1073-1085
    60 S. Darzens, G. Farizy, J. Vicens and J. L. Chermant. Multiscale Investigation of the Creep Behavior of SiC_f-SiBC. In: W. Krenkel. et al. High Temperature Ceramic Matrix Composites. Wiley-VCH, Weinheim (Germany), 2001: 211-217
    61 S. Darzens, J. L. Chermant, J. Vicens, et al. Understanding of the Creep Behavior of SiC_f- SiBC Composites. Scripta Materialia. 2002, 47(7): 433-439
    62 G. Farizy, J. L. Chermant. J. C. Sangleboeuf, et al. SiC_f-SiBC Composites: Microstructural Investigations of the As-Received Material and Creep Tested Composites under an Oxidative Environment. Journal of Microscopy. 2003, 210(Pt 2): 176-186
    63 C.P. Talley, et al. Boron Reinforcements for Structural Composites. Tech. Doc. ASD-TRD-62-257, March 1962, Aeronautical Systems Div.
    64 T. F. Cooke. Inorganic Fibers—A Literature Review. Journal of the American Ceramic Society. 1991, 74(12): 2959
    65 E. Fitzer, ed. Carbon Fibres and Their Composites. Springer-Verlag, Berlin and New York, 1985
    66 T.A. Edison. 电灯. US Patent 223,398.入档日期: 1879-11-1, 批准日期: 1880-1-27
    67 A. Shindo. Some Properties of PAN-Based Carbon Fiber. Journal of the Ceramic Society of Japan. 2000, 108(4): S35-S40
    68 O.P. Bahl, et al. Manufacture of Carbon Fibers. In J. -P. Donnet, T. K. Wang, J. C. M. Peng, et al, eds. Carbon Fibers: Third Edition, Revised and Expanded. Marcel Dekker, Inc, New York, 1998.
    69 J. Mittal, R. B. Mathur, O. P. Bahl. Post Spinning Modification of PAN Fibres—A Review. Carbon. 1997, 35(12): 1713-1722
    70 A. Shindo. Studies on Graphite Fiber, Report No.317. Gov. Ind. Res. Inst., Osaka, 1961. Also Journal of the Ceramic Society of Japan. 1961, 69:C195
    71 S. Otani. The Fundamental Structure of MP Carbon Fiber. Carbon. 1965, 3(2): 213-214
    72 J. Delmonte. Techonlogy of Carbon and Graphite Fiber Composites. Van Nostrand Reinhold Company, 1981
    73 S. Yajima, J. Hayashi, M. Omori. Continuous Silicon Carbide Fiber of High Tensile Strength. Chem. Lett.. 1975, 931-934
    74 S. Yajima, J. Hayashi, M. Omori et al. Development of a Silicon Carbide Fibre with High Tensile Strength. Nature. 1976, 261:683
    75 S. Yajima. Silicon Carbide Fiber. In: Handbook of Composites, Vol. 1, Strong Fibers, W. Watt and B.V. Perov, eds. Elsevier Science Publishers BV, New York. 1985:201-237
    76 P. Chantrell, E. P. Popper. In Special Ceramics (E. P. Popper eds.), Academic Press, New York, 1964: 87-103
    
    77 T. Mah, et al. Thermal Stability of SiC Fibres (Nicalon~?). Journal of Materials Science. 1984,19(4): 1191-1201
    
    78 Y. T. Zhu, S. T. Taylor, M. G. Stout, et al. Kinetics of Thermal, Passive Oxidation of Nicalon Fibers. Journal of the American Ceramic Society. 1998, 81(3): 655-660
    
    79 M. -H. Berger, N. Hochet, A. R. Bunsell. Properties and Microstructures of Small-Diameter SiC-Based Fibers. In: A. R. Bunsell, M. -H. Berger, eds. Fine Ceramic Fibers. Marcel Dekker,Inc., New York. 1999: 231-290
    
    80 M. Takeda, A. Urano, J. -I. Sakamoto, et al. Microstructure and Oxidation Behavior of Silicon Carbide Fibers Derived From Polycarbosilane. Journal of the American Ceramic Society. 2000, 83(5): 1171-1176
    
    81 National Materials Advisory Board, National Research Council. High-Performance Synthetic Fibers for Composites. National Academy Press, Washington D.C., 1992: 34-40, 65-69
    
    82 K. Okamura. Development of Reinforcement Ceramic Fibers on High-Temperature Materials.Materia Japan. 2001,40(2): 117-121
    
    83 K. Okamura. Status Quo and Future Trend on R&D for High Temperature and High Performance Ceramic Fibers Derived from Polymers. Advanced Composite Materials. 1999,8(1): 107-115
    
    84 A. R. Bunsell, M. -H. Berger, A. Kelly. Fine Ceramic Fibers. In: A. R. Bunsell, M. -H.Berger, eds. Fine Ceramic Fibers. Marcel Dekker, Inc., New York. 1999: 1-62
    
    85 National Materials Advisory Board, National Research Council. Ceramic Fibers and Coatings: Advanced Materials for Twenty-First Century. National Academy Press, Washington D.C..1998
    
    86 M. Takeda, J. Sakamoto, A. Saeki, et al. Mechanical and Structural Analysis of Silicon Carbide Fiber — Hi-Nicalon Type S. Ceramic Engineering and Science Proceedings. 1996,17(4): 35-42
    
    87 T. Ishikawa. Recent Developments of the Fiber Nicalon and its Composites, including Properties of the SiC Fibers Hi-Nicalon for Ultra-Temperature. Composites Science and Technology. 1994, 51(2): 135-144
    
    88 T. Yamamura. Application of High Temperature Ceramic Composites. Materia Japan. 2001,40(2): 111-116
    
    89 T. Ishikawa, Y. Kohtoku, K. Kumagawa, et al. High-Strength Alkali-Resistant Sintered SiC Fibre Stable to 2200℃. Nature. 1998, 391: 773-775
    
    90 T. Ishikawa, S. Kajii, K. Matsunaga, et al. A Tough, Thermally Conductive Silicon Carbide Composite with High Strength up to 1600℃ in Air. Science. 1998, 282: 1295-1297
    
    91 J. A. Dicarlo, S. Dutta. Handbook on Continuous Fiber Reinforced Ceramic Matrix Composites. R. Lehmann, S. El-Rahaiby, J. Wachtmann, eds. Ceramic Information Analysis Center, Purdue University, IN, 1995.
    92 J. C. Romine. New High-Temperature Ceramic Fiber. Ceramic Engineering and Science Proceedings. 1987, 8(7-8): 755-765
    93 K.K. Chawla. Interface Engineering in Oxide Fibre/Oxide Matrix Composites. International Materials Reviews. 2000, 45(5): 165-189
    94 H.G. Sowman, D. D. Johnson. Oxide Fibers from Chemical Ceramic Processes. In: K.S. Mazdiyasnl, ed. Fiber Reinforced Ceramic Composites: Materials, Processing and Technology. Noyes Publications, Park Ridge, New Jersey. 1990:122-140
    95 E. Walner, B. C. Raynes, A. L. Cunningham. Liquid Polymers, Solid Articles Made Therefrom and Methods of Preparing Same. U.S. Patent 3,180,741. 1965 April 27
    96 R.J. Lockhart, E. Walner. Preparation of Alumina Monofilaments. U.S. Patent 3,271,173. 1966 September 6.
    97 H. Lange, G. Wotting, G. Winter. Silicon Nitride—from Powder Synthesis to Ceramic Materials. Angewandte Chemie International Edition in English. 1991, 30(12): 1579-1597
    98 H. -P. Baldus, M. Jansen. Novel High-Performance Ceramics—Amorphous Inorganic Networks from Molecular Precursors. Angewandte Chemie International Edition in English. 1997, 36:328-343
    99 H. P. Baldus, G. Passing, D. Sporn, et al. In: A. G. Evans, R. Naslain, eds. High Temeperature Ceramic Matrix Composites, Vol.2. Ceramic Transaction. ACS Westerville, 1995: 75
    100 P. Baldus, M. Jansen, D. Sporn. Ceramic Fibers for Matrix Composites in High-Temperature Engine Applications. Science. 1999, 285:699-703
    101 陶肖明,冼杏娟,高冠勋(F.K.Ko.).纺织结构复合材料.科学出版社:北京.2001
    102 杨桂,敖大新,张志勇等编著.编织结构复合材料制作,工艺及工业实践.科学出版社:北京.1999.2
    103 T. W. Chou, F. K. Ko. Textile Structural Composites. Elsevier Science Publishers B. V., Amsterdam, 1989: 129-171
    104 T. W. Chou. M icrostructural Design of Fiber Composites. Cambridge University Press. 1992
    105 F. K. Ko. Braiding. In Engineered Materials Handbook, ASM International, Metals Park, OH, 1987:519-528
    106 F. K. Ko. Preform Fiber Architecture for Ceramic Matrix Composites. American Ceramic Society Bulletin. 1989, 68(2): 401-414
    107 F. K. Ko. Textile Preform for Carbon-Carbon Composite. In: J.D. Buckley and D. D. Edie, eds. Carbon-Carbon Materials and Composites. Park Ridge, N J: Noyes Publication. 1992: 72-104
    108 F. Christin. Design, Fabrication, and Application of Thermostructural Composites (TSC) Like C/C, C/SiC, and SiC/SiC Composites. Advanced Engineering Materials. 2002, 4(12): 903-912
    109 A. Miravete. 3-D Textile Reinforcements in Composite Materials. CRC Press, September 1, 1999
    
    110 C. C. Poe Jr, H. B. Dexter, I. S. Raju. Review of the NASA Textile Composites Research.Journal of Aircraft. 1999, 36(5): 876-884
    
    111 T. W. Chou. Designing of Textile Preforms for Ceramic Matrix Composites. In Proc HTCMC-3, Osaka, Japan. 1998
    
    112 T. D. Kostar. Analysis, Design, Fabrication, and Performance of Three-Dimensional Braided Composites. Ph.D. Dissertation. University of Delaware, Newark, Delaware
    
    113 J. H. Byun, T. W. Chou. Process-Microstructure Relationships of 2-Step and 4-Step Braided Composites. Composites Science and Technolgy. 1996, 56: 235-251
    
    114 P. Pluvinage, A. P. Majidi, T. W. Chou. Morphological and Mechanical Characterization of 2D Woven and 3D Braided SiC/SiC Composites. Journal of Materials Science. 1995, 30: 232
    
    115 T. W. Chou, R. Kamiya. Designing of Textile Preforms for Ceramic Matrix Composites.Advaced Composite Materials. 1999, 8(1): 25-31
    
    116 G. Savage. Carbon-Carbon Composites, London: Chapman & Hall, 1993
    
    117 E. Fitzer, L. M. Manocha. Carbon Reinforcement and Carbon/Carbon Composites, Berlin:Springer-Verlag, 1998
    
    118 C. R. Thomas. Essentials of Carbon-Carbon Composites. Cambridge(UK): Royal Society of Chemstry, 1993
    
    119 M. E. Westwood, J. D. Webster, R. J. Day, et al. Review: Oxidation Protection for Carbon Fibre Composites. Journal of Materials Science. 1996, 31: 1389-1397
    
    120 K. L. Choy. Chemical Vapor Deposition of Coatings. Progress in Materials Science. 2003,48:57-170
    
    121 C. A. A. Cairo, M. L. A. Graca, C. R. M. Silva, et al. Functionally Gradient Ceramic Coating for Carbon-Carbon Antioxidation Protection. Journal of the European Ceramic Society. 2001,21(3): 325-329
    
    122 F. Smeacetto, M. Ferraris, M. Salvo. Multilayer Coating with Self-Sealing Properties for Carbon-Carbon Composites. Carbon. 2003, 41(11): 2105-2111
    
    123 T. Morimoto, Y. Ogura, M. Kondo, et al. Multilayer Coating for Carbon-Carbon Composites. Carbon. 1995, 33(4): 351-357
    
    124 O. Yamamoto, T. Sasamoto, M. Inagaki. Antioxidation of Carbon-Carbon Composites by SiC Concentration Gradient and Zircon Overcoating. Carbon. 1995, 33(4): 359-365
    
    125 W. Kowbel, J. C. Withers and P. O. Ransone. CVD and CVR Silicon-Based Functionally Gradient Coatings on C-C Composites. Carbon. 1995, 33(4): 415-426
    
    126 G. Fisher. Ceramic Coatings Enhance Performance Engineering. American Ceramic Society Bulletin. 1986, 65(2): 283-287
    
    127 J. D. Webster, et al. Oxidation Protection Coatings for C/SiC Based on Yttrium Silicate. Journal of the European Ceramic Society. 1998, 18(16): 2345-2350
    
    128 S. Goujard, L. Vandenbulcke and H. Tawil. The Oxidation Behaviour of Two- and Three- Dimensional C/SiC Thermostructural Materials Protected by Chemical-Vapour-Deposition Polylayers Coatings. Journal of Materials Science. 1994, 29(23): 6212-6220
    
    129 J. R. Strife, J. E. Sheehan. Ceramic Coatings for Carbon-Carbon Composites. American Ceramic Society Bulletin. 1988, 67(2): 369-374
    
    130 G. -B. Zheng, H. Sano, Y. Uchiyama, et al. Effect of Boron Addition on Oxidation Resistance of Carbon Fiber Polycarbosilane-Derived SiC Composites. Journal of Materials Science Letters. 1998, 17(24): 2047-2049
    
    131 J. Schulte-Fischedick, J. Schmidt, R. Tamme, et al. Oxidation Behaviour of C/C-SiC Coated with SiC-B_4C-SiC-Cordierite Oxidation Protection System. Materials Science and Engineering A. 2004, 386(1-2): 428-434
    
    132 J. Huang, H. Li, X. Zeng, et al. A New SiC/Yttrium Silicate/Glass Multi-Layer Oxidation Protective Coating for Carbon/Carbon Composites. Carbon. 2004, 42(11): 2356-2359
    
    133 A. W. Moore, M. B. Dowell, E. R. Stover, et al. Oxidation Protection of Carbon-Carbon Composites by (B + Si)_n Coatings. Ceramic Engineering and Science Proceedings. 1995,16(4): 263-270
    
    134 F. J. Buchanan, J. A. Little. Glass Sealants for Carbon-Carbon Composites. Journal of Materials Science. 1993, 28(9): 2324-2330
    
    135 S. M. Gee, J. A. Little. Oxidation Behaviour and Protection of Carbon/Carbon Composites. Journal of Materials Science. 1991, 26(4): 1093-1100
    
    136 R. J. K.erans, R. S. Hay, T. A. Parthasarathy, et al. Interface Design for Oxidation-Resistant Ceramic Composites. Journal of the American Ceramic Society. 2002, 85(11): 2599-2632
    
    137 R. Naslain. The Design of the Fibre-Matrix Interfaciai Zone in Ceramic Matrix Composites.Composites Part A. 1998,29(9-10): 1145-1155
    
    138 R. Naslain, S. Bertrand, F. Lamouroux, et al. Synthesis of Highly Tailored Ceramic Matrix Composites by Pressure-Pulsed CVI. Solid State Ionics. 2001, 141-142: 541-548.
    
    139 S. Bertrand, X. Bourrat, R. Naslain, et al. TEM Structure of (PyC/SiC)_n Multilayered Interphases in SiC/SiC Composites. Journal of the European Ceramic Socity. 2000, 20: 1-13
    
    140 W. Yang, A. Kohyama, T. Hinoki, et al. Interfaciai Characterization of CVI-SiC/SiC Composites. Journal of Nuclear Materials. 2002, 307-311(2): 1088-1092
    
    141 S. Jacques, A. Guette, R. Naslain, et al. Preparation and Characterization of 2D SiC/SiC Composites With Composition-Graded C(B) Interphase. Journal of the European Ceramic Society. 1997, 17(9): 1061-1082
    
    142 G. N. Morscher, D. R. Bryant and R. E. Tressler. Environmental Durability of BN-Based Interphases (for SiC_f/SiC_w Composites) in H_2O Containing Atmospheres at Intermediate Temperatures. Ceramic Engineering and Science Proceedings. 2000, 18(3): 525-534
    
    143 S. Labruquere, H. Blanchard, R. Naslain, et al. Enhancement of the Oxidation Resistance of Interfaciai Area in C/C Composites. Part II: Oxidation Resistance of B-C, Si-B-C and Si-C Coated Carbon Preforms Densified with Carbon. Journal of the European Ceramic Society. 2002,22(7): 1011-1021
    
    144 W. Krenkel, B. Heidenreich, R. Renz. C/C-SiC Composites for Advanced Friction Systems. Advaced Engineering Materials. 2002,4(7): 427-436
    
    145 S. Seghi, J. Lee and J. Economy. High Density Carbon Fiber/Boron Nitride Matrix Composites: Fabrication of Composites with Exceptional Wear Resistance. Carbon. 2005,43(10): 2035-2043
    
    146 J. -P. Donnet, T. K. Wang, J. C. M. Peng, et al, eds. Carbon Fibers: Third Edition, Revised and Expanded. Marcel Dekker, Inc, New York, 1998.
    
    147 K. K. Chawla. Ceramic Matrix Composite, 2nd ed. Kluwer Academic Publishers. 2003
    
    148 I. Crivelli-Visconti, G. A. Cooper. Mechanical Properties of a New Carbon Fibre Material.Nature. 1969,221:754-755
    
    149 J. Aveston, G. A. Cooper, A. Kelly. Single and Multiple Fracture. Conference Proceedings of the National Physical Laboratory: Properties of Fibre Composites, National Physical Laboratory, UK. IPC Science and Technology Press, London, 1971: 15-26
    
    150 J. Aveston, A. Kelly. Theory of Multiple Fracture of Composite Materials. Journal of Materials Science. 1973, 8(3): 352-362
    
    151 A. G. Evans, D. B. Marshall. The Mechanical Behavior of Ceramic Matrix Composites. Acta Metallurgica et Materialia. 1989, 37(10): 2567-2583
    
    152 A. G. Evans. Perspective on the Development of High-Toughness Ceramics. Journal of the American Ceramic Society. 1990, 73(2): 187-206
    
    153 A. G. Evans, F. W. Zok. The Physics and Mechanics of Fiber-Reinforced Brittle Matrix Composites. Journal of Materials Science. 1994, 29(15): 3857-3896
    
    154 A. G. Evans. Ceramics and Ceramic Composites as High-Temperature Structural Materials:Challenges and Opportunities. Philosophical Transactions of the Royal Society (London) A.1995,351:511-527
    
    155 R. R. Naslain. Ceramic Matrix Composites. Philosophical Transactions of the Royal Society (London) A. 1995, 351: 485-496
    
    156 D. C. Philips. The Fracture Energy of Carbon-Fibre Reinforced Glass. Journal of Materials Science. 1972,7(10): 1175-1191
    
    157 R. A. J Sambell, A. Briggs, D. C. Philips, et al. Carbon Fibre Composites with Ceramic and Glass Matrices. Part2: Continuos Fibres. Journal of Materials Science. 1972, 7(6): 676-681
    
    158 D. C. Philips. Interfacial Bonding and the Toughness of Carbon Fibre Reinforced Glass and Glass Ceramics. Journal of Materials Science. 1974, 9(11): 1847-1854
    
    159 S. R. Levitt. High-Strength Graphite-Fibre/Lithium Aluminosilicate Composites. Journal of Materials Science. 1973, 8(6): 793-805
    
    160 K. M. Prewo, J. J. Brennan, G. K. Layden. Fiber Reinforced Glasses and Glass-Ceramics for High Performance Applications. American Ceramic Society Bulletin. 1986, 65(2): 305-313,
    35
    161 K. M. Prewo, J. A. Batt. The Oxidative Stability of Carbon Fibre Reinforced Glass-Matrix Composites. Journal of Materials Science. 1988, 23(2): 523-527
    
    162 V. Bianchi, W. Sinkler, M. Monthio, et al. Carbon-Fibre-Reinforced (YMAS) Glass-Ceramic Matrix Composites. Pt. 1. Preparation, Structure and Fracture Strength. Journal of the European Ceramic Society. 1997, 17(12): 1485-1500
    
    163 R. G. Iacocca, D. J. Duquette. The Effect of Oxygen Partial Pressure on the Oxidation Behaviour of Carbon Fibres and Carbon Fibre/Glass Matrix Composites. Journal of Materials Science. 1994, 29(16): 4294-4299
    
    164 K. M. Prewo, J. J. Brennan. High-Strength Silicon Carbide Fibre-Reinforced Glass-Matrix Composites. Journal of Materials Science. 1980, 15(2): 463-468
    
    165 J. J. Brennan, K.. M. Prewo. Silicon Carbide Fibre Reinforced Glass-Ceramic Matrix Composites Exhibiting High Strength and Toughness. Journal of Materials Science. 1982,17(8): 2371-2383
    
    166 K. M. Prewo. Fatigue and Stress Rupture of Silicon Carbide Fibre-Reinforced Glass-Ceramic.Journal of Materials Science. 1987, 22(8): 2695-2701
    
    167 T. Mah, M. G. Mendiratta. High-Temperature Mechanical Behavior of Fiber-Reinforced Glass-Ceramic-Matrix Composites. Journal of the American Ceramic Society. 1985, 68(9):C248-C251
    
    168 K. P. Gadkaree. Galss-Ceramic Matrix Composites with High Oxidation Embrittlement Resistance. Journal of Materials Science. 1994, 29(9): 2417-2424
    
    169 R. F. Cooper, K. Chyung. Structure and Chemistry of Fiber-Matrix Interfaces in Silicon Carbide Fiber-Reinforced Glass-Ceramic Composites: An Electron Microscopy Study.Journal of Materials Science. 1987, 22(9): 3148-3160
    
    170 E. Y. Sun, S. R. Nutt, J. J. Brennan. Interfacial Microstructure and Chemistry of SiC/BN Dual-Coated Nicalon-Fiber-Reinforced Glass-Ceramic Matrix Composites. Journal of the American Ceramic Society. 1994,77(5): 1329-1339
    
    171 L. A. Bonney, R. F. Cooper. Reaction-Layer Interfaces in SiC-Fiber-Reinforced Glass-Ceramics: A High-Resolution Scanning Transmission Electron Microscopy Analysis. Journal of American Ceramic Society. 1990, 73(10): 2916-2921
    
    172 C. Ponthie, C. Marhic. SIMS, EDX, EELS, AES, XPS Study of Interphases in Nicalon Fiber-LAS Glass Matrix Composites: Part II Chemistry of the Interphases. Journal of Materials Science. 1994, 29(17): 4535-4544
    
    173 A. Hahnel, et al. Formation and Structure of Reaction Layers in SiC/Glass and SiC/SiC Composites. Composite Part A. 1996, 27(9): 685-690
    
    174 J. J. Brennan. Interfacial Studies of Chemical-Vapor-Infiltrated Ceramic Matrix Composites. Materials Science and Engineering A. 1990, 126(1-2): 203-223
    
    175 R. H. Stawovy, S. L. Kampe, W. A. Curtin. Mechanical Behavior of Glass and Blackglas~? Ceramic Matrix Composites. Acta Materialia. 1997,45(12): 5317-5325
    176 T. Ishikawa, S. Kajii, K. Matsunaga, et al. Structure and Properties of Si-Ti-C-O Fibre-Bonded Ceramic Material. Journal of Materials Science. 1995, 30(24): 6218-6222
    177 K. P. Plucknett, et al. Environmental Ageing Effects in a Silicon Carbide Fibre-Reinforced Glass-Ceramic Matrix Composite. Journal of Microscopy. 1995, 177(3): 251-263
    178 N. P. Bansal. Strong and Tough Hi-Nicalon-Fiber-Reinforced Celsian-Matrix Composites. Journal of the American Ceramic Society. 1997, 80(9): 2407-2409
    179 N. P. Bansal. CVD SiC Fiber-Reinforced Barium Aluminosilicate Glass-Ceramic Matrix Composites. Materials Science and Engineering A. 1996, 220(1): 129-139
    180 A. R. Boccaccini. Glass and Glass-Ceramic Matrix Composite Materials. Journal of the Ceramic Society of Japan. 2001, 109(7): S99-S109
    181 R. D. Rawlings. Galss-Ceramic Matrix Composites. Composites. 1994, 25(5): 372-379
    182 F. Doreau, J. Vicens, J. -L. Chermant, et al. The Complexity of the Matrix Microstructure in SiC-Fiber-Reinforced Glass Ceramic Composites. Journal of the European Ceramic Society. 1995, 15(12): 1235-1247
    183 F. Christin. Ph. D. Thesis, No. 641. Universite de Bordeauxl. 1979.
    184 F. Christin, R. Naslain, J. J. Choury, et al. Piece Poreuse Carbonee Densifiee In-Situ par Depot Chimique en Phase Vapeur de Materiaux Refractaires Aurtes que le Carbone et Procede de Fabrication. French Patent, 77/26979, September 1977
    185 D. P. Stinton, A. J. Capto, R. A. Lowden. Sythesis of Fiber-Reinforced SiC Composites by Chemical Vapor Infiltration. American Ceramic Society Bulletin. 1986, 65(2): 347-350
    186 A. J. Caputo, R. A. Lowden, D. P. Stinton. Fiber-Reinforced SiC Composites by Chemical Vapor Infiltration. DOE/OR/21400-Y10, DE85 015587
    187 刘文川.热结构复合材料的制备与应用.材料导报.1994,(2):62-65
    188 E. Fitzer, R. Gadow. Fiber-Reinforced Silicon Carbide. American Ceramic Society Bulletin. 1986, 65(2): 326-335
    189 R. Naslain. CVI-Composites. In: R. Warren, ed. Ceramic Matrix Composites. Glasgow: Blackie. 1992: 199-244
    190 J. Chin. Application of Vapor Deposition Technolgy to the Development of Ceramic-Matrix Composites. In: K. S. Mazdiyasnl, ed. Fiber Reinforced Ceramic Composites: Materials, Processing and Technology. NoTes Publications, Park Ridge, New Jersey. 1990: 342-396
    191 W. J. Lackey, T. L. Starr. Fabrication of Fiber-Reinforced Ceramic Composites by Chemical Vapor Infiltration: Processing, Structure and Properties. In: K. S. Mazdiyasnl, ed. Fiber Reinforced Ceramic Composites: Materials, Processing and Technology. Noyes Publications, Park Ridge, New Jersey. 1990: 397-450
    192 T. M. Besmann, R. A. Lowden, D. P. Stinton, et al. Vapor-Phase Fabrication and Properties of Continuous-Filament Ceramic Composites. Science. 1991, 253: 1104-1109
    193 I. Golecki. Recent Advances in Rapid Vapor-Phase Densification of High-Temperature Fiber-Matrix Composites. Ceramic Engineering and Science Proceedings. 1997, 18(4): 721
    194 J. Sankar, A. D. Kelkar, R. Vaidyanathan. Investigation of Forced and Isothermal Chemical Vapor Infiltrated SiC/SiC Ceramic Matrix Composites. ORNL/Sub/88-SC423/01
    
    195 W. Y. Lee, E. Lara-Curzio, K. L. More. Multilayered Oxide Interphase Concept for Ceramic- Matrix Composites. Journal of the American Ceramic Society. 1998, 81 (3): 717-720
    
    196 Y. Xu, L. Zhang. Three-Dimensional Carbon/Silicon Carbide Composites Prepared by Chemical Vapor Infiltration. Journal of the American Ceramic Society. 1997, 80(7): 1897-1900
    
    197 P. David, B. Narcy, J. D. Lulewicz, et al. Elaboration of Ceramic Composites by Rapid Densification. In: Proc. 10th. Int. Conf. Comp. Mater. (ICCM-10), A. Poursartip and K. Street, eds. Woodhead Publishing, Abington-Cambridge, UK, 1995, Vol.4: 611-616.
    
    198 A. W. Urquhart. Novel Reinforced Ceramics and Metals: A Review of Lanxide's Composite Technologies. Materials Science and Engineering A. 1991, 144(1-2): 75-82
    
    199 W. B. Hillig. Melt Infiltration Process for Making Ceramic Matrix Composites. In: K. S.Mazdiyasnl, ed. Fiber Reinforced Ceramic Composites: Materials, Processing and Technology. Noyes Publications, Park Ridge, New Jersey. 1990: 260-277
    
    200 K. L. Luthra, R. Singh, M. Brun. SiC Fiber Reinforced Silcomp (Si-SiC) Composites. In:Proc. HT-CMC-1 Conf., High Temperature Ceramic Matrix Composites. R. Naslain, J.Lamon and D. Doumeingts, eds. Woodhead Publishing, Abington-Cambridge, UK. 1993:429-436
    
    201 K. Sato, H. Morozumi, A. Tezuka, et al. Interface and Mechanical Properties of Ceramic Fiber Reinforced Silicon Nitride Composites Prepared by a Preceramic Polymer Impregnation Methods. Ceramic Transactions. 1995, 58: 1546-1552
    
    202 L. V. Interrante, C. W. Whitmarsh, W. Sherwood. Fabrication of SiC Matrix Composites Using a Liquid Polycarbosilane as the Matrix Source. Ceramic Transactions. 1995, 58: 111-118.
    
    203 N. Nakano, A. Kamiya, K. Sasaki, et al. Microsturcture of Carbon Fiber Reinforced Silicon Carbide and Silicon Nitride Composites. In: Proc. HT-CMC-1 Conf, High Temperature Ceramic Matrix Composites. R. Naslain, J. Lamon and D. Doumeingts, eds. Woodhead Publishing, Abington-Cambridge, UK. 1993:413-420
    
    204 K. Igashira, K. Nishio, T. Suemitsu. Development of the Combustor Liner Composed of Ceramic Matrix Composites (CMCs). In: Proc. ECCM-8 Conf, I. Crivelli-Visconti, ed. Woodhead Publishing, Abington-Cambridge, UK. 1998: Vol.4: 39-46
    
    205 K. Suzuki, S. Kume, T. W. Chou, et al. Fabrication and Characterization of 3D-C/SiC Composites via Slurry and PCVI Joint Process. Key Engineering Materials. 1999, 164-165:113-116
    
    206 R. L. Bickerdike, A. R. G. Brown, G. Hughes, et al. In: S. Mrozowski, M. C. Studebaker, P. L.Walker, eds. Proc. Fifth Conf. on Carbon, Pergamon Press, New York. 1962, Vol.1: 575-582
    
    207 R. R. Naslain. Processing of Ceramic Matrix Composites. Key Engineering Materials. 1999, 164-165:3-8
    
    208 R. Naslain. Materials Design and Processing of High Temperature Ceramic Matrix Composites: State of the Art and Future Trends. Advanced Composite Material. 1999, 8(1):3-16
    
    209 R. Naslain. Design, Preparation and Properties of Non-Oxide CMCs for Application in Engines and Nuclear Reactors: an Overview. Composites Science and Technology. 2004,64(2): 155-170
    
    210 R. H. Jones, C. H. Henager, Jr., G. W. Hollenberg. Composite Materials for Fusion Applications. Journal of Nuclear Materials. 1992, 191-194(Pt A): 75-83
    
    211 L. L. Snead, R. H. Jones, A. Kohyama, et al. Status of Silicon Carbide Composites for Fusion.Journal of Nuclear Materials. 1996, 233-237(1): 26-36
    
    212 R. H. Jones, D. Steiner, H. L. Heinisch, G. A. Newsome and H. M. Kerch. Radiation Resistant Ceramic Matrix Composites. Journal of Nuclear Materials. 1997, 245(2-3): 87-107
    
    213 P. Fenici, R. H. Jones, A. Kohyama, et al. Current Status of SiC/SiC Composites R&D.Journal of Nuclear Materials. 258(1-3): 215-225
    
    214 A. Hasegawa, A. Kohyama, R. H. Jones, et al. Critical Issues and Current Status of SiC/SiC Composites for Fusion. Journal of Nuclear Materials. 2001, 283-287(Pt 1): 128-137
    
    215 A. Kohyama and Y. Katoh. Overview of CREST-ACE Program for SiC/SiC Ceramic Composites and Their Energy System Applications. Ceramic Transaction. 2002, 144: 3-18
    
    216 R. H. Jones, L. Giancarli, A. Hasegawa, et al. Promise and Challenges of SiC_f/SiC Composites for Fusion Energy Applications. Journal of Nuclear Materials. 2002, 307-311(2):1057-1072
    
    217 R. Raj, R. Riedel, G. D. Soraru. Introduction to the Special Topical Issue on Ultrahigh-Temperature Polymer-Derived Ceramics. Journal of the American Ceramic Society. 2001,84(10): 2158-2159
    
    218 R. Riedel, A. Kienzle, F. Aldinger, et al. A Silicoboron Carbonitride Ceramic Stable to 2,000 Degrees C. Nature, 1996, 382: 796-798
    
    219 S. Beyer, F. Strobel, H. Knabe. Development and Testing of C/SiC Components for Liquid Rocket Propulsion Applications. A1AA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 35th, Los Angeles, CA, US, 20-24 June 1999. AIAA 99-2896
    
    220 NASA Lewis Research Center. HITEMP Review: Advanced High Temperature Engine Materials Technology Program. Cleveland, OH. 1989
    
    221 G. J. Dvorak. Mechanism-Based Design of Composite Structures Program Overview and Accomplishments. Ceramic Engineering and Science Proceedings. 1997, (4B): 299-306
    
    222 C. A. Lewinsohn, C. H. Henager, R. H. Jones. Environmentally-Induced Failure Mechanism Mapping for Continuous-Fiber, Ceramic Composites. Advances in Ceramic Matrix Composites IV, Ceramic Transactions, the American Ceramic Society, Westerville, OH. 1998:351-359
    223 C. A. Lewinsohn, C. H. Henager, R. H. Jones. Environmentally Induced Time-Depedent Failure Mechanisms in CFCCs at Elevated Temperatures. Ceramic Engineering and Science Proceedings. 1998, 19(43): 11-17
    
    224 F. Lamouroux, G. Camus, J. Thebault. Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites: I, Experimental Approach. Journal of the American Ceramic Society.1994, 27(8): 2049-2057
    
    225 F. Lamouroux, R. Naslain, J. -M. Jouin. Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites: II, Theoretical Approach. Journal of the American Ceramic Society. 1994,77(8): 2058-2068
    
    226 F. Lamouroux, X. Bourrat, R. Naslain, et al. Structure/Oxidation Behavior Relationship in the Carbonaceous Constituents of 2D-C/PyC/SiC Composites. Carbon. 1993, 31(8): 1273-1288
    
    227 F. Lamouroux, G. Camus. Oxidation Effects on the Mechanical Properties of 2D Woven C/SiC Composites. Journal of the European Ceramic Society. 1994, 14(2): 177-188
    
    228 R. Naslain, A. Guette, F. Rebillat, et al. Oxidation Mechanisms and Kinetics of SiC-Matrix Composites and Their Constituents. Journal of Materials Science. 2004, 39(24): 7303-7316
    
    229 L. Filipuzzi, G. Camus, R. Naslain, et al. Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: I, an Experimental Approach. Journal of the American Ceramic Society. 1994, 77(2): 459-466
    
    230 L. Filipuzzi, R. Naslain. Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modelling. Journal of the American Ceramic Society. 1994, 77(2): 467-480
    
    231 M. C. Halbig. The Influence of Temperature, Stress, and Environment on the Oxidation and Life of C/SiC Composites. Ceramic Engineering and Science Proceedings. 2002, 23(3): 419-426
    
    232 M. C. Halbig, D. N. Brewer, A. J. Eckel. Degradation of Continuous Fiber Ceramic Matrix Composites under Constant Load Conditions. NASA/TM-2000-209681
    
    233 J. L. Chermant. Creep Behavior of Ceramic Matrix Composites. Silicates Industriels. 1995, 9-10:261-273
    
    234 N. Miriyala, P. K. Liaw. CFCC Fatigue: A Literature Review. JOM-Journal of the Minerals Metals & Materials Society. 1997, 49(7): 59-66
    
    235 S. Pasquier, J. Lamon, R. Naslain. Tensile Static Fatigue of 2D SiC/SiC Composites with Multilayered (PyC-SiC)_((n)) Interphases at High Temperatures in Oxidizing Atmosphere.Composites Part A. 1998,29(9-10): 1157-1164
    
    236 K. L. More, P. F. Tortorelli, L. R. Walker. High-Temperature Stability of SiC-Based Composites in High-Water-Vapor-Pressure Environments. Journal of the American Ceramic Society. 2003, 86(8): 1272-1281
    
    237 M. J. Verrilli and L. C. Martin, D. N. Brewer. RQL Sector Rig Testing of SiC/SiC Combustor Liners. NASA/TM-2002-211509
    
    238 National Materials Advisory Board, National Research Council. Materials Science and Engineering for the 1990s: Maintaining Competitiveness in the Age of Materials. National Academy Press, Washington D C, 1989: 19-34
    
    239 G. B. Olson. Designing a New Material World. Science. 2000, 288: 993-998
    
    240 G. B. Olson. Computational Design of Hierarchically Structured Materials. Science. 1997,277: 1237-1242
    
    241 G. Thomas, M. Gopal. Electron Microscopy and Microanalysis of Advanced Materials.Journal of the European Ceramic Society. 1998, 18(9): 1227-1234
    
    242 M. Ruhle. Microscopy of Structural Ceramics. Advanced Materials. 1997, 9(3): 195-217
    
    243 D. E. Newbury, D. B. Williams. The Electron Microscope: The Materials Characterization Tool of the Millennium. Acta Materialia. 2000, 48(1): 323-346
    
    244 S. Phil. Microstructural Engineering of Materials. Science. 1997, 277: 1183
    
    245 G. Boitier, J. Vicens, J. L. Chermant. Microstructure of C_f-SiC Composites. In: M. Fuentes, et al, eds. Ceramic and Metal Matrix Composites, CMMC96, Trans Tech Pub, Key Engineering Materials. 1996, Vols. 127-131: 777-784
    
    246 J. -F. Despres, M. Monthioux. Mechanical Properties of C/SiC Composites as Explained from their Interfacial Features. Journal of European Ceramic Society. 1995, 15(3): 209-224
    
    247 O. Dugne, S. Prouhet, R. Naslain, et al. Interface Characterization by TEM, AES and SIMS in Tough SiC (ex-PCS) Fiber-SiC (CVI) Matrix Composites with a BN Interphase. Journal of Materials Science. 1993, 28(13): 3409-3422
    
    248 M. Leparoux, et al. The Interphase and Interface Microstructure and Chemistry of Isothermal/Isobaric Chemical Vapor Infiltration SiC/BN/SiC Composites: TEM and Electron Energy Loss Studies. Journal of Materials Science. 1997, 32(17): 4595-4602
    
    249 S. Jacques, A. Guette, X. Bourrat, et al. Characterization of SiC/C(B)/SiC Microcomposites by Transmission Electron Microscopy. Journal of Materials Science. 1997, 32(11): 2969-2975
    
    250 T. Shibayama, G. W. He, et al. Environmental Effects of Microstructural Stability in SiC/SiC Composites. Ceramic Engineering and Science Proceedings. 1999, 20(4): 161-167
    
    251 K. A. Appiah, Z. L. Wang, W. J. Lackey. Characterization of Interfaces in C Fiber- Reinforced Laminated C-SiC Matrix Composites. Carbon. 2000, 38(6): 831-838
    
    252 M. H. Lewis, V. S. R. Murthy. Microstructural Characterization of Interfaces in Fibre- Reinforced Ceramics. Composites Science and Technology. 1991, 42(1-3): 221-249
    
    253 D. P. Stinton, B. W. Sheldon, T. M. Besmann, et al. Matrix Characterization of Fibre-Reinforced Matrix Composites Fabricated by Chemical Vapour Infiltration. Journal of Materials Science. 1995, 30(17): 4279-4285
    
    254 F. Abbe, J. Vicens, J. L. Chermant. Creep Behavior and Microstructural Charaterization of A Ceramic Matrix Composite. Journal of Materials Science Letter. 1989, 8(9): 1026-1028
    
    255 G. Boitier, J. Vicens, J. L. Chermant. Tensile Creep Results on a C_f-SiC Composite. Scripta Materials. 1997,37(12): 1923-1929
    256 G. Boitier, J. Vicens, J. L. Chermant. Microstructure and Creep of 2.5D C_f-SiC Composite. Journal of the European Ceramic Society. 1998, 18(13): 1835-1843
    257 G. Boitier, J. Vicens, J. L. Chermant. Carbon Fiber 'Nanocreep' in Creep-Tested C_f-SiC Composites. Scripta Materials. 1998; 38(6): 937-943
    258 G. Boitier, J. L. Chermant, Vicens J. Bridging at the Nanometric Scale in 2.5D C_f-SiC Composites. Applied Composite Materials. 1999, 6(5): 279-287
    259 M. Backhaus-Ricoult, N. Mozdzierz. Two-Dimensional SiC-C-SiC(O) Fibre Composite, Part Ⅰ: Microstructural Evolution at High Temperature in Different Atmospheres. Journal of Materials Science. 1995, 30(13): 3487-3500
    260 张长瑞,陈朝辉,周新贵等.先驱体转化法制备碳纤维增强碳化硅复合材料的研究.复合材料学报.1994,11(3):26-32
    261 何新波,张长瑞,周新贵等.先驱体转化—热压烧结法制备Cf/SiC复合材料.宇航材料工艺.1999,(6):16-21
    262 闫联生,邹武,宋麦丽等.3D C/SiC复合材料的孔隙率与性能的关系.炭素技术.1999,105(S1):11-13
    263 徐永东.三维碳/碳化硅复合材料的制备与性能.西北工业大学博士论文.1996
    264 尹洪峰.LPCVI-C/SiC复合材料结构与性能的研究.西北工业大学博士论文.2000
    265 游常.碳/碳化硅复合材料的制备及防氧化涂层研究.西北工业大学硕士论文.2000
    266 L. T. Zhang, L. F. Cheng, Y. D. Xu. Progress of Continuous Fiber Reinforced Silicon Carbide Composites. Rare Metal Materials and Engineering. 2001, 30(Suppl.): 313-318
    267 哈尔滨工业大学,西北工业大学,北京理工大学编写.国家重大基础研究项目论证书.2000
    1 哈尔滨工业大学,西北工业大学,北京理工大学编写.国家重大基础研究项目论证书.2000
    2 西北工业大学.国家重大基础研究项目总结报告.2005.8
    3 国防科学技术工业委员会.国防科学技术成果鉴定证书:航空发动机热结构材料环境性能实验模拟平台.西北工业大学,2004年12月25日
    4 殷小玮.3D C/SiC复合材料的环境氧化行为.西北工业大学博士学位论文.2001
    5 栾新刚.高温腐蚀环境SiC-C/SiC的性能演变规律与损伤机理.西北工业大学硕士学位论文.2002
    6 杜双明.3D-C/SiC复合材料疲劳行为的研究.西北工业大学博士学位论文.2003
    7 杨忠学.3D-C/SiC的高温拉伸蠕变性能.西北工业大学硕士学位论文.2002
    8 F. Christin. PhD Thesis, No. 641. Universite de Bordeaux 1, 1979.
    9 F. Christin, R. Naslain, J. J. Chonry, et al. Piece Poreuse Carbonee Densifiee In-Situ par Depot Chimique en Phase Vapeur de Materiaux Refractaires Aurtes que le CARBone et Procede de Fabrication. French Patent, 77/26979, September 1977
    10 E. Fitzer, R. Gadow. Fiber-reinforced Silicon Carbide. American Ceramic Society Bulletin. 1986, 65(2): 326-335
    11 D. P. Stinton, A. J. Caputo, R. A. Lowden. Synthesis of Fiber-Reinforced SiC Composites by Chemical Vapor Infiltration. American Ceramic Society Bulletin. 1986, 65(2): 347-350
    12 A. J. Caputo, R. A. Lowden, D. P. Stinton. Fiber-Reinforced SiC Composites by Chemical Vapor Infiltration. DOE/OR/21400-T10, DE85 015587
    13 R. Naslain. CVI-Composites. In: R. Warren, ed. Ceramic Matrix Composites. Glasgow: Blackie. 1992: 199-244
    14 J. Chin. Application of Vapor Deposition Technology to the Development of Ceramic-Matrix Composites. In: K. S. Mazdiyasni, ed. Fiber Reinforced Ceramic Composites: Materials, Processing and Technology. Noyes Publications, Park Ridge, New Jersey. 1990: 342-396
    15 W. J. Lackey, T. L. Starr. Fabrication of Fiber-Reinforced Ceramic Composites by Chemical Vapor Infiltration: Processing, Structure and Properties. In: K. S. Mazdiyasnl, ed. Fiber Reinforced Ceramic Composites: Materials, Processing and Technology. Noyes Publications,
    ? Letters. 1998, 17(24): 2047-2049
    27 K. M. Prewo, J. J. Brennan, G. K. Layden. Fiber Reinforced Glasses and Glass-Ceramics for High Performance Applications. American Cermaic Society Bulletin. 1986, 65(2): 305-313, 322
    28 N. Nakano, A. Kamiya, K. Sasaki, et al. Microstructure of Carbon Fiber Reinforced Silicon Carbide and Silicon Nitride Composites. In: Proc. HT-CMC-1 Conf., High Temperature Ceramic Matrix Composites. R. Naslain, J. Lamon and D. Doumeingts, eds. Woodhead Publishing, Abington-Cambridge, UK. 1993: 413-420
    29 A. Kohyama, S. -M. Dong and Y. Katoh. Development of SiC/SiC Composites by Nano-lnfiltration and Transient Eutectic(NITE) Process. Ceramic Engineering and Science Proceedings. 2000, 21: 311-318.
    30 K. Igashira, K. Nishio, T. Suemitsu. Development of the Combustor Liner Composed of Ceramic Matrix Composites(CMCs). In: Proc. ECCM-8 Conf., I. Crivelli-Visconti, ed. Woodhead Publishing, Abington-Cambridge, UK. 1998: vol. 4: 39-46
    31 K. Suzuki, S. Kume, T. W. Chou, et al. Fabrication and Characterization of 3D-C/SiC Composites via Slurry and PCVI Joint Process. Key Engineering Materials. 1999, 164-165: 113-116
    32 R. R. Naslain. Processing of Ceramic Matrix Composites. Key Engineering Materials. 1999, 164-165: 3-8
    33 R. Naslain. Materials Design and Processing of High Temperature Ceramic Matrix Composites: State of the Art and Future Trends. Advanced Composite Materials. 1999, 8(1): 3-16
    34 R. Naslain. Design, Preparation and Properties of Non-Oxide CMCs for Application in Engines and Nuclear Reactors: An Overview. Composites Science and Technology. 2004, 64(2): 155-170
    35 R. L. Bickerdike, A. R. G. Brown, G. Hughes, et al. In: S. Mrozowski, M. C. Studebaker, P. L. Walker, eds. Proc. Fifth Conf. on Carbon, Pergamon Press, New York. 1962, Vol.1: 575-582
    36 徐永东.二维碳/碳化硅复合材料的制备与性能.西北工业大学博士论文.1996
    37 尹洪峰.LPCVI-C/Sic复合材料结构与性能的研究.西北工业大学博士论文.2000
    38 L. F. Cheng, L. T. Zhang, Q. Zhang, et al. Effect of Heat Treatment on the Thermal Expansion of 2D and 3D C/SiC Composites from Room Temperature to 1400℃. Carbon. 2002, 41 (8): 1666-1670
    39 徐翔星.C/SiC陶瓷基复合材料的X射线无损检测研究.西北工业大学硕士论文.2003
    40 J. -P. Donnet, T. K. Wang, J. C. M. Peng, et al, eds. Carbon Fibers: Third Edition, Revised and Expanded. Marcel Dekker, Inc, New York, 1998.
    41 L. H. Peebles, Jr. Carbon Fibers: Structure and Mechanical Properties. International Materials Reviews. 1994, 39(2): 75-92
    42 F. Lamouroux, X. Bourrat, R. Naslain, et al. Structure/Oxidation Behavior Relationship in the Carbonaceous Constituents of 2D-C/PyC/SiC Composites. Carbon. 1993, 31(8): 1273-1288
    1 F. Lamouroux, G. Camus, J. Thebault. Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites: I, Experimental Approach. Journal of the American Ceramic Society.1994, 27(8): 2049-2057
    
    2 F. Lamouroux, R. Naslain, J. -M. Jouin. Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites: II, Theoretical Approach. Journal of the American Ceramic Society. 1994, 77(8): 2058-2068
    
    3 F. Lamouroux, X. Bourrat, R. Naslain, et al. Structure/Oxidation Behavior Relationship in the Carbonaceous Constituents of 2D-C/PyC/SiC Composites. Carbon. 1993, 31(8): 1273-1288
    
    4 F. Lamouroux, G. Camus. Oxidation Effects on the Mechanical Properties of 2D Woven C/SiC Composites. Journal of the European Ceramic Society. 1994, 14(2): 177-188
    
    5 R. Naslain, A. Guette, F. Rebillat, et al. Oxidation Mechanisms and Kinetics of SiC-Matrix Composites and Their Constituents. Journal of Materials Science. 2004, 39(24): 7303-7316
    
    6 L. Filipuzzi, G. Camus, R. Naslain, et al. Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: I, An Experimental Approach. Journal of the American Ceramic Society. 1994, 77(2): 459-466
    
    7 L. Filipuzzi, R. Naslain. Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modelling. Journal of the American Ceramic Society. 1994, 77(2): 467-480
    
    8 M. Backhaus-Ricoult, N. Mozdzierz. Two-Dimensional SiC-C-SiC(O) Fibre Composite, Part I: Microstructural Evolution at High Temperature in Different Atmospheres. Journal of Materials Science. 1995, 30(13): 3487-3500
    
    9 T. Ishikawa. Recent Developments of the Fiber Nicalon and its Composites, including Properties of the SiC Fibers Hi-Nicalon for Ultra-Temperature. Composites Science and Technology. 1994,51(2): 135-144
    
    10 L. F. Cheng, L. T. Zhang, X. W. Yin, et al. Oxidation Behavior of Three-Dimensional SiC/SiC Composites in Air and Combustion Environment. Composites, Part A. 2000, 31(9):1015-1020
    
    11 T. Ishikawa, Y. Kohtoku, K. Kumagawa, et al. High-Strength Alkali-Resistant Sintered SiCFibre Stable to 2200℃. Nature. 1998, 391: 773-775
    12 T. Ishikawa, S. Kajii, K. Matsunaga, et al. A tough, Thermally Conductive Silicon Carbide Composite with High Strength up to 1600℃ in Air. Science. 1998, 282: 1295-1297
    13 H. -P. Baldus, M. Jansen. Novel High-Performance Ceramics—Amorphous Inorganic Networks from Molecular Precursors. Angewandte Chemie International Edition in English. 1997, 36: 328-343
    14 P. Baldus, M. Jansen, D. Sporn. Ceramic Fibers for Matrix Composites in High-Temperature Engine Applications. Science. 1999, 285: 699-703
    15 G. -B. Zheng, H. Sano, Y. Uchiyama, et al. Effect of Boron Addition on Oxidation Resistance of Carbon Fiber Polycarbosilane-Derived SiC Composites. Journal of Materials Science Letters. 1998, 17(24): 2047-2049
    16 F. Lamouroux, S. Bertrand, R. Naslain, et al. Oxidation-Resistant Carbon-Fiber-Reinforced Ceramic-Matrix Composites. Composites Science and Technology. 1999, 59(7): 1073-1085
    17 G. Farizy, J. L. Chermant, J. C. Sangleboeuf, et al. SiC_f-SiBC Composites: Microstructural Investigations of the As-Received Material and Creep Tested Composites under an Oxidative Environment. Journal of Microscopy. 2003, 210(Pt 2): 176-186
    18 殷小玮.3D C/Sic复合材料的环境氧化行为.西北工业大学博士学位论文.2001
    19 J. D. Webster, et al. Oxidation Protection Coatings for C/SiC Based on Yttrium Silicate. Journal of the European Ceramic Society. 1998, 18(16): 2345-2350
    20 S. Bertrand, R. Pailler and J. Lamon. SiC/SiC Minicomposites with Nanoscale Multilayered Fibre Coatings. Composites Science and Technology. 2001, 61(3): 363-367
    21 C. Droillard. Elaboration and Characterization of SiC-Matrix Composites with C/SiC Multilayered Interphases. PhD Thesis. No.913, University of Bordeaux, France, 19 June 1993 (in French).
    22 F. Heurtevent. Nanoscale (PyC/SiC), Multilayered Interphases—Application as Interphase in Thermostructural Composites. Phd Thesis, No. 1476, University of Bordeaux, France, 29 March 1996 (in French).
    23 S. Goujard, L. Vandenbulcke and H. Tawil. The Oxidation Behavior of Two-and Three-Dimensional C/SiC Thermostructural Materials Protected by Chemical-Vapor-Deposition Polylayers Coatings. Journal of Materials Science. 1994, 29(23): 6212-6220
    ?
    ?
    49 D. S. Fox, J. L. Smialek. Burner Rig Hot Corrosion of Silicon Carbide and Silicon Nitride. Journal of the American Ceramic Society. 1990, 73(2): 303-311
    50 L. F. Cheng, Y. D. Xu, L. T. Zhang, et al. Oxidation Behavior of Three-Dimensional C/SiC Composites in Air and Combustion Gas Environment. Carbon. 2000, 38: 2103-2108
    51 L. F. Cheng, Y. D. Xu, L. T. Zhang, et al. Effect of Carbon Interlayer on Oxidation Behavior of C/SiC Composites with a Coating from Room Temperature to 1500℃. Materials Science and Engineering A. 2001, 300(1-2): 219-225
    52 L. F. Cheng, Y. D. Xu, L. T. Zhang, et al. Effect of Glass sealing on the Oxidation Behavior of Three-Dimensional C/SiC Composites in Air. Carbon. 2001, 39(8): 1127-1133
    53 L. P. Zawada, J. Staehler, S. Steel. Consequence of Intermittent Exposure to Moisture and Salt Fog on the High-Temperature Fatigueduability of Several Ceramic-Matrix Composites. Journal of the American Ceramic Society. 2003, 86(8): 1282-91
    54 S. Y. Lee, Y. S. Park, P. P. Hsu, et al. Synergistic Effects of Water Vapor and Alkali Chloride Vapors on the High-Temperature Corrosion of SiC-Based Ceramics. Journal of the American Ceramic Society. 2003, 86(8): 1292-1298
    55 哈尔滨工业大学,西北工业大学,北京理工大学编写.国家重大基础研究项目论证书.2000
    56 H. A. Wriedt. O-Si. Bulletin of Alloy Phase Diagrams. 1990, 11(1): 2915-2918
    57 栾新刚.高温腐蚀环境SiC-C/SiC的性能演变规律与损伤机理.西北工业大学硕士学位论文.2002
    58 F. Lamouroux. Behavior of 2D C/SiC Composites in an Oxidizing Environment. PhD Thesis, No 860, University of Bordeaux, March 1992
    59 J. -P. Donnet, T. K. Wang, J. C. M. Peng, et al, eds. Carbon fibers: Third Edition, Revised and Expanded. Marcel Dekker, Inc, New York, 1998
    ?
    ? (9-10): 261-273
    
    24 J. L. Chermant, G. Boitier, et al. The Creep Mechanism of Ceramic Matrix Composites at Low Temperature and Stress, by a Material Science Approach. Journal of the European Ceramic Society. 2002, 22(14-15): 2443-2460
    
    25 G. Boitier, J. Vicens, J. L. Chermant. Microstructure and Creep of 2.5D C_f-SiC Composites.Journal of the European Ceramic Society. 1998, 18(13): 1835-1843
    
    26 G. Boitier, J. Vicens, J. L. Chermant. Carbon Fiber Nanocreep' in Creep-Tested C_f-SiC Composites. Scripta Materials. 1998, 38(6): 937-943
    
    27 G. Boitier, J. Vicens, J. L. Chermant. Understanding the Creep Behavier of a 2.5D C_f-SiC Composite, I. Morphology and Microstructure of the As-Received Material. Materials Science and Engineering A. 2000, 279(1-2): 73-80
    
    28 G. Boitier, J Vicens, J. L. Chermant. Understanding the Creep Behavier of a 2.5D C_f-SiC Composite, II. Experimental Specifications and Macroscopic Mechanical Creep Responses.Materials Science and Engineering A. 2000, 289(1-2): 265-275
    
    29 G. Boitier, J. Vicens, J. L. Chermant. Understanding the Creep Behavier of a 2.5D C_f-SiC Composite, III. From Mesoscale to Nanoscale Microstructural and Morphological Investigation towards Creep Mechanism. Materials Science and Engineering A. 2001, 313:53-63
    
    30 J. Cook, J. E. Gordon. A Mechanism for the Control of Crack Propagation in All-Brittle Systems. Proceedings of the Royal Society of London A. 1964, 282: 508-520
    
    31 J. E. Gordon. The New Science of Strong Materials. London: Penguim. 1968
    
    32 J. W. Hutchinson, H. M. Jenson. Models of Fiber Debonding and Pullout in Brittle Composites with Friction. Mechanics of Materials. 1990, 9(2): 139-163
    
    33 G. Bao, Z. Suo. Remarks on crack bridging concepts. Applied Mechanics Review. 1992, 45:355-366
    
    34 A. Burr, F. Hild, F. A. Leckie. Continuum Description of Damage in Ceramic-Matrix Composites. European Journal of Mechanics A-Solids. 1996,
    
    35 S. Baste. Inelastic Behavior of Ceramic-Matrix Composites. Composites Science and Technology. 2001, 61(15): 2285-2297
    
    36 F. Abbe, et al. Creep Behavior and Microstructural Characterization of a Ceramic Matrix Composite. Journal of Materials Science Letter. 1989, 8(9): 1026-1028
    37 N. Chawla, et al. The Role of Interracial Coatings on the High Frequency Fatigue Behavior of Nicalon/C/SiC Composites. Scripta Materialia. 1996, 35(12): 1411-1416
    38 S. Pasquier, J. Lamon, R. Naslain. Tensile Static Fatigue of 2D SiC/SiC Composites with Multilayered (PyC-SiC)_(n) Interphases at High Temperatures in Oxidizing Atmosphere. Composites, Part A. 1998, 29(9-10): 1157-1164
    39 P. Reynaud. Cyclic Fatigue of Ceramic-Matrix Composites at Ambient and Elevated Temperatures. Composites Science and Technology. 1996, 56(7): 809-814
    40 H. Z. Shah, P. Pluvinage, A. Parvizimajidi, T. W. Chou. Damage Mechanics of 2-Dimensional Woven SiC/SiC Composites. Journal of Engineering Materials and Technology—Transactions of the ASME. 1994, 116(3): 403-407
    41 F. Macdonald, D. Coon. Monte Carlo Simulation of the Effect of Fiber Characteristics on Creep Life of a Fiber Tow. Journal of Materials Science. 2001, 36(7): 1681-1684
    42 V. Kostopoulos, L. Vellios, et al. Fatigue Behavior of 3D-SiC/SiC Composites. Journal of Materials Science. 1997, 32(1): 215-220
    43 O. Unal. Cyclic Tensile Stress-Strain Behavior of SiC/SiC Composites. Journal of Materials Science Letters. 1996, 15(9): 789-791
    44 V. Kostopoulos, et al. Fatigue Damage Accumulation in 3-Dimensional SiC/SiC Composites. Journal of the European Ceramic Society. 1999, 19(2): 207-215
    45 N. Miriyala, P. K. Liaw, et al. Fatigue Behavior of Continuous Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures. ymposium Proceedings in Honor of Prof. Paris P C, Materials Week '97, Indianapolis, Sept. 14-18, 1997: 533-552
    46 杜善义,王彪编著.复合材料细观力学.科学出版社,1998
    47 B. N. Cox, F. W. Zok. Advances in Ceramic Composites Reinforced by Continuous Fibers. Current Opinion in Solid State & Materials Science. 1996, 1(5): 666-673
    48 哈尔滨工业大学,西北工业大学,北京理工大学编写.国家重大基础研究项目论证书.2000
    49 G. Boitier, J. L. Chermant, J. Vicens. Bridging at the Nanometric Scale in 2.5D C_f-SiC Composites. Applied Composite Materials. 1999, 6(5): 279-287
    50 K. K. Chawla, C. Coffin, Z. R. Xu. Interface Engineering in Oxide Fibre/Oxide Matrix Composites. International Materials Reviews. 2000, 45(5): 165-189
    
    51 V. Gupta, J. Yuan, D. Martinez. Calculation, Measurement, and Control of Interface Strength in Composites. Journal of American Ceramic Society. 1993, 76(2): 305-315
    1 西北工业大学.国家重大基础研究项目总结报告.2005.8
    2 D. Han, S. Qiao, M. Li, et al. Relationship between Mass Change and Modulus Decrease after Thermo-Exposure for 2D-C/SiC. Unpublished..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700