靶场强激光频率变换及传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带激光在惯性约束聚变(ICF)激光驱动器靶场系统中的频率转换及传输特性是ICF研究中的一个重要内容,本论文具体针对这方面的问题展开了系统的研究,主要内容包括:
     1)高强度谐波转换物理模型的建立及数值仿真软件的开发
     建立了较为全面的高强度谐波转换的物理模型,详细考虑了近轴衍射、离散效应、群速度失配、三阶非线性效应(自相位调制和交叉相位调制效应)、入射基频光的振幅和位相变化、晶体吸收和表面反射等在内的诸多因素的影响,编写了相应的数值模拟程序。利用美国LLNL的理论及实验结果对该程序进行了大量的验证工作,证实其正确性和可靠性。在此基础上,开发了功能较为全面的、具有可视化界面的高强度三倍频数值仿真软件。
     该软件的开发,为谐波转换实验结果的分析以及谐波转换方案的优化提供了便捷、可靠的模拟平台。将该软件用于中国工程物理研究所神光Ⅲ原型装置2004~2005年的首束达标实验结果的分析,取得了较好的效果。
     2)高强度纳秒脉冲宽带激光频率转换的研究
     针对Ⅰ/Ⅱ/Ⅱ类角度失谐匹配方式的晶体级联三倍频,分析了影响三倍频光谱及转换效率的因素;提出了一种新的采用Ⅰ/Ⅱ/Ⅰ类角度失谐匹配方式的晶体级联三倍频方案,分析了入射基频光强度和带宽以及晶体厚度对三倍频转换效率的影响,并对晶体参数进行了优化;分析了采用光谱角色散(ASD)方法实现宽带倍频的原理,指出了传统的ASD方式的局限性,提出了非共线的ASD和频方式,并对光栅角色散率进行了优化设计。采用非共线ASD和频方式的优点在于适用带宽范围大、三倍频转换效率较高并且方案简单。
     高强度纳秒脉冲宽带激光是发展时间光束匀滑技术的基础,同时,宽带激光可抑制大口径激光器件中的有害非线性效应、避免大口径元件的破坏、改善光束的近场均匀性。因此,系统地研究高强度纳秒脉冲宽带激光的频率转换,对于ICF的研究具有重要的意义。
     3)高强度飞秒脉冲激光频率转换的理论及实验研究
     对采用KDP晶体的Ⅰ类及Ⅱ类角度失谐匹配方式的高强度飞秒脉冲二倍频过程进行了理论研究。首次在国内针对脉冲宽度(FWHM)30fs、能量30~150mJ、中心波长800nm的飞秒脉冲,采用厚度为1mm的KDP晶体进行了Ⅰ类二倍频实验,获得了10%左右的二倍频转换效率。对实验结果进行了理论分析,讨论了基频光初始频率啁啾、光强调制、位相畸变以及三阶非线性效应等因素对二倍频光转换效率及频谱宽度的影响。在此基础上,进一步提出了飞秒脉冲二倍频实验的改进措施。
     此外,还对高强度飞秒脉冲单块BBO晶体产生三倍频的过程进行了理论及实验研究。定量分析比较了单块晶体中三阶非线性效应以及级联二阶非线性效应对三倍频转换效率的作用,讨论了入射基频光光强、晶体厚度、非线性相位调制、群速度失配、失谐角、方位角等因素对三倍频光转换效率、时间波形以及光谱分布的影响。首次在国内针对脉冲宽度100fs、带宽25nm、能量为6mJ左右的超短脉冲基频光,采用单块BBO晶体进行了三倍频实验研究,获得了接近1%的三倍频转换效率。
     由于超短脉冲紫外光不仅可作为探针光使用,而且,高强度紫外超短激光作为ICF“快点火”的点火驱动器具有独特优势,因此,对高强度飞秒脉冲激光频率转换的研究具有重要意义。
     4)频率转换过程的逆问题研究
     首次提出了解决频率转换过程逆问题的数值计算方法。该算法基于分步傅立叶变换和四阶R—K法,通过迭代计算,可在已知输出三倍频光以及谐波转换器参数的情况下,计算得到相应的输入基频光参数。分别针对空间光强分布为高斯、超高斯形状、时间分布为整形脉冲的平面波、有一定空间位相调制的窄带三倍频、有一定时间位相调制及线性频率啁啾的宽带三倍频以及飞秒脉冲二倍频的逆问题进行了数值计算。迭代计算的效率较高并且结果较为准确。
     频率转换过程逆问题数值计算方法的提出,为ICF系统频率转换过程的优化设计提供一种新的思路和途径。
     5)靶场系统中的非线性效应研究
     采用Maxwell-Bloch-Langevin方程来描述强激光的受激拉曼散射效应。针对强激光在空气中长程传输时所产生的受激旋转拉曼散射(SRRS)效应,分析了基频及三倍频泵浦光的光强调制、位相调制以及带宽等因素对阈值条件及光束质量的影响,提出了抑制SRRS效应的方法。同时,针对大口径KDP晶体中三倍频光的横向受激拉曼散射(TSRS)效应,分别讨论了短脉冲(1ns)及长脉冲(3ns)条件下,泵浦光光强、增益系数及带宽对斯托克斯光转换的影响。
     运用修正的非线性薛定谔方程,针对熔石英介质中强紫外激光自聚焦的强弱、位置与强紫外激光光强调制和位相畸变的关系开展了定量分析,对熔石英介质中强紫外激光产生非线性自聚焦效应的阈值条件定义做了补充。此外,结合实验过程中的实际情况,对靶室的石英窗口及打靶的聚焦透镜出现的破坏现象,采用自聚焦原理进行了分析,并提出了避免产生破坏的方法。
     对靶场系统中非线性效应的研究,有利于改善三倍频光光束质量、减小高强度激光对靶场光学元件的破坏风险,具有重要的意义。
     6)宽带倍频光的光束匀滑及聚焦特性的研究
     对光束匀滑方法进行了总结和比较,针对时间位相调制宽带激光以及啁啾脉冲宽带激光,对采用角谱色散束匀滑(SSD)方案进行了数值模拟和讨论。
     靶面均匀辐照是实现ICF必不可少的条件,还有利于提高靶丸压缩比,从而降低对激光能量的要求。对宽带倍频光的光束匀滑及聚焦特性的研究,可为实现靶面均匀辐照提供参考。
The study on the properties of the harmonic generation and the propagation of the broadband laser in the final optical system is one of the important contents in the research of Inertial Confined Fusion (ICF). Detailed and systematical studies on the above mentioned aspects are carried on in this thesis. The main contents are as follows.
     1) Establishment of the physical model for harmonic generation of high-intensity laser and development of the numerical simulation code with visual interface
     The physical model for harmonic generation of high-intensity laser was built up, which included the effect of the paraxial diffraction, the spatial and temporal walk-off, the third-order nonlinear effect including the self- and cross-phase modulation, the amplitude and the phase of the input fundamental field, the absorption and the reflection of the harmonic generation crystals, etc. The corresponding numerical simulation code with visual interface was developed and verified by comparing with the theoretical and experimental results of the Lawrence Livermore National Laboratory (LLNL), showing the validity and reliability of our code.
     The development of our code provides a convenient and reliable platform for the analyzing of the experimental results and the optimizing of the schemes of harmonic generation experiment. Our code has been used to analysis the experimental results obtained in CEPA and the numerical results achieved good agreement with the experiment results.
     2) Study on the harmonic generation of the nanosecond high-intensity broadband laser
     The factors, which affected the spectrum and the conversion efficiency of the broadband third harmonic field with cascaded crystals of type I/II/II, were analyzed. A new scheme with cascaded crystals of type I/II/I was proposed and optimized, and the effects of the intensity and the bandwidth of the input fundamental field on the conversion efficiency were discussed. The principle of the broadband harmonic generation with the traditional technology of angular spectrum dispersion was analyzed and the limitation of the technology was pointed out. An improved and simpler method of non-collinear angular spectrum dispersion, which is suitable for the larger bandwidth, was presented and optimized.
     The nanosecond high-intensity broadband laser is the basis of the beam smoothing technology in temporal domain. Moreover, broadband laser has advantages in controlling the harmful nonlinear effects, avoiding the damage of the optical elements with large aperture and improving the uniformity of the laser beam. Therefore, studies on the harmonic conversion of the nanosecond high-intensity broadband laser are of great importance in the ICF research.
     3) Study on the harmonic generation of the femtosecond high-intensity broadband laser
     The second harmonic generation of high-intensity femtosecond broadband laser with a type I KDP crystal or a type II KDP crystal was analyzed theoretically. The experiment of the second harmonic generation of the femtosecond laser with the center wavelength of 800nm, the pulse width (FWHM) of 30fs and the pulse energy of 30~150mJ by using a type I KDP crystal with the thickness of 1mm was carried out for the first time in China. The conversion efficiency of about 10% was achieved. The experimental results were analyzed and the effects of the initial frequency chirp and the modulations of the intensity and the phase of the fundamental field, as well as the third-order nonlinear effect on the conversion efficiency and the bandwidth of the second harmonic field were discussed. Consequently, the method to improve the conversion efficiency and the bandwidth of the second harmonic field was proposed.
     Theoretical and experimental studies on the third harmonic generation of the high-intensity femtosecond laser with a single BBO crystal were carried out. Comparison of the third-order effect and the cascaded second-order effect in the third harmonic generation was made. The effects of the intensity of the fundamental field, the thickness of the crystal, the nonlinear phase modulation, the temporal walk-off, the detuned angle and the azimuth angle on the conversion efficiency, the pulse shape and the spectrum were discussed. The corresponding experiment was performed for the femtosecond laser with center wavelength of 800nm, the pulse width (FWHM) of 100fs, the bandwidth is 25nm and the pulse energy of about 6mJ by using a single BBO crystal. The conversion efficiency of nearly 1% was achieved.
     Because the ultra-short UV laser can be used as the probe light and has distinctive advantages in "fast-ignition" in ICF, studies on the frequency conversion of the high-intensity femtosecond laser are very important.
     4) Study on the inverse problem of harmonic generation
     A method for solving the inverse problem of harmonic generation was proposed for the first time based on the split Fourier transformation, the forth-order Runge-Kutta method and the iterative method, namely, to determine the characterization of input fundamental field and the requirement for KDP from the required characterization of output tripling field. The inverse problems of third harmonic generation of the narrowband laser and the broadband laser, and of the second harmonic generation of the femtosecond laser were studied. The calculation efficiency of the iteration method and the accuracy of the calculation results are both high.
     The proposed method for solving the inverse problem of harmonic generation provides a new way of optimizing the frequency conversion process.
     5) Study on the nonlinear effects in the final optical system
     Based on the Maxwell-Bloch-Langevin equations, the stimulated rotational Raman scattering (SRRS) of the high-intensity laser in long air path was discussed. The effects of the modulations of the intensity and the phase and the bandwidth of the fundamental and the third harmonic pump fields on the threshold condition of SRRS effect and the beam quality of laser were analyzed. Consequently, the methods for controlling the SRRS effect were proposed. Furthermore, the transverse stimulated Raman scattering (TSRS) in KDP crystal with large aperture was also studied. The effects of the intensity, the gain coefficient and the bandwidth of the pump field with the pulse width of 1ns and 3ns on the conversion of the Stokes field were discussed.
     Based on the modified nonlinear Schrodinger equations, the relationship between the intensity and the location of the self-focusing and the modulations of the intensity and the phase of the high-intensity ultraviolet laser in fused silica was analyzed quantitatively. The definition of the threshold condition of the self-focusing effect for ultraviolet laser was supplemented. The theory of the self-focusing was used to explain the damage of the silica window and the focusing lens in the target chamber in the experiment, and the solution was also presented.
     The study on the nonlinear' effects in the final optical system has important significance in improving beam quality and diminishing the damage risk of the optical components in the final optical system.
     6) Study on the beam smoothing and the focusing properties of the broadband harmonic field
     The beam smoothing techniques were summarized and compared. Numerical simulations of smoothing method for the broadband laser with temporal phase modulation and frequency chirp by using spectrum dispersion were carried out and analyzed.
     Uniformed irradiation on the target is an essential condition to realize the ICF ignition and has advantages in increasing the compress ratio of the target and decreasing the requirement of laser energy. The study on the beam smoothing and the focusing properties of the broadband harmonic field can provide valuable reference to the experiment.
引文
1.1 钟和清.激光热核聚变能源系统研究.华中科技大学博士学位论文,2004,p5.
    1.2 张杰.浅谈惯性约束核聚变.物理,1999,28(9):142~152.
    1.3 The National Ignition Facility: An Overview. E&TR, December, 1994, p1~6.
    1.4 The role of NIF in developing Inertial Fusion Energy. E&TR, December, 1994, p33~42.
    1.5 Y. Kitagawa, H. Fujita, R. Kodama, et al. Prepulse-Free Petawatt Laser for a Fast Ignitor. IEEE J. Quantum Electron., 2004, 40 (3): 281-293.
    1.6 Chiyoe Yamanaka. The Prospect of Laser Fusion in 21st Century. Proc of SPIE, 2001, 4424: 51~58.
    1.7 D.M. Pennington J. A. Britten J. L. Miller, et al. The Petawatt Laser System. UCRL-LR-105821-97-4:230~238.
    1.8 M.L. Andre, Status of the LMJ project, Prec. of SPIE, 1997, 3047, 38~41
    1.9 J.A. McMordie. Conceptual design of the National Ignition Facility, Prec. of SPIE, 1995, 2633, 2~12
    1.10 G A. Kirillov. Development of a high-power 300-kJ neodymium laser, Proc. of SPIE 1997, 3047: 43~53.
    1.11 Peng H S, Zhang X M, Wei X,F, et al., Status of the SG-Ⅲ solid state laser project. Prec. of SPIE, 1998, 3492: 25~33
    1.12 彭翰生,张小民,范滇元.高功率固体激光装置的发展与工程科学问题.中国工程科学,2001,3(3):1-8.
    1.13 彭翰生.超强固体激光及其在前沿学科中的应用(1),中国激光,2006,721~729.
    1.14 蔡希洁,茅建华等.神光装置Φ200mm口径KFP晶体高功率倍频激光装置.中国激光,1994,A21(11):853~859.
    1.15 E. I. Moses. National Ignition Facility: 1.8 MJ, 750 TW ultraviolet laser. Proc, of SPIE, 2004,5341: 13-24
    1.16 P. Wegner, J. Auerbach, T. Biesiada, et al. NIF final optics system: frequency conversion and beam conditioning. UCRL-CONF-155817,2004.
    1.17 P.J.Wegner, M.A.Henesian, et al. . Harmonic conversion of large-aperture 1050nm laser beams for inertial confinement fusion research. Appl. Opt. ,1992,31: 6414-6426.
    1.18 J. M. Auerbach, D. Eimerl, D. Milam et al. . Perturbation theory for electric field amplitude and phase ripple transfer in frequency doubling and tripling. Appl. Opt., 1997, 36(3):606~612.
    1.19 P. W. Milonni, J. M. Auerbach and D. Eimerl. Frequency conversion modeling with spatially and temporally varying beams, Proc, of SPIE, 1997,2622:230- 241.
    1.20 R. E. English, Jr. J. Miller, C. Lauman, et al. . Optical System Desigh. UCRL-LR-105821-97-3,12-124.
    1.21 C. Bibeau, D. R. Speck, R. B. Ehrlich, et al. Power, energy, and temporal performance of the Nova laser facility with recent improvements to the amplifier system. UCRL-JC-105100,1990.
    1.22 B. Van Wonterghem, J.E. Murray, S.C. Burkhart, et al. High fluence 1.05μm performance tests using 20 ns shaped pulses on the Beamlet prototype laser. UCRL-JC-1Z4S65,1996
    1.23 J. M. Auerbach, D. Milam, C. E. Barker, et al. Frequency-Conversion Modeling. ICF quarterly report, 1996,6(4): 199-206.
    1.24 R. L. Hibbard, M. A. Norton, and P. J. Wegner. The design of precision mounts for optimizing the conversion efficiency of KDP crystals for the National Ignition Facility. UCRL-JC-130317,1998
    1.25 M. D. Summers, R. L. Hibbard, L. W. Liou, et al. CAVE: The design of a precision metrology instrument for studying performance of KDP crystals. UCRL-JC-130318,1998
    1.26 A. K. Burnham, R. A. Hawley-Fedder, R. L. Combs, et al. Producing KDP and DKDP crystal for the NIF Laser. UCRL-LR-105821-99-2:135-149
    1.27 M. Runkel, R. Hawley-Fedder, C. Widmayer, et al. A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optics. Proc. of SPIE, 2005, 5991:59912H-1~9
    1.28 P. K. Whitman, S. C. Frieders and J. Fair. Improved antireflection coating for the NIF. UCRL-LR-105821-99-2: 163-176
    1.29 O. Lubin and C. Gouedard. Modeling of the effects of KDP crystals gravity sag on third harmonic generation. Proc. of SPIE, 1999,3492: 802-808
    1.30 M. Webb. Temperature Sensitivity of KDP for Phase-Matched Frequency Conversion of 1 μm Laser Light. IEEE J. Quantum Electron., 1994,30:1934-1942
    1.31 C.E. Barker, J. M. Auerbach, C. H. Adams, et al. National Ignition Facility Frequency Converter Development. UCRL-JC-124856, 1996
    1.32 K. Manka, E. A. McLean, A. N. Mostovych, et al. Laser-target interaction with induced spatial incoherence. Rev. Lett. 1986, 56: 2807-2810.
    1.33 S. Skupsky, R. W. Short, T. Kessler, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. Appl. Phys. 1989, 66: 3456.
    1.34 D. M. Pennington, M. A. Henesian, S. N. Dixit, et al. Effect of bandwidth on beam smoothing and frequency conversion at the third harmonic of the Nova laser. Proc of SPIE, 1870: 175-185.
    1.35 J. R. Murray, J. R. Smith, R. B. Ehrlich, et al. Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components. J. Opt. Soc. Am. B, 1989, 6: 2402-2409.
    1.36 I. N. Ross, k. P. Matouse, H. Geoffrey, et al, Analysis and optimization of optical parametric chirped pulse amplification. J. Opt. Soc. Am. B, 2002, 19 (12): 2945-2956.
    1.37 Microwave Phase Modulators for Smoothing by Spectral Dispersion. LLE Review, 68, 192~209.
    1.38 濮宏图薛泉吴健等,用于光束时间匀滑的谐振腔式相位调制器研究,中国激光,1998,25(2):115~118
    1.39 向勇,袁晓东,徐冰,赵春茁,用于激光等离子体诊断实验的二倍频探针光系统,强激光与粒子束,2000,12(s1):201~204.
    1.40 陶业争,高强度超短脉冲激光与固体等离子体相互作用研究,中国原子能科学研究院博士研究生毕业论文.
    1.41 刘文宾,脉冲压缩中光栅失调及拼接问题的研究,四川大学硕士毕业论文,2005.
    1.42 沈磊,陈绍和,刘百玉,等.利用集成光学技术的新型时间脉冲整形系统.光学学报,2003,23(5):595~603.
    1.43 纪帆,隋展,李锋,等.时域延时多脉冲叠加平滑过程的分析,强激光与粒子束,2006,18(3):401~404.
    1.44 胡正良,胡永明,赵明辉,等.光纤脉冲堆积器的模拟分析.光子学报,2006,35(7):966~969.
    1.45 V. Benjrajka, C. C. Chang, A. W. Emanuel, et al. Pulse shaping of incoherent light by use of a liquid-crystal modulator array. Opt. Lett. 1996, 21 (21): 1756~1758.
    1.46 M.M. Wefers and K. A. Nelson. Programmable phase and amplitude femtosecond pulse shaping.Opt. Lett., 1993,18(23): 2302~2304.
    1.47 M.D. Skeldon, S. T. Bui, S. A. Letzring, et al. Implementation of pulse shaping on the OMEGA laser system. Proc of SPIE, 1992, 162. 246~251
    1.48 S. Matsuoka, N. Miyanaga, A. Ando, et al. Flexible pulse shaping of partially coherent light on GEKKO XII. Proc of SPIE, 1995,2633: 627-633.
    1.49 M. Nakatsuka, N. Miyanaga, T. Kanabe, et al. Partially coherent light source for ICF experiment. Proc of SPIE, 1993,1870:151-162.
    1.50 J. E. Rothen, B. Moran, P. Wegner, et al. . Performance of smoothing by spectral dispersion (SSD) with frequency conversion on the Beamlet laser for the National Ignition Facility," UCRL-JC-128870,1997
    1.51 M. S. Pronko, R. H. Lehmberd, et al. . Efficient second harmonic conversion of broad-band high-peak-power Nd: Glass laser radiation using large-aperture KDP crystals in quadrature. IEEE JQE, 1990,26 (2): 337-347.
    1.52 A. V. Smith, D. J. Armstrong, W. J. Alford. Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals. J. Opt. Soc.B, 1998,15:122-141.
    1.53 D. Eimerl, J. M. Auerbach, C. E. Barker, et al. Multicrystal designs for efficient thire-harmonic generation. Optics Letters, 1997,22 (16):1208~1210.
    1.54 M. Brown. Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs. Opt. lett., 1998,23 (20): 1591-1593.
    1.55 A. Babushkin and R. S. Craxton. Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation. Opt. lett., 1998,23 (12): 927-929.
    1.56 W. J. Alford and A. V. Smith. Frequency-doubling broadband light in multiple crystals. J. Opt. Soc. Am. B, 2001,18 (4): 515-523.
    1.57 Demonstration of dual-tripler, broadband third-harmonic generation and implications for OMEGA and the NIF, LLE Review, 75
    1.58 V. D. Volosov, S. G. Karpenko, et al. . Method for compensating the phase-matching dispersion in nonlinear optics," Sov. J. Quantum Electron, 1975,4:1090-1098.
    1.59 D. M. Pennington, M. A. Henesian, D. Milam, et al. Efficient broadband third harmonic frequency conversion via angular dispersion. Proc of SPIE, 1997,2663:645-654
    1.60 R. W. Short and S. Skupsky, Frequency conversion of broad-bandwidth laser light, IEEE JQE, 1990, 26 (3): 580-588
    1.61 M. D. Skeldon, R. S. Craxton, et al. . Efficient harmonic generation with a broad-band laser. IEEE J. Quantum Electron.. 1992,38(5): 1389-1398.
    1.62 R. A. Cheville, M.T. Reiten, N. J. Halas. Wide-bandwidth frequency doubling with high conversion efficiency. Opt. Lett., 1992,17 (19): 1343-1345.
    1.63 B. A. Richman, S. E. Bisson, R. Trebino et al. All-prism achromatic phase matching for tunable second- harmonic generation. Appl. Opt., 1999,38 (15): 3316-3323.
    1.64 P. Tournois. New diffraction grating pair with very linear dispersion for laser pulse compression. Electron. Lett., 1993, 29: 1414-1415.
    1.65 S. Kane, J. Squier. Grism-pair stretcher-compressor system for simultaneous second-and-third-order dispersion compensation in chirped-pulse amplification. J. Opt. Soc. Am. B, 1997, 14: 661-665.
    1.66 T. Nakajima, K. Miyazaki. Spectraily compensated third harmonic generation using angular dispersers. Opt. commun., 1999, 163: 217-222.
    1.67 C.Y. Chien, G. Korn, J. S. Coe, et al. Highly efficient second-harmonic generation of ultraintense Nd: glass laser pulses. Opt. lett., 1995, 20(4): 353-355
    1.68 T. Harimoto, M. Aoyama, K. Yamakawa, et al. compensation for third-order nonlinearity with initial phase mismatch in second-harmonic generation of ultrahigh intensity laser pulses. Jpn. J. Appl. Phys, 2001, 40: 6859-6861.
    1.69 T. Ditmire, A. M.Rubenchik, D. Eimerl, et al. Effects of cubic noniinearity on frequency doubling of high-power laser pulses. J. Opt. Soc. Am. B, 1996, 13(4): 649-655.
    1.70 T. J. Zhang, M.Aoyama, K. Yamakawa. Noncollinear chirp-compensated second-harmonic generation with subpicosecond laser pulses. Jpn. J. Appl. Phys, 2000, 39: 1146-1150.
    1.71 M. Aoyama, T. Harimoto, J. Ma, et al. Second-harmonic generation of ultra-high intensity femtosecond pulses with a KDP crystal. Optics express, 2001, 9 (11): 579-585.
    1.72 I. A. Begishev, M. Kalashnikov, V. Karpov, et al. Limitation of second-harmonic generation of femtosecond Ti: sapphire laser pulses. J. Opt. Soc. Am. B, 2004, 21(2): 318-322.
    1.73 M. Ghotbi, M. Ebrahim-Zadeh, A. Majchrowski, et al. High-average-power femtosecond pulse generation in the blue using BiB_3O_6. Opt. Lett., 2004, 29 (21): 2530-2532.
    1.74 C. Radzewicz, Y. B. Band, G. W. Pearson, et al. Short pulse nonlinear frequency conversion without group-velocity-mismatch broadening. Opt. commu., 1995, 117: 295-302.
    1.75 A. Jozsef, Fulop, P. Arrila, et al. Broadband dispersion-compensated two-pass second harmonic generation of femtosecond pulses. Opt. commu., 2001, 188: 365-370.
    1.76 T.J. Zhang, Y. Kato, H. Daido. Efficient third-harmonic generation of a picosecond laser pulse with time delay. IEEE J. Quantum Electron., 1996, 32(1): 127-136
    1.77 T.J. Zhang, M. Yonemura. Transverse-mode effect of second-harmonic generation of ultrashort laser pulses with time delay. Jpn. J. Appl. Phys, 1998, 37: 5568-5571.
    1.78 Mark S. Webb, David Eimerl, and Stephan P. Velsko. Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP. J. Opt. Soc. Am. B, 1992, 9(7): 1118-1127.
    1.79 韩伟,郑万国,曾小明等.折返点匹配的宽带二倍频实验研究.中国激光,2006,33(1):31-33.
    1.80 陈云琳,袁建伟,闫卫国,等.准相位匹配PPLN倍频理论研究与优化设计.物理学报,2005,54(5):2079~2083.
    1.81 V. Krylov, A. Kalintsev, A. Rebane, et al. Second, third and fourth harmonic generation of amplified femtosecond Ti: sapphire laser pulses. Proc. of SPIE, 1996, 2701: 24-30.
    1.82 P.S. Banks, M. D. Feit, M. D. Perry, High-intensity third-harmonic generation. J. Opt. Soc. Am. B, 2000, 19 (1): 102-118.
    1.83 T. Zhang, K. Yamakawa, Numerical analysis of type Ⅰ third-harmonic generation through third-order and cascaded second-order nonlinear optical processes. Jpn. J. Appl. Phys, 2000,.39: 91-95.
    2.1 R.S. Craxton. High efficiency frequency tripling schemes for high-power Nd: Glass lasers. IEEE J. Quantum Electron., 1981, 17 (9): 1771-1782.
    2.2 J.M. Auerbach, D. Milam, C. E. Barker, et al. Frequency conversion modeling, UCRLLR- 105821-9604, 1996.
    2.3 石顺祥,陈国夫,赵卫等.非线性光学,西安电子科技大学出版社
    2.4 徐光.飞秒激光的二阶非线性级联过程及其应用研究.中国科学院上海光机所,博士学位研究生毕业论文,2003
    2.5 D. Eimerl, J. M. Auerbach, P.W. Milonni. Paraxial wave theory of second and third harmonic generation in uniaxial crystals. Ⅰ. Narrowband pump fields. Journal of Modern Optics, 1995, 42(5): 1037-1067.
    2.6 P.A.Govind著,贾东方,余震红等译,非线性光纤光学原理及应用,电子工业出版社,p34.
    2.7 钱士雄,王恭明,非线性光学,复旦大学出版社,p60.
    2.8 P. J Wegner, J. M. Auerbach, C. E. Barker, et al. Frequency Converter Development for the National Ignition Facility. Proc. of SPIE, 1999, 3492: 392-405.
    2.9 李恪宇,贾怀庭,王成程,等,惯性约束核聚变驱动器高强度三倍频系统输出能力分析,中国激光,2006,33(7):903~909.
    3.1 J.M. Auerbach, D. Milam, C. E. Barker, et al. Frequency-conversion modeling. Livermore National Laboratory Report, 1996, UCRL-LR- 105821-96-4:199-206.
    3.2 P.W. Milonni, J. M. Auerbaeh and D. Eimerl. Frequency conversion modeling with spatially and temporally varying beams. Proe of SPIE, 1997, 2622: 230-241.
    3.3 R.W. Short, S Skupsky. Frequency conversion of broad-bandwidth laser light, IEEE J. Quantum Electron., 1990, 26 (3): 580-588.
    3.4 Craxton R S, Stephen D, Joseph E, et al. Basic properties of KDP related to the frequency conversion of 1μm laser radiation, IEEE J. Quantum Electron.,1981, QE-17 (9): 1782-1785.
    3.5 D. Eimerl. Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs. Ferroelectrics, 1987, 2: 95-139.
    3.6 D. Eimerl, J. M. Auerbach, C. E. Barker, et al. Multicrystal designs for efficient third-harmonic generation. Opt. Lett., 1997, 22 (16): 1208-1210
    3.7 D.M. Pennington, M. A. Henesian, D. Milam, et al. Efficient broadband third harmonic frequency conversion via angular dispersion. Proc. of SPIE, 1997, 2663: 645~654.
    3.8 钱列加.宽频带激光的啁啾匹配型三次谐波转换.光学学报,1995,15(6):662~667.
    3.9 B.A. Pdchman, S. E. Bisson, T. Trebino, et al. All-prism achromatic phase matching for tunable second-harmonic generation. Applied optics, 1999, 38 (15): 3316~3323.
    3.10 Holographic transmission grating for spectral dispersion, LLE Review, 82:71~77.
    3.11 A.C. Boscheron, E. Journot, A. Dulac, et al. Grating-based broadband third-harmonic generation and focusing system for the Laser Megajoule. CLEO, 1998, 342~343
    3.12 J K. Lawson, J. M. Auerbach, R. E. English, et al.. NIF optical specification the importance of the RMS Gradient. Proc. of SPIE, 1999, 3932:336~342
    3.13 粟敬钦,魏晓峰,马驰,等.激光束低频畸变波前模型的计算模拟.强激光与粒子束,2000,12(s1):163-166.
    3.14 W.H. Williams, J. M. Auerbach, M. A. Henesian, et al. Modeling characterization of the national ignition facility focal spot. Proc. of SPIE, 1998, 3264:93~104
    4.1 P.S. Banks, M. D. Feit, M. D. Perry, High-intensity third-harmonic generation. J. Opt. Soc. Am. B, 2000, 19(1): 102-118
    4.2 吕铁铮,王韬,钱列加等,飞秒激光在BBO晶体中倍频效率的数值计算.物理学报,2002,51(6):1268-1271.
    4.3 T.J. Zhang, K. Yamakawa, Numerical analysis of type Ⅰ third-harmonic generation through third-order and cascaded second-order nonlinear optical processes. Jpn. J. Appl. Phys, 2000,.39: 91-95.
    4.4 I.A. Kulagin, R. A. Ganeev, V. A. Kim, et al. Nonlinear refractive indices and third-order susceptibilities of nonlinear-optical crystals. Proc. of SPIE, 2003, 4972: 182-189.
    4.5 R.A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, et al. Characterization of nonlinear optical parameters of KDP, LiNbO_3 and BBO crystals. Opt. Commun., 2004, 229: 403-412.
    4.6 D.Eimerl. Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs. Ferroelectries, 1987,72:95-139
    4.7 T. Ditmire, A. M. Rubenchik, D. Eimerl, and M. D. Perry, Effects of cubic nonlinearity on frequency doubling of high-power laser pulses. J. Opt. Soc. Am. B., 1996, 13(4): 649-655
    4.8 粟敬钦,魏晓峰,马驰,等.激光束低频畸变波前模型的计算模拟.强激光与粒子束,2000,12(s1):163-166.
    4.9 D.M. Pennington, M. A. Henesian, D. Milam, et al. Efficient broadband third harmonic frequency conversion via angular dispersion. Proc of SPIE, 1997, 2663:645-654
    4.10 I. A. Begishev, M. Kalashnikov, V. Karpov, et al. Limitation of second-harmonic generation of femtosecond Ti: sapphire laser pulses. J. Opt. Soc. Am. B, 2004, 21(2): 318-322.
    4.11 V. Krylov, A. Kalintsev, A. Rebane, et al. Second, third and fourth harmonic generation of amplified femtosecond Ti: sapphire laser pulses. Proc. of SPIE, 1996, 2701: 24-30.
    4.12 刘运全,张杰,梁文锡等,飞秒掺钛蓝宝石激光三倍频理论和实验研究.物理学报,2005,54(4):1593-1598.
    5.1 苏超伟,偏微分方程逆问题的数值方法及其应用,西安,西北工业大学出版社,1995
    5.2 冯立新,光学和电磁学中某些散射和反散射问题及其数值方法的研究,吉林大学 博士学位论文,2003
    5.3 赖成军.多光束干涉全息法制作衍射光学元件,四川大学 硕士学位论文,2003.
    5.4 聂娅.亚波长光学元件的特性及应用研究,四川大学 博士学位论文,2004.
    5.5 B.M. Van Wonterghem, S.C. Burkhart, C.A Haynam, et al. National Ignition Facility commissioning and performance. Proc. of SPIE, 2004, 5341: 55~65.
    5.6 J.M. Auerbach, D. Milam, C. E. Barker, et al, Frequency-conversion modeling. Livermore National Laboratory Report, 1996, UCRL-LR- 105821-96-4:199-206.
    5.7 P.W. Milonni, J. M. Auerbach and D. Eimerl, Frequency conversion modeling with spatially and temporally varying beams. Proc. of SPIE, 1997, 2622: 230-241.
    5.8 R.S. Craxton, D. Stephen, E. Joseph, et al, Basic properties of KDP related to the frequency conversion of 1μm laser radiation. J. Quantum Electron., 1981, 17 (9): 1782-1785.
    5.9 R.W. Short and S. Skupsky. Frequency conversion of broad-bandwidth laser light. J. Quantum Electron., 1990, 26(3): 580-588.
    5.10 D.M. Pennington, M. A. Henesian, D. Milam, et al. Efficient broadband third harmonic frequency conversion via angular dispersion. Proc. of SPIE, 1997, 2663: 645-654.
    5.11 M. S. Pronko, R. H. Lehmberg, S. Obenschaln, et al. Efficient second harmonic conversion of broad-band high-peak-power Nd: class laser radiation using large-aperture KDP crystal in quadrature. J. Quantum Electron., 1990, QE-26(2): 337-347.
    5.12 D. Eimerl, J. M. Auerbaeh, C. E. Barker, et al. Multicrystal designs for efficient third-harmonic generation. Opt. Lett., 1997, 22(16): 1208-1210
    5.13 D. Eimerl, J. M. Auerbaeh, P. W. Milonni. Paraxial wave theory of second and third harmonic generation in uniaxial crystals. I. Narrowband pump fields. Journal of modem optics, 1995, 42 (5): 1037-1067.
    5.14 倪光正,杨仕友,钱秀英等,工程电磁场数值计算,北京,机械工业出版社,2004.
    5.15 Gerchberg R W, Saxton W O.A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 1972, 35: 237-246.
    5.16 J. R. Fienup. Iterative method applied to image reconstruction and computer-generated holograms. Opt. Eng, 1980, 19: 197-306.
    5.17 M.A. Seldowitz. Synthesis of digital holograms by direct binary search. Applied Optics, 1987, 26(14): 2788-2798.
    5.18 S. Kirkpatriek.Optimization by Simulated Annealing.Science, 1983, 220: 671-680.
    5.19 康立山,谢云,尤矢勇等,非数值并行算法(第一册)——模拟退火算法,北京:科学出版社,2000
    5.20 [美]包约翰著,自适应模式识别与神经网络,北京,科学出版社,1992
    5.21 张立明,人工神经网络的模型及其应用,上海,复旦大学出版社,1992
    5.22 J.H. Holland. Genetic algorithm.Scientific American, 1992, 4:44-50
    5.23 肖庭延,于慎根,王彦飞.反问题的数值解法,北京,科学出版社,2003.
    5.24 周明,孙树栋.遗传算法原理及应用.国防工业出版社,北京,1999.
    5.25 刘勇,康立山,陈毓屏.非数值并行算法(第二册)——遗传算法.北京:科学出版社,2000.
    5.26 N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth, et al., Equation of state calculations by fast computing machines, J. Chem. Phys. 1953, 21(6): 1087-1092.
    5.27 S.Kirkpatrck, C. D. Gelatt Jr., M. P. Vecchi, Optimization by simulated annealing, Science, 1983, 220(4598): 671-680.
    5.28 G.P.Agrawal著.贾东方,于震虹等译.非线性光纤光学原理及应用.北京:电子工业出版社,2002:33-35.
    5.29 张彬,吕百达.多程放大系统的逆运算.激光技术.2002,26(1):12-14.
    5.30 B.D. Lu, B. Zhang. Laser beam propagation through the multipass amplifier system containing a spatial filter: Forward and backward simulation codes and numerical analysis. Optik, 1998, 109(1): 35-39.
    5.31 B.D. Lu, B, Zhang. Improved successive iteration method for simulating laser beam propagation through multipass amplifier systems. Optik, 2001, 112 (1): 9-15
    5.32 Xiaoliang Chu, Bin Zhang, Xiaofeng Wei, et al. The inverse problem of chirp pulse propagating through Ti:sapphire amplifier. Optik. 2004, 115(5): 201-204.
    5.33 W.M. Peter, J M. Auerbach D. Eimerl, Frequency conversion modeling with spatially and temporally varying beams, Proc. of SPIE-The International Society for Optical Engineering, v 2633, 1995, p 230-241
    5.34 G. A. Askaryan, S. V. Bulanov, G. I. Dudnikova, et al. Magnetic interaction of ultrashort high-intensity laser pulses in plasmas. Plasma physics and controlled fusion, 1997, 39: A137-A144.
    5.35 刘运全,张杰,梁文锡等.飞秒掺钛蓝宝石激光三倍频理论和实验研究.物理学报,2005,54(4):1593-1598.
    6.1 M.G. Raymer and J. Mostowski. Simulated aman Scattering: Unified Treatment of Spontaneous Initiation and Spatial Propagation. Phys. Rev.A, 1981, 24(4): 1980-1998.
    6.2 C.S. Wang. Theory of Stimulated Raman Scattering. Phys. Rev. A, 1969, 182(2): 482-494.
    6.3 R. Carmen, F. Shimizu, C. Wang, et al. Theory of Stokes Pulse Shapes in Transient Stimulated Raman Scattering. Phys. Rev. A, 1970, 2(1):60-72.
    6.4 V.N. Novikov, S. A. Belkov, S. A. Buiko, et al. Transverse SRS in KDP and KD*P Crystal. Proc. of SPIE, 1999, 3492: 1009-1018.
    6.5 L. Ying, K. Terrance and J. J. Armstrong, Laser system power balance effects from stimulated rotational Raman scattering in air, Proc. of SPIE, 1992, 1870: 14-26.
    6.6 Hu Zhiping, Le Shixiao and Wang Junbo.The SRRS effects of N_2 in the earth's atmosphere. Proc. of SPIE, 1990, 1221: 106~116.
    6.7 M. Rokni and A. Flusberg. Stimulated Rotational Raman Scattering in the Atmosphere. IEEE, 1986, QE-22 (7): 1102~1108.
    5.8 P. W. Milonni, J. M. Auerbach and D. Eimerl, Frequency conversion modeling with spatially and temporally varying beams. Proc. of SPIE, 1997, 2622: 230-241.
    6.9 J.M. Auerbach, D. Eimerl, D. Milam, et al. Perturbation theory for electric field amplitude and phase ripple transfer in frequency doubling and tripling. Appl. Opt., 1997, 36 (3): 606-612.
    6.10 V.I. Bespalov and V. I. Talanov. Filamentary structure of light beams in nonlinear liquids, Soy. Phys. JEPT Lett., 1966, 3,307-310.
    6.11 M.D. Felt, J. A. Fleck, Jr., Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams, J. Opt. Soc. Am. 1988, B5(3), 633-640.
    6.12 S. Chi and Q. Guo, Vector theory of self-focusing of an optical beam in Kerr media, Opt. Lett. 1995, 20(15), 1598-1600.
    6.13 G. Fibich and G. Papanicolaou, Small beam nonparaxiality arrests self-focusing of optical beams, Phys. Rev. Lett., 1996, 76(23), 4356-4359.
    6.14 Y.R. Shen and Michael M. T. Loy, Theoretical interpretation of small-scale filaments of light origination from moving focal spots, Phys. Rev. A, 1971, 3(6), 2099-2106.
    6.15 Wen Shuang-Chun and Fan Dian-Yuan, Small-Scale self-focusing of intense laser beams in the presence of vector effect, Chin. Phys. Lett., 2000,17(10), 731-733.
    6.16 J. H. Marburger and W. G Wagner, Self-Focusing as a pulse sharpening mechanism, IEEE J. Quantum Electron., 1967,3(10), 415-416.
    6.17 G L. McAllister, J. H. Marburger and L. G DeShazer, Oberservation of optical pulse shaping by the self-focusing effects, Phys. Rev. Lett., 1968,21(24), 1648-1649.
    6.18 N. Akhmediev, A. Ankewicz and J. M. Soto-Crespo, Does the nonlinear Schrodinger equation correctly describe beam propagation? Opt. Lett., 1993,18(6), 411-413.
    6.19 E. S. Bliss, D. R. Speck, J. F. Hoizrichter, et al. Propagation of a high-intensity laser pulse with small-scale intensity modulation. Appl. Phys. Lett., 1974,25 (8): 448—450.
    6.20 Chi S and Guo Q. Vector theory of self-focusing of an optical beam in Kerr media. Opt. Lett., 1995,20(15): 1598-1600.
    6.21 G Fibich, W. Q. Ren and X. P. Wang. Numerical simulations of self-focusing of ultrafast laser pulses. Phys. Rev. E, 2003,67:056603-1-9.
    6.22 W. H. Willams, P. A. Renard, K. R. Manes, et al. Modeling of self-focusing experiments by beam propagation codes. ICF Quarterly Rept, UCRL-LR-105821-96-1..
    6.23 D. Milam, J. T. Hunt, K. R. Mames, et al. Modeling of filamentation damage induced in silica by 351-nm laser pulses. Proc, of SPIE, 1997,2966:425-428.
    6.24 J. E. Rothenberg. Space-time focusing:breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses, Opt. Lett., 1992, 17(19), 1340-1342.
    6.25 A. A. Zozulya,S.A.Diddams and T. S. Clement, Investigations of nonlinear femtosecond pulse propagation with the inclusion of Ramma, shock and third-order phase effects, Phys. Rev. A, 1998, 58(4), 3303-3310.
    6.26 T. Brabec and F. Krausz, Nonlinear optical pulse propagation in the single-cycle regime, Phys. Rev. Lett., 1997,78(17), 3282-3286.
    6.27 T. Olivier, F. Billard, H.Akhouayri. Z-scan theoretical and experimental studies for accurate measurements of the nonlinear refractive index and absorption of optical glasses near damage threshold. Proc, of SPIE, 2004,5273:341-349.
    6.28 H. Bercegol, T. Sonval, B. Forestier, et al. Measurement and prediction of rear surface damage in fused silica windows caused by UV nanosecond pulses. Proc, of SPIE, 2005, 5647: 355-364.
    6.29 J. M. Auerbach, D. Eimerl, D. Milam, et al. Perturbation theory for electric field amplitude and phase ripple transfer in frequency doubling and tripling. Appl. Opt., 1997, 36(3): 606-612.
    6.30 J. H. Campbell and F. Rainer. Optical glasses for high-peak-power laser applications. Proc. of SPIE, 1992, 1761: 246—255.
    6.31 D. Milam, J. T. Hunt, K. R. Mames, et al. Modeling of filamentation damage induced in silica by 351-nm laser pulses. Proc. of SPIE, 1997, 2966: 425—428..
    6.32 罗莉,ICF高功率激光驱动器中受激拉曼散射效应研究,四川大学硕士毕业论文,2005.
    7.1 M.D. Feit, S.L. Musher A.M. Rubenchik, et al. Increased damage thresholds due to laser pulse modulation. Proc. of SPIE, 1997, 2633: 700~708.
    7.2 D.S. Montgomery, J. D. Moody, H. A. Baldis, et al. Effects of laser beam smoothing on stimulated Raman scattering in exploding foil plasmas. Phys. Plasmas, 1996, 3 (5): 1728~1736
    7.3 E. Lefebvre, B. J. MacGowan, R. L. Berger, et al. Reduction of laser self-focusing in plasma by polarization smoothing, UCRL-LR-105821-98-2, 83~88.
    7.4 Experimental Investigation of Smoothing by Spectral Dispersion. LLE Review, 79, 149~155.
    7.5 肖俊,激光聚变靶面辐照均匀性的研究,四川大学博士学位论文,1998.
    7.6 谢永杰,刘晶儒,赵学庆.ICF中光束平滑及靶面辐照均匀性技术评述.激光技术,2001,25(6):454~459.
    7.7 J. E. Rothenberg. Polarization beam smoothing for inertial confinement fusion. J. Appl. Phy, 2000, 87(8): 3654~3662.
    7.8 R. Epstein and S. Skupsky. Anticipated improvement in laser beam uniformity using distributed phase plate with quasirandom patterns. J. Appl. Phys. 1990, 68(3): 928~931.
    7.9 T.J. Kessler, Y. Lin, J. J. Armstrong, et al.. Phase conversion with low-loss distributed phase plates. Prec. of SPIE, 1993, 1870: 95~104.
    7.10 R.H. Lehmberg, S. P. Obenschain, C. J. Pawley, et al. Effects of random phase distortion and nonlinear optical processes on laser beam uniformity with induced spatial incoherence (ISI). Prec. of SPIE, 1993, 1870, 163~174.
    7.11 J. E. Rothenberg. Improved Beam Smoothing with SSD using Generalized Phase Modulation. Prec. of SPIE, 1997, 3047: 713~724.
    7.12 N. Miyanaga, S. Matsuoka, A. Ando, et al. Improvement of laser irradiation uniformity in Gekko XII glass laser system. SPIE, 1997, 2633: 183~190.
    7.13 Angular Spectrum Representation of Pulsed Laser Beams with Two-Dimensional Smoothing by Spectral Dispersion. LLE Review, 78, 62~81.
    7.14 Broadband Beam Smoothing on OMEGA with Two-Dimensional smoothing by spectral dispersion, LLE Review, 80, 179~188.
    7.15 J.E. Rothenberg, B. Moran, M. Henesian, et al. Performance of Smoothing by Spectral Dispersion (SSD) on Beamlet. Prec. of SPlE, 1997, 3047: 313~322.
    7.16 母国光,战元林.光学.北京:高等教育出版社,1978.
    7.17 周申蕾,林尊琪,朱俭,et al.谱色散均匀化的计算研究.中国激光,2005,32(3):341~345.
    7.18 D.M. Pennington, S.N. Dixit, T.L. Weiland, et al. Implementation and performance of beam smoothing on 10 beams of the Nova laser. Prec. of SPIE, 1997, 3045: 725~731.
    7.19 R. H. Lehmberg. Comparison of optical beam smoothing techniques for inertial confinement fusion and improvement of smoothing by the use of zero-correlation masks. J. Appl. Phy, 2000, 87(3): 1012~1022.
    7.20 M.A. Henesian, S. N. Dixit, H. T. Powell, C. E. Thompson, P. J. Wegner, and T. L. Weiland, IQEC Technical Digest, eel: 9, paper TuE3, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700