甲烷氧化菌的微生态解析及其应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷氧化菌及甲烷单加氧酶(MMO)在生物转化、生物修复和温室气体CH4的减排等方面具有重要的应用价值。本论文围绕甲烷氧化菌及MMO在应用过程中存在的问题:1)催化氧化过程受辅酶NADH再生的限制;2)甲烷氧化菌生长速度慢、细胞密度低,难以满足工业生物催化的需要;3)可以工业应用的甲烷氧化菌资源有限,MMO外源表达技术不成熟,利用微生物分子生态学、基因工程、生物工程等手段对甲烷氧化菌在我国煤矿土壤中的分布、MMO蛋白的异源表达、甲烷氧化菌的高密度培养及其催化氧化丙烯的过程进行了研究。
     利用稳定性同位素探针、生物芯片等多种分子生态学方法解析我国典型瓦斯煤矿土壤中甲烷氧化菌群落的组成和活性。?型与II型甲烷氧化菌均存在于该碱性煤矿土壤中。首次报道了煤矿中甲烷氧化菌的组成,为进一步分离具有特殊功能的甲烷氧化菌和建立用于吸收煤矿瓦斯气的生物过滤器提供帮助。
     利用Trial andError的方式对颗粒性甲烷单加氧酶(pMMO)异源表达技术进行了系统的研究,通过对启动子、表达载体及表达宿主的比较和选择,初步建立了异源表达pMMO的研究平台和方法。构建了由烷烃单加氧酶启动子调控pmoCAB的pCompmo质粒,在重组产气肠杆菌中实现了pMMO的转录、翻译,但由于pMMO在折叠过程受到其它因素影响,不能稳定得到正确组装的蛋白。利用pMMO原始启动子构建了含有pmo完整基因簇的pCHP质粒,并转入大肠杆菌中,首次实现了pmo完整基因簇在大肠杆菌中的克隆。
     以甲烷氧化菌Methylosinus trichosporium OB3b为对象,石蜡油作为甲烷传递体可以极大的缩短细胞生长的迟滞期,促进细胞快速、高密度生长。在5L发酵罐中,石蜡油浓度为5%时,干重高于9.89gL-1,为无石蜡油添加时的4.5倍。
     以M. trichosporium OB3b整细胞催化丙烯制备环氧丙烷为例,对甲烷氧化菌应用于工业催化进行了基础的研究。当以OD660为8的细胞进行催化氧化时,反应22小时,产物环氧丙烷最高浓度可达到12.2mM。同时发现发酵液直接用于催化反应,可以减少传统两步法的工序,缩短“生长与催化”周期。
Methanotrophs are capable of utilizing methane as the sole carbon and energysource, and contain the key enzymes of methane monooxygenases (MMO) whichcatalyze the oxidation of methane and short-chain alkanes and alkenes.
     Methanotrophs and MMOs play significant roles in biotransformation,bioremediation and greenhouse gas assimilation. Whereas many problems ofmethanotrophs have limited their applications in industrial biotechnology, includinglack of efficient NADH regeneration system, low growth rate and low cell density,lack of strains which are suitable for applications under various conditions, and lackof genetic engineering tools for MMOs. In order to overcome these deficiencies,molecular ecology, gene engineering and biotechnology methods were used toinvestigate the diversity of methanotrophs in coal mine, hetero-expression of MMO,high cell density culture of methanotroph and optimization of oxidation of propenecatalyzedbyMMO.
     We successfully elucidated the methanotroph community and activity from atypical Chinese alkaline coal mine soil using several complementary molecularecologytechniques, including microarrayand stable isotope probing. Both type I andtype II methanotrophs were present and active. To our knowledge this is the firstdetailed molecular analysis of methanotrophs in the coal mine environment and thedata obtained from the molecular ecology study will provide essential information toisolate and establish biofilters using the most appropriate methanotrophs to mitigateexplosionsandreleaseofmethanegasfromcoalmines.
     Heterogenous expression of particulate methane monooxygenase (pMMO) wassystemicallystudiedby“TrialandError”approach.Byconstructionofdifferentkindsof promoters and vectors combined with different host cells, hetero-expressionsystem of pMMO was established. Expression plasmid pCompmo was constructed inwhich pmoCAB gene was under the promoter of alkane monooxygenase. It wasproved that the recombinant Enterobacter aerogenes pCompmo showed transcription and translation activityunder certain cultivation conditions. Unfortunately, due to theimproperpMMOrefoldingorassembly,theenzymeactivityinrecombinant cells wasnot as stabled as that in wild strain. Furtherly, another plasmid pCHP containing thewhole pmo gene cluster including the native promoter was constructed andtransformed into Escherichia coli. This was the first report on successful cloning ofpmo genecluster,althoughpreviousresearchersbelievedpMMOwastoxicto E.coli.
     Paraffin as the methane vector, which can shorten the lag phase and helpMethylosinus trichosporium OB3b to reach high cell density, was selected to enhancethe growth rate of OB3b. Pilot study was carried out in 5L fermenter. With theaddition of 5% (v/v) paraffin, the highest densityof cultivated cells was 9.89gdrywtL-1,whichwas4.5timesofthecontrol.
     Optimization of epoxypropane biosynthesis from propene using the whole cellsof M. trichosporium OB3b was investigated. The cells suspended in phosphate buffer(pH 7) (OD660=8) accumulated 12.2 mM epoxypropane over 22 h. Meanwhile it wasfound that the cell culture broth could directlycatalyze the biotransformation withoutany pretreatments, which benefit for simplifying the traditional two-stagegrowth-catalysisprocess,andshortenthewholeprocesstime.
引文
[1] Cicerone R J, Oremland R S. Biogeochemical aspects of atmospheric methane. GlobalBiogeochemCycles,1998,2:299-327.
    [2] IPCC. Special Report on Emissions Scenarios. Cambridge UK: Cambridge UniversityPress,2000.
    [3] 刘昌俊, 许根慧. 一碳化工产品及其发展方向. 化工学报,2003,54(4):524-530.
    [4] 刘一静, 刘瑾. 天然气制甲醇合成气工艺及进展. 化工时刊,2007,21(5):64-67.
    [5] Sohngen N L. Uber bakterien ,welche methan ab kohlenstoffnahrung and energiequellegebrauchen.ParasitenkdInfectionskrAbt1906,15:513~517.
    [6] Whittenbury R, Phillips K C. Enrichment ,isolation and some properties of methaneutilizingbacteria.J GenMicrobial,1970,61:205~218.
    [7] Hanson R S,HansonTE. Methanotrophic bacteria. MicrobiologicalReviews, 1996, 60(2):439-&.
    [8] Dalton H. The Leeuwenhoek Lecture 2000 - The natural and unnatural history ofmethane-oxidizing bacteria. Philosophical Transactions of the Royal Society B-BiologicalSciences,2005,360(1458):1207-1222.
    [9] Stoecker K, Bendinger B, Schoning B, et al. Cohn's Crenothrix is a filamentous methaneoxidizer with an unusual methane monooxygenase. Proceedings of the National AcademyofSciencesoftheUnitedStatesofAmerica,2006,103(7):2363-2367.
    [10] Vigliotta G, Nutricati E, Carata E, et al. Clonothrix fusca Roze 1896, a filamentous,sheathed, methanotrophic gamma-proteobacterium. Applied and EnvironmentalMicrobiology,2007,73(11):3556-3565.
    [11] Pol A, Heijmans K, Harhangi H R, et al. Methanotrophy below pH1 by a newVerrucomicrobiaspecies.Nature,2007,450(7171):874-U817.
    [12] Dunfield P F, Yuryev A, Senin P, et al. Methane oxidation by an extremely acidophilicbacteriumofthephylumVerrucomicrobia.Nature,2007,450(7171):879-U818.
    [13] Islam T, Jensen S, Reigstad L J, et al. Methane oxidation at 55 degrees C and pH 2 by athermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proceedings of theNationalAcademyofSciencesoftheUnitedStatesofAmerica,2008,105(1):300-304.
    [14] Rosenzweig A C, Frederick C A, Lippard S J, et al. Crystal structure of a bacterialnon-haemironhydroxylasethatcatalysesthebiologicaloxidationofmethane.Nature,1993,366:537-543.
    [15] Whittington D A, Sazinsky M H, Lippard S J. X-ray crystal structure of alcohol productsbound at the active site of soluble methane monooxygenase hydroxylase. Journal of theAmericanChemicalSociety,2001,123(8):1794-1795.
    [16] ChangSL,WallarBJ,LipscombJD,etal.ResiduesinMethylosinustrichosporiumOB3bmethane monooxygenase component B involved in molecular interactions with reduced-and oxidized-hydroxylase component: A role for the N-terminus. Biochemistry, 2001,40(32):9539-9551.
    [17] Murrell J C, Gilbert B, McDonald I R. Molecular biology and regulation of methanemonooxygenase.ArchivesofMicrobiology,2000,173(5-6):325-332.
    [18] Lieberman R L, Rosenzweig AC. Crystal structure of a membrane-bound metalloenzymethatcatalysesthebiologicaloxidationofmethane.Nature,2005,434(7030):177-182.
    [19] KitmittoA,MyronovaN,BasuP,etal.Characterization andstructuralanalysisofanactiveparticulate methane monooxygenase trimer from Methylococcus capsulatus (Bath).Biochemistry,2005,44(33):10954-10965.
    [20] KellyD P,AnthonyC, MurrellJC. Insightsinto the obligate methanotrophMethylococcuscapsulatus.TrendsinMicrobiology,2005,13(5):195-198.
    [21] Stafford G P, Scanlan J, McDonald I R, et al. rpoN, mmoR and mmoG, genes involved inregulating the expression of soluble methane monooxygenase in MethylosinustrichosporiumOB3b.Microbiology-Sgm,2003,149:1771-1784.
    [22] Lieberman R L, Rosenzweig AC.Biologicalmethane oxidation:Regulation, biochemistry,and active site structure of particulate methane monooxygenase. Critical Reviews inBiochemistryandMolecularBiology,2004,39(3):147-164.
    [23] Gilbert B, McDonald I R, Finch R, et al. Molecular analysis of the pmo (particulatemethane monooxygenase) operons from two type II methanotrophs. Applied andEnvironmentalMicrobiology,2000,66(3):966-975.
    [24] Knapp C W, Fowle D A, Kulczycki E, et al. Methane monooxygenase gene expressionmediated by methanobactin in the presence of mineral copper sources. Proceedings of theNational Academy of Sciences of the United States of America, 2007, 104(29):12040-12045.
    [25] Hesselsoe M, Boysen S, Iversen N, et al. Degradation of organic pollutants by methanegrownmicrobialconsortia.Biodegradation,2005,16(5):435-448.
    [26] Tresse O, Mounien F, Levesque M J, et al. Comparison of the microbial populationdynamics and phylogenetic characterization of a CANOXIS reactor and a UASB reactordegradingtrichloroethene.JournalofAppliedMicrobiology,2005,98(2):440-449.
    [27] Takeuchi M, Nanba K, Iwamoto H, et al. In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer.WaterResearch,2005,39(11):2438-2444.
    [28] Ramakrishnan V, Ogram A V, Lindner A S. Impacts of co-solvent flushing on microbialpopulations capable of degrading trichloroethylene. Environmental Health Perspectives,2005,113(1):55-61.
    [29] Pressman J G, Georgiou G, Speitel G E. Scale-up considerations for a hollow-fiber-membrane bioreactor treating trichloroethylene-contaminated water. Water EnvironmentResearch,2005,77(5):533-542.
    [30] Forrester S B, Han J I, Dybas M J, et al. Characterization of a mixed methanotrophicculture capable of chloroethylene degradation. Environmental Engineering Science, 2005,22(2):177-186.
    [31] Takeuchi M, Nanba K, Furuya K, et al. Natural groundwater of a gas field utilizable for abioremediation of trichloroethylene-contamination. Environmental Geology, 2004, 45(7):891-898.
    [32] Tartakovsky B, Manuel M F, Guiot S R. Trichloroethylene degradation in a coupledanaerobic/aerobic reactor oxygenated using hydrogen peroxide. Environmental Science &Technology,2003,37(24):5823-5828.
    [33] HrsakD.Cometabolictransformationoflinearalkylbenzenesulphonatesbymethanotrophs.WaterResearch,1996,30(12):3092-3098.
    [34] Hrsak D, Begonja A. Growth characteristics and metabolic activities of the methanotro-phic heterotrophic groundwater community. Journal of applied microbiology, 1998, 85(3):448-456.
    [35] Sharp J O, Wood T K, Alvarez-Cohen L. Aerobic biodegradation of n-nitrosodimethy-lamine (NDMA) by axenic bacterial strains. Biotechnology and Bioengineering, 2005,89(5):608-618.
    [36] Kneidel AL, Yang S T. Kinetic studyof trichloroethylene biodegradation by MethylosinustrichosporiumOB3bPP358immobilizedinafibrous-bedbioreactor.JournaloftheChineseInstituteofChemicalEngineers,2003,34(1):65-73.
    [37] Shimomura T, Suda F, Uchiyama H, et al. Biodegradation of trichloroethylene byMethylocystis sp. strain M immobilized in gel beads in a fluidized-bed bioreactor. WaterResearch,1997,31(9):2383-2386.
    [38] Uchiyama H, Oguri K, Nishibayashi M, et al. Trichloroethylene Degradation by Cells of aMethane-Utilizing Bacterium, Methylocystis Sp M, Immobilized in Calcium Alginate.JournalofFermentationandBioengineering,1995,79(6):608-613.
    [39] Trotsenko Y A, Khmelenina V N. Aerobic methanotrophic bacteria of cold ecosystems.FemsMicrobiologyEcology,2005,53(1):15-26.
    [40] Grey J, Deines P. Differential assimilation of methanotrophic and chemoautotrophicbacteriabylakechironomidlarvae.AquaticMicrobialEcology,2005,40(1):61-66.
    [41] Eller G, Deines P, Grey J, et al. Methane cycling in lake sediments and its influence onchironomid larval partial derivative C-13. Fems Microbiology Ecology, 2005, 54(3):339-350.
    [42] BodelierPLE,Meima-Franke M, ZwartG,etal.NewDGGEstrategiesforthe analysesofmethanotrophic microbial communities using different combinations of existing 16SrRNA-basedprimers.FemsMicrobiologyEcology,2005,52(2):163-174.
    [43] Wang P, Wang F P, Xu M X, et al. Molecular phylogeny of methylotrophs in a deep-seasedimentfromatropicalwestPacificWarmPool.FemsMicrobiologyEcology,2004,47(1):77-84.
    [44] Newby D T, Reed D W, Petzke L M, et al. Diversity of methanotroph communities in abasaltaquifer.FemsMicrobiologyEcology,2004,48(3):333-344.
    [45] Kohzu A, Kato C, Iwata T, et al. Stream food web fueled by methane-derived carbon.AquaticMicrobialEcology,2004,36(2):189-194.
    [46] Kalyuzhnaya M G, Lidstrom M E, Chistoserdova L. Utility of environmental primerstargetingancientenzymes:MethylotrophdetectioninLakeWashington.MicrobialEcology,2004,48(4):463-472.
    [47] Jaatinen K, Knief C, Dunfield PF, et al. Methanotrophic bacteria in boreal forest soil afterfire.FemsMicrobiologyEcology,2004,50(3):195-202.
    [48] Bussmann I, Pester M, Brune A, et al. Preferential cultivation of type II methanotrophicbacteria from littoral sediments (Lake Constance). Fems Microbiology Ecology, 2004,47(2):179-189.
    [49] Borjesson G,Sundh I, Svensson B. Microbialoxidation ofCH4atdifferenttemperaturesinlandfillcoversoils.FemsMicrobiologyEcology,2004,48(3):305-312.
    [50] Zhang M, Li Y. Improving cost calculation of coal mining promoting scientificdevelopment of coal industry. Social Sciences Journal of Colleges of Shanxi, 2004, 17:65-67.
    [51] 宋元明. 中国煤矿瓦斯治理现状与对策. 中国煤炭,2005,12:5-8.
    [52] ClimateChagneStudyGroupofChina.CountrystudyonclimatechangeinChina.Beijing,China:TsinghuaUniversityPress,2000.
    [53] 柯为. 治理煤矿瓦斯爆炸的微生物技术. 生物工程学报,2005,(03):460.
    [54] 陈东科, 王璐, 金龙哲, et al. 利用微生物技术治理煤矿瓦斯的研究展望. 矿业安全与环保,2005,(06):49-52.
    [55] 王璐,金龙哲和陈东科. 利用微生物技术治理煤矿瓦斯的研究展望. 中国安全科学学报,2005,(10):97-99.
    [56] 袁志华, 梅博文, 佘跃惠, et al. 二连盆地马尼特坳陷天然气微生物勘探. 天然气地球科学,2004,(02):162-165.
    [57] 袁志华, 梅博文, 佘跃惠, et al. 天然气微生物勘探研究——以蠡县斜坡西柳构造为例.天然气工业,2003,(02):27-30.
    [58] Xin JY, CuiJ R, Chen J B, et al. Continuous biocatalytic synthesis of epoxypropane usingabiofilmreactor.ProcessBiochemistry,2003,38(12):1739-1746.
    [59] Xin J Y, Cui J R, Zhu LM, et al. Epoxypropane biosynthesis by Methylomonas sp GYJ3:batchandcontinuousstudies.WorldJournalofMicrobiology&Biotechnology,2002,18(7):609-614.
    [60] Huang D S, Wu S H, Wang Y S, et al. Determination of the carbon kinetic isotope effectson propane hydroxylation mediated by the methane monooxygenases from Methylococcuscapsulatus (Bath) by using stable carbon isotopic analysis. Chembiochem, 2002, 3(8):760-765.
    [61] XinJ,CuiJR,ChenJB,etal.ContinuousbiosynthesisofepoxypropaneusingwholecellsofMethylomonasspGYJ3.ChineseJournalofCatalysis,2001,22(5):457-460.
    [62] JinY,LipscombJD.MechanisticinsightsintoC-Hactivationfromradicalclockchemistry:oxidation of substituted methylcyclopropanes catalyzed by soluble methanemonooxygenase from Methylosinus trichosporium OB3b. Biochimica Et BiophysicaActa-ProteinStructureandMolecularEnzymology,2000,1543(1):47-59.
    [63] 尉迟力, 夏仕文, 李树本. 甲烷生物催化氧化制甲醇──固定化细胞催化剂的制备及其催化性能的研究. 催化学报,1997,(06):503-507.
    [64] 尉迟力, 缪德埙, 李树本, et al. 甲烷氧化细菌Methylosinus trichosporium 3011甲醇累积条件的研究. 工业微生物,1995,(02):10-13.
    [65] 尉迟力, 夏仕文, 沈润南,etal. 甲烷生物催化氧化制甲醇—甲基球菌3021中甲烷单加氧酶催化性能的研究. 分子催化,1997,(05):349-353.
    [66] 刘婷婷, 辛嘉英, 徐毅,etal. 甲基弯菌IMV3011整细胞催化甲烷氧化合成甲醇的研究.分子催化,2002,(06):455-459.
    [67] 尉迟力, 缪德埙, 李树本. 丙烯经酶催化氧化制环氧丙烷——一株甲烷氧化细菌的分离筛选及生理特性的研究. 工业微生物,1994,(02):16-20.
    [68] 辛嘉英, 崔俊儒, 陈建波, et al. 甲基单胞菌 GYJ3 催化环氧丙烷的半连续合成. 分子催化,2001,(03):206-210.
    [69] 辛嘉英, 崔俊儒, 陈建波, et al. 甲基单胞菌整细胞催化环氧丙烷的连续生物合成. 催化学报,2001,(05):457-460.
    [70] 高灿柱, 李树本, 宁治中, et al. 丙烯酶催化氧化制取环氧丙烷的研究—甲烷菌细胞的吸附固定化. 分子催化,1991,(03):227-232.
    [71] 高灿柱, 李树本, 宁治中, et al. 丙烯酶催化氧化制取环氧丙烷—活细胞包埋法制备、再生固定化生物催化剂. 分子催化,1990,(04):291-297.
    [72] 辛嘉英, 崔俊儒, 陈建波, et al. 甲烷氧化菌吸附膜反应器中环氧丙烷的连续生物转化.生物工程学报,2002,(01):89-93.
    [73] 陆仕灿, 陶坚铭, 邱蔚然,etal. 固定化甲烷氧化菌Z201催化丙烯合成环氧丙烷. 华东理工大学学报,1994,20(01):21-25.
    [74] 向廷生, 周俊初, 袁志华. 利用地表甲烷氧化菌异常勘探天然气藏. 天然气工业,2005,(03):41-43.
    [75] 梅博文, 袁志华. 地质微生物技术在油气勘探开发中的应用. 天然气地球科学, 2004,(02):156-161.
    [76] 刘献君. 油气微生物勘探的特点及发展趋向. 国外油田工程,2003,(06):18-19.
    [77] 邓平, 王国建, 刘运黎. 微生物油气勘探技术的试验研究. 天然气工业, 2003, (01):18-20.
    [78] 梅博文, 袁志华, 王修垣. 油气微生物勘探法. 中国石油勘探,2002,(03):42-53.
    [79] 金文标, 姚建军, 陈孟晋, et al. 天然气微生物勘探指示菌的筛选. 天然气工业, 2002,(05):20-22.
    [80] Takeguchi M, Okura I. Role of iron and copper in particulate methane monooxygenase ofMethylosinustrichosporiumOB3b.CatalysisSurveysfromJapan,2000,4(1):51-63.
    [81] Yu SS F, Chen KH C, Tseng MYH, etal. Production ofhigh-qualityparticulate methanemonooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fibermembranebioreactor.JournalofBacteriology,2003,185(20):5915-5924.
    [82] Park S, Hanna M L, Taylor R T, et al. Batch Cultivation of Methylosinus trichosporiurnOB3b. I: Production of Soluble Methane Monooxygenase. Biotechnology andBioengineering,1991,38:423-433.
    [83] Shah N N, Hanna M L, Jackson K J, et al. Batch Cultivation of Methylosinus-trichosporium Ob3b .4. Production of Hydrogen-Driven Soluble or Particulate MethaneMonooxygenaseActivity.BiotechnologyandBioengineering,1995,45(3):229-238.
    [84] Shah N N, Hanna M L, Taylor R T. Batch cultivation of Methylosinus trichosporiumOB3b .5. Characterization of poly-beta-hydroxybutyrate production undermethane-dependent growth conditions. Biotechnology and Bioengineering, 1996, 49(2):161-171.
    [85] Xing X H, Wu H, Luo M F, et al. Effects of organic chemicals on growth of MethylosinustrichosporiumOB3b.BiochemicalEngineeringJournal,2006,31(2):113-117.
    [86] CarverMA,HumphreyKM,PatchettRA,etal.TheeffectofEDTAandrelatedchelatingagents on the oxidation of methanol by the methylotrophic bacterium, Methylophilusmethylotrophus.EurJBiochem,1984,138:611–615.
    [87] 尉迟力, 缪德埙, 李树本, et al. 甲烷氧化菌Methylosinus trichosporium 3011甲醇累积条件的研究. 工业微生物,1995,25(2):10-13.
    [88] Takeguchi M, Furuto T, Sugimori D, et al. Optimization of methanol biosynthesis byMethylosinus trichosporium OB3b: an approach to improve methanol accumulation. ApplBiochemBiotechnol1997,68:143–152.
    [89] Furuto T, Takeguchi M, Okura I. Semicontinuous methanol biosynthesis by MethylosinustrichosporiumOB3b.JMolCatal,1999,144:257–261.
    [90] Lee S G, Goo J W, Kim H G, et al. Optimization of methanol biosynthesis from methaneusingMethylosinustrichosporiumOB3b.BiotechnolLett,2004,26:947-950.
    [91] Xin J Y, Cui J R, Niu J Z, et al. Production of methanol from methane by methanotrophicbacteria.BiocatalysisandBiotransformation,2004,22(3):225-229.
    [92] 夏仕文, 尉迟力, 李树本. 固定化MethylomonasZ201细胞:甲烷单加氧酶的活性和稳定性. 分子催化,1996,10(4):251-256.
    [93] 夏仕文, 尉迟力, 李树本. 水- 有机溶剂两相体系中甲基单孢菌 Z201 细胞催化丙烯环氧化的初步研究. 生物工程学报,1997,13(2):206~209.
    [94] 夏仕文, 尉迟力, 李树本. 单相和两相发酵体系中 Methylomonas Z201 细胞的生长和环氧丙烷的合成. 微生物学报,1998,38(5):371-375.
    [95] 罗明芳,吴昊,王磊,邢新会. 含有甲烷氧化菌的混合菌群特性研究. 微生物学报,2007,47(1):103-109.
    [96] Martin H, Murrell J C. Methane Monooxygenase Mutants of Methylosinus-TrichosporiumConstructed by Marker-Exchange Mutagenesis. Fems Microbiology Letters, 1995, 127(3):243-248.
    [97] Lloyd J S, Finch R, Dalton H, et al. Homologous expression of soluble methanemonooxygenase genes in Methylosinus trichosporium OB3b. Microbiology-Sgm, 1999,145:461-470.
    [98] Smith T J, Slade S E, Burton N P, et al. Improved system for protein engineering of thehydroxylase component of soluble methane monooxygenase. Applied and EnvironmentalMicrobiology,2002,68(11):5265-5273.
    [99] BorodinaE,NicholT,DumontMG,etal.Mutagenesisofthe"Leucinegate"toexplorethebasis of catalytic versatility in soluble methane monooxygenase. Applied andEnvironmentalMicrobiology,2007,73(20):6460-6467.
    [100] Tao L, Sedkova N, Yao H, et al. Expression of bacterial hemoglobin genes to improveastaxanthin production in a methanotrophic bacterium Methylomonas sp. AppliedMicrobiologyandBiotechnology,2007,74(3):625-633.
    [101] Ye R W, Yao H, Stead K, et al. Construction of the astaxanthin biosynthetic pathway in amethanotrophic bacterium Methylomonas sp strain 16a. Journal of Industrial Microbiology&Biotechnology,2007,34(4):289-299.
    [102] West C A, Salmond G P C, Dalton H, et al. Functional expression in Escherichia coli ofproteins B and C from soluble methane monooxygenase of Methylococcus capsulatus(Bath).JGenMicrobiol,1992,138:1301–1307.
    [103] Lloyd J S, De Marco P, Dalton H, et al. Heterologous expression of soluble methanemonooxygenase genes in methanotrophs containing only particulate methanemonooxygenase.ArchivesofMicrobiology,1999,171(6):364-370.
    [104] Murrell J C, McDonald I R, Gilbert B. Regulation of expression of methanemonooxygenasesbycopperions.TrendsinMicrobiology,2000,8(5):221-225.
    [105] Gou Z X, Xing X H, Luo M F, et al. Functional expression of the particulate methanemono-oxygenase gene in recombinant Rhodococcus erythropolis. Fems MicrobiologyLetters,2006,263(2):136-141.
    [106]DeAngelisMA,BarossJA.nhancedmicrobialmethaneoxidationinwaterfromadeepseahydrothermal ventfield atsimulated in situ hydrostatic pressures. Limno Oceanogr, 1991,36:570~577.
    [107] Rahalkar M, Schink B. Comparison of aerobic methanotrophic communities in littoral andprofundal sediments of Lake Constance by a molecular approach. Applied andEnvironmentalMicrobiology,2007,73(13):4389-4394.
    [108] Horz H P, Rich V, Avrahami S, et al. Methane-oxidizing bacteria in a California uplandgrassland soil: Diversity and response to simulated global change. Applied andEnvironmentalMicrobiology,2005,71(5):2642-2652.
    [109] Hirayama H, Takai K, Inagaki F, et al. Bacterial community shift along a subsurfacegeothermalwaterstreaminaJapanesegoldmine.Extremophiles,2005,9(2):169-184.
    [110] Horz H P, Yimga M T, Liesack W. Detection of methanotroph diversity on roots ofsubmerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA andribosomalDNA, including pmoA-based terminal restriction fragmentlength polymorphismprofiling.AppliedandEnvironmentalMicrobiology,2001,67(9):4177-4185.
    [111] Pester M, Friedrich M W, Schink B, et al. pmoA-Based analysis of methanotrophs in a,littoral lake sediment reveals a diverse and stable community in a dynamic environment.AppliedandEnvironmentalMicrobiology,2004,70(5):3138-3142.
    [112] Nikiema J, Bibeau L, Lavoie J, et al. Biofiltration of methane: An experimental study.ChemicalEngineeringJournal,2005,113(2-3):111-117.
    [113]EshinimaevB T, Khmelenina VN,SakharovskiiVG, etal.Physiological, biochemical, andcytological characteristics of a haloalkalitolerant methanotroph grown on methanol.Microbiology,2002,71(5):512-518.
    [114]YakimovMM,GiulianoL,CrisafiE,etal.MicrobialcommunityofasalinemudvolcanoatSanBiagio-Belpasso,Mt.Etna(Italy).EnvironmentalMicrobiology,2002,4(5):249-256.
    [115] Tsyrenzhapova I S, Eshinimaev B T, Khmelenina V N, et al. Anew thermotolerant aerobicmethanotrophfromathermalspringinBuryatia.Microbiology,2007,76(1):118-121.
    [116]Pacheco-OliverM,McDonaldIR,GroleauD,etal.Detectionofmethanotrophswithhighlydivergent pmoA genes from Arctic soils. Fems Microbiology Letters, 2002, 209(2):313-319.
    [117] Malashenko Y R, Romanovskaya V A, Bogachenko V N, et al. Thermophilic andthermotolerant methane assimilating bacteria. Mikrobiologiya (English translation) 1975,44:855–862.
    [118] Bodrossy L, Holmes E M, Holmes A J, et al. Analysis of 16S rRNA and methanemonooxygenase gene sequences reveals a novel group of thermotolerant and thermophilicmethanotrophs, Methylocaldum gen. nov. Archives of Microbiology, 1997, 168(6):493-503.
    [119] Bodrossy L, Murrell J C, Dalton H, et al. Heat-Tolerant Methanotrophic Bacteria from theHot-WaterEffluentofaNatural-GasField.AppliedandEnvironmentalMicrobiology,1995,61(10):3549-3555.
    [120] Bodrossy L, Kovacs K L, McDonald I R, et al. A novel thermophilic methane-oxidisinggamma-Proteobacterium.FemsMicrobiologyLetters,1999,170(2):335-341.
    [121]OmelchenkoMV,VasilevaLV,ZavarzinGA,etal.AnovelpsychrophilicmethanotrophofthegenusMethylobacter.Microbiology,1996,65(3):339-343.
    [122] Kalyuzhnaya M G, Khmelenina V N, Kotelnikova S, et al. Methylomonas scandinavica spnov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rockgroundwaterofSweden.SystematicandAppliedMicrobiology,1999,22(4):565-572.
    [123] Wartiainen I, Hestnes A G, McDonald I R, et al. Methylocystis rosea sp nov., a novelmethanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78 degrees N).InternationalJournalofSystematicandEvolutionaryMicrobiology,2006,56:541-547.
    [124]Dedysh S N, Liesack W, Khmelenina VN, etal.Methylocella palustrisgen. nov., sp nov., anew methane-oxidizing acidophilic bacteriumfrompeat bags, representing a novel subtypeof serine-pathway methanotrophs. International Journal of Systematic and EvolutionaryMicrobiology,2000,50:955-969.
    [125]DedyshSN,KhmeleninaVN,SuzinaNE,etal.Methylocapsaacidiphilagen.nov.,spnov.,anovelmethane-oxidizinganddinitrogen-fixingacidophilicbacteriumfromSphagnumbog.InternationalJournalofSystematicandEvolutionaryMicrobiology,2002,52:251-261.
    [126] Sieburth J M, Johnson P W, Eberhardt M A, et al. The first methane-oxidizing bacteriumfrom the upper mixed layer of the deep ocean Methylomonas pelagica sp. nov. CurrMicrobiol,1987,14:285–293
    [127] Kalyuzhnaya M G, Khmelenina V N, Suzina N E, et al. New methanotrophic isolates fromsodalakesofthesouthernTransbaikalregion.Microbiology,1999,68(5):592-600.
    [128] Khmelenina VN, Kalyuzhnaya M G, Starostina N G, et al. Isolation and characterization ofhalotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. CurrentMicrobiology,1997,35(5):257-261.
    [129] Kaluzhnaya M, Khmelenina V, Eshinimaev B, et al. Taxonomic characterization of newalkaliphilic and alkalitolerant methanotrophs from soda lakes of the SoutheasternTransbaikal region and description of Methylomicrobium buryatense sp.nov. SystematicandAppliedMicrobiology,2001,24(2):166-176.
    [130] Sorokin D Y, Jones B E, Kuenen J G. An obligate methylotrophic, methane-oxidizingMethylomicrobiumspeciesfroma highlyalkaline environment. Extremophiles, 2000,4(3):145-155.
    [131]EllerG, StubnerS, FrenzelP.Group-specific 16S rRNAtargeted probesforthe detection oftype I and type II methanotrophs by fluorescence in situ hybridisation. Fems MicrobiologyLetters,2001,198(2):91-97.
    [132] Henckel T, Friedrich M, Conrad R. Molecular analyses of the methane-oxidizing microbialcommunity in rice field soil by targeting the genes of the 16S rRNA, particulate methanemonooxygenase, and methanol dehydrogenase. Applied and Environmental Microbiology,1999,65(5):1980-1990.
    [133] Bodrossy L, Stralis-Pavese N, Murrell J C, et al. Development and validation of adiagnostic microbial microarray for methanotrophs. Environmental Microbiology, 2003,5(7):566-582.
    [134]SundhI,BorjessonG,TunlidA.Methaneoxidationandphospholipidfattyacidcompositioninapodzolicsoilprofile.SoilBiology&Biochemistry,2000,32(7):1025-1028.
    [135] Radajewski S, Ineson P, Parekh N R, et al. Stable-isotope probing as a tool in microbialecology.Nature,2000,403(6770):646-649.
    [136]Cui X. The energy development report of China 2006. : China Social Science LiteraturePublishingHouse.;2006.
    [137] 张仁健, 王明星, 李晶, et al. 中国甲烷排放现状. 气候与环境研究, 1999, 4(2):194-202.
    [138] Cicerone R.J. a O R S. Biogeochemical aspects of atmospheric methane. GlobalBiogeochemCy,1988,1:61–86.
    [139] Apel W A, Dugan, P.R., and Wiebe, M.R., . Use of methanotrophic bacteria in gas phasebioreactorstoabatemethaneincoalmineatmospheres..Fuel,1991,70:1001-1003.
    [140] Sly L I, Bryant, L.J., Cox, J.M., and Anderson, J.M. Development of a biofilter for theremoval of methane from coal mine ventilation atmospheres. . Appl Microbiol Biotechnol,1993,39:400-404.
    [141] Zhong S, Liu Z. Application of ecology in the ecological recovery of open-pit coal minedump.OpencastMiningTechnology,2006,2:51-54.
    [142] Yang C, Zhong N, Wang X, et al. Composition and distribution characteristics of saturatedhydrocarbonsinsurfacesoilsamplesfromacoalmining area.Actapedologicasinica,2007,44:629-636.
    [143] Carini S, Bano N, LeCleir G, et al. Aerobic methane oxidation and methanotrophcommunity composition during seasonal stratification in Mono Lake, California (USA).EnvironmentalMicrobiology,2005,7(8):1127-1138.
    [144] Lin J L, Radajewski S, Eshinimaev B T, et al. Molecular diversity of methanotrophs inTransbaikal soda lake sediments and identification of potentially active populations bystableisotopeprobing.EnvironmentalMicrobiology,2004,6(10):1049-1060.
    [145] Fofor S P, Read J L, Pirrung L S, et al. Light-directed , spatially addressable parallelchemicalsynthesis.Science,1991,251:767-773.
    [146] Dumont M G, Murrell J C. Stable isotope probing - linking microbial identity to function.NatureReviewsMicrobiology,2005,3(6):499-504.
    [147] Weisburg W G, Barns S M, Pelletier D A, et al. 16S ribosomal DNA amplification forphylogeneticstudy.JBacteriol,1991,173:697–703.
    [148] Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) andtemperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie VanLeeuwenhoek International Journal of General and Molecular Microbiology, 1998, 73(1):127-141.
    [149] Costello A M, Lidstrom M E. Molecular characterization of functional and phylogeneticgenes from natural populations of methanotrophs in lake sediments. Applied andEnvironmentalMicrobiology,1999,65(11):5066-5074.
    [150] Neufeld J D, Schafer H, Cox M J, et al. Stable-isotope probing implicates Methylophagaspp and novel Gammaproteobacteria in marine methanol and methylamine metabolism.IsmeJournal,2007,1(6):480-491.
    [151] Hutchens E, Radajewski S, Dumont M G, et al. Analysis of methanotrophic bacteria inMovileCavebystableisotopeprobing.EnvironmentalMicrobiology,2004,6(2):111-120.
    [152]Stralis-PaveseN,SessitschA,WeilharterA,etal.Optimizationofdiagnosticmicroarrayforapplication in analysing landfill methanotroph communities under different plant covers.EnvironmentalMicrobiology,2004,6(4):347-363.
    [153] Chen Y, McNamara N P, Dumont M G, et al. The impact of Calluna-dominated moorlandmanagementonbelow-groundmethanotrophdiversityandactivity.ApplSoilEcol,2008.
    [154] Kalyuzhnaya M G, Zabinsky R, Bowerman S, et al. Fluorescence in situ hybridization-flowcytometry-cell sorting-based method for separation and enrichment of type I and type IImethanotroph populations. Applied and Environmental Microbiology, 2006, 72(6):4293-4301.
    [155]Dedysh SN,Berestovskaya YY,Vasylieva LV,etal. Methylocella tundrae spnov., a novelmethanotrophicbacteriumfromacidic tundrapeatlands.InternationalJournalofSystematicandEvolutionaryMicrobiology,2004,54:151-156.
    [156] Dunfield P F, Khmelenina V N, Suzina N E, et al. Methylocella silvestris sp nov., a novelmethanotroph isolated from an acidic forest cambisol. International Journal of SystematicandEvolutionaryMicrobiology,2003,53:1231-1239.
    [157] Shiemke A K, Cook S A, Miley T, et al. Detergent Solubilization of Membrane-BoundMethane Monooxygenase Requires Plastoquinol Analogs as Electron-Donors. Archives ofBiochemistryandBiophysics,1995,321(2):421-428.
    [158] Lieberman R L, Shrestha D B, Doan P E, et al. Purified particulate methanemonooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclearcopper and a copper-containing cluster. Proceedings of the National Academy of SciencesoftheUnitedStatesofAmerica,2003,100(7):3820-3825.
    [159] Lieberman R L, Doan P E, Hoffman B M, et al. Characterization of the particulate form ofmethane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) andMethylosinusalbusBG8.JournalofInorganicBiochemistry,2001,86(1):316-316.
    [160] Basu P, Katterle B, Andersson K K, et al. The membrane-associated form of methanemono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein.BiochemicalJournal,2003,369:417-427.
    [161] Stolyar S, Costello A M, Peeples T L, et al. Role of multiple gene copies in particulatemethane monooxygenase activity in the methane-oxidizing bacterium MethylococcuscapsulatusBath.Microbiology-Sgm,1999,145:1235-1244.
    [162] Nguyen H H T, Elliott S J, Yip J H K, et al. The particulate methane monooxygenase frommethylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme -Isolationandcharacterization.JournalofBiologicalChemistry,1998,273(14):7957-7966.
    [163] Lamping E, Monk B C, Niimi K, et al. Characterization of three classes of membraneproteins involved in fungal azole resistance by functional hyperexpression inSaccharomycescerevisiaev.EukaryoticCell,2007,6(7):1150-1165.
    [164] Gou Zhongxuan, Xing Xin-Hui, MingFang L, et al. Functional expression of particulatemethane monooxygeanse in recombinantRhodococcus erythropolis. FEMS microbiologyletters,2006,363:136-141.
    [165] Smits T H M, Seeger M A, Witholt B, et al. New alkane-responsive expression vectors forEscherichiacoliandPseudomonas.Plasmid,2001,46(1):16-24.
    [166] 萨姆布鲁克 J, 弗里奇 E F, 曼妮阿蒂斯 T. 分子克隆实验指南(第二版). In. 北京:科学出版社;1993.
    [167]RenYL,XingXH,ZhangC,etal.Asimplified methodforassayofhydrogenaseactivitiesof H-2 evolution and uptake in Enterobacter aerogenes. Biotechnology Letters, 2005,27(14):1029-1033.
    [168] Zhang C, XingXH, Lou K. Rapid detection ofa gfp-marked Enterobacteraerogenesunderanaerobic conditions by aerobic fluorescence recovery. Fems Microbiology Letters, 2005,249(2):211-218.
    [169] Gu J S, Wang Y X, Jiao Q. Biocatalyst preparation from Pseudomonas putida SM-6 forconversion of DL-lactate to pyruvate. Biochemical Engineering Journal, 2005, 22(2):89-96.
    [170]KirschnerA,AltenbuchnerJ,BornscheuerUT.Cloning,expression,andcharacterizationofa Baeyer-Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E-coli.AppliedMicrobiologyandBiotechnology,2007,73(5):1065-1072.
    [171] Yildirim S, Franko T T, Wohlgemuth R, et al. Recombinant chlorobenzene dioxygenasefrom Pseudomonas sp P51: A biocatalyst for regioselective oxidation of aromatic nitriles.AdvancedSynthesis&Catalysis,2005,347(7-8):1060-1072.
    [172] Takeguchi M, Miyakawa K, Okura I. The role of copper in particulate methanemonooxygenase from Methylosinus trichosporium OB3b. Journal of Molecular Catalysisa-Chemical,1999,137(1-3):161-168.
    [173] Park S, Hanna M L, Taylor R T, et al. Batch cultivation of Methylosinus trichosporiumOB3b. I: Production of soluble methane monooxygenase. Biotechnol Bioeng, 1991, 38:423-433.
    [174] 尉迟力, 沈润南, 夏春谷, et al. 外源生长因子对甲烷单加氧酶活性和稳定性的影响.分子催化,1997,11(2):89-94.
    [175] Menge M, Mukherjee J, Scheper T. Application of oxygen vectors to Claviceps purpureacultivation.AppliedMicrobiologyandBiotechnology,2001,55(4):411-416.
    [176] Lai L S T, Tsai T H, Wang T C. Application of oxygen vectors to Aspergillus terreuscultivation.JournalofBioscienceandBioengineering,2002,94(5):453-459.
    [177]Galaction AI, Cascaval D,Oniscu C, et al. Enhancement of oxygen mass transfer in stirredbioreactors using oxygen-vectors. 1. Simulated fermentation broths. Bioprocess andBiosystemsEngineering,2004,26(4):231-238.
    [178]GalactionAI, CascavalD,TurneaM, etal.Enhancementofoxygen masstransferin stirredbioreactors using oxygen-vectors 2. Propionibacterium shermanii broths. Bioprocess andBiosystemsEngineering,2005,27(4):263-271.
    [179] Xu F, Yuan Q P, Zhu Y. Improved production of lycopene and beta-carotene by Blakesleatrisporawithoxygen-vectors.ProcessBiochemistry,2007,42(2):289-293.
    [180] Crolla A, Kennedy K J. Optimization of citric acid production from Candida lipolyticaY-1095usingn-paraffin.JournalofBiotechnology,2001,89(1):27-40.
    [181] Crolla A, Kennedy K J. Fed-batch production of citric acid byCandida lipolytica grown onn-paraffins.JournalofBiotechnology,2004,110(1):73-84.
    [182] 姜文峰. 环氧丙烷生产工艺的改进. 氯碱工业,2005,9:28-29.
    [183] 钱伯章. 环氧丙烷的生产技术进展. 化学推进剂与高分子材料,2006,4(2):14-18.
    [184]Xin J Y, CuiJ R, NiuJ Z, et al. Biosynthesis of methanol frommethane by methanotrophicbacteria in the presence of carbon dioxide. Chinese Journal of Catalysis, 2004, 25(6):471-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700