基于遥感方法的吐鲁番地区农业节水潜力估算与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿洲灌溉农业是吐鲁番地区生存与发展的基础,农业的持续发展是决定吐鲁番地区经济发展的基础。农业是用水大户,水已经成为制约区域经济发展的首要因素。为了整个社会的持续稳定发展,必须进行节水农业以支持工业经济的发展。区域农业节水潜力的分析研究可为水资源的合理开发及利用,节水灌溉工程的建设提供科学依据,为今后节水型农业灌溉等生产实践提供科学理论基础。
     本文利用遥感这一先进技术手段,对农田蒸散发和作物生物量进行遥感定量估算,并在此基础上以作物水分生产率为衡量标准对棉田节水潜力进行了估算,进而对区域可采取的节水灌溉措施进行了分析。本文包括的主要内容如下:
     (1)利用ETWatch遥感模型结合吐鲁番地区的棉花分布图,对吐鲁番地区的棉田的物候期ET进行了估算。结果表明,吐鲁番地区的棉田耗水较大,这与目前该区仍大量采用的大水漫灌、串灌、深灌等大定额灌溉方式有很大关系。棉田耗水在时间上呈单峰分布,4~7月份耗水逐渐增大,8月份达到最大,9月份棉花趋向成熟耗水量回落,基本符合该地区棉田的耗水规律。
     (2)利用遥感数据基于生物量的产生机理对吐鲁番地区棉田生物量产量进行了估算。估算结果与统计数据比较吻合,相对偏差5.6%,与高产区产量相比,吐鲁番地区棉田单产偏低,平均值1450kg/ha,仅为高产田单产(3000kg/ha)的一半。
     (3)在遥感估算的棉田蒸散发和皮棉单产的基础上,根据本文作物水分生产率的定义计算了吐鲁番地区棉田的水分生产率。结果显示,吐鲁番地区棉田的水分生产率相对较低,尚有很大的提升空间,蕴藏着较大的节水潜力。
     (4)在对吐鲁番地区棉田的水分生产率进行频率分析后,综合分析国内外棉田的水分生产率水平与本区域的实际水平,将50%、70%累积频率处对应的水分生产率作为该区域近、远期的目标水分生产率,其对应的水分生产率分别为0.234kg/m~3、0.304kg/m~3。经分析计算,近期目标下,棉田节水潜力可达到2.24亿方;远期目标下,棉田节水潜力可达到4.63亿方。节水潜力随累积频率的增大而减小。低频区域的节水潜力大,高频区域的节水潜力小。若首先选择耗水量大、水分生产率水平相对较低的低产田进行节水改造,其节水效果最明显。
     (5)针对区域自然气候等特征,指出本区域棉田宜采用滴灌这一节水灌溉方式,并辅以农业节水措施如耕作保墒、水肥耦合、化学制剂保水保墒、覆盖保墒、高产栽培模式等以减少无效ET,提高作物的水分利用率。
     本文基于真实节水的概念,以作物水分生产率为出发点,将遥感这一先进技术手段运用到节水潜力的估算中来,其分布式的特征可以充分体现下垫面的空间变异性。由于每种作物的耗水特性、生理特性等都有所不同,故本文以单一作物的水分生产率代替区域综合粮食水分生产率进行分析,以当地的主要种植作物棉花为例,深入分析其耗水特性、生长规律等以使节水潜力的估算更加准确合理。
Oasis irrigated agriculture is the basis for survival and development of the Turpan region, the sustainable development of agriculture is to determine the Turpan region's economic development. Agriculture is the major water users; water has become a primary constraining factor in regional economic development. In order to sustained and stable development of society as a whole, water-saving agriculture must be carried out to support industrial economic development. And the analysis and research of the regional agricultural water-saving potential provides a scientific basis for rational development and utilization of water resources, the construction of water-saving irrigation project and a scientific theoretical basis for the future water-saving irrigation practices.
     In this paper, a quantitative estimation of farmland evapotranspiration (ET) and crop biomass have been made making use of advanced remote sensing technology. On this basis, estimated the water-saving potential of cotton farmland as measurement strategy of crop water productivity and then analyzed the available water-saving irrigation measures.
     The main elements included in this article are as follows:
     (1) Estimated the evapotranspiration of cotton field on the Turpan region making use of ETWatch remote sensing model and cotton distribution map of Turpan. The result showed that in the Turpan region the water consumption of cotton is higher which is related to the current irrigation method such as flood irrigation, string irrigation, deep irrigation and other large scale irrigation methods. The water consumption showed a single peak distribution with time. The water consumption is gradually increasing between April to July, got the maximum in August and dropped in September because of the cotton's mature. These processes are basically in line with the local cotton's water consumption discipline.
     (2) Estimated the biomass and yield of cotton field on the Turpan region based on biomass generation mechanism making use of remote sensing data and cotton distribution map of Turpan. The estimated result and the statistic data are neared with the relative deviation of 5.6%. Compared with the production of high-yielding areas, cotton yields in the Turpan region is low with an average value of 1450kg/ha, only a half of high-yield area (3000kg/ha).
     (3) Calculated crop water productivity in cotton fields of Turpan region on the base of the remote sensing estimation of the cotton evapotranspiration and lint yield, according to this definition. The result showed the level of water productivity of cotton field on Turpan region is relatively low, which implied that there is a considerable room for water productivity and a large potential for water-saving.
     (4) Carried out the frequency analysis on crop water productivity of cotton field in the Turpan area and a comprehensive analysis of water productivity levels in cotton fields at home and abroad with the actual level of the region. The crop water productivity corresponding to 50%, 70% of the cumulative frequency would be the short-term and long term goal of water productivity, respectively 0.234kg/m3, 0.304kg/m3. The result showed that the cotton field water-saving potential could reach 224 million square under the short-term goal; the cotton field water-saving potential could reach 463 million square under the long-term goal. With the accumulated frequency increasing, the water-saving potential is reduced. In the Low-frequency region the water-saving potential is high while in the high-frequency region the water-saving potential is low. If carried out water-saving transformation on large water consumption, relatively low levels of water productivity of low-yielding fields, the effect of water-saving would be most obvious.
     (5) Considering the regional characteristics of the natural climate, planting condition, pointed out that the water-saving irrigation measures should adopt the drip irrigation, supplemented by agricultural water-saving measures, such as farming preservation of soil moisture, water and fertilizer coupling, chemical preparation, covering preservation of soil moisture, high-yielding planting patterns in order to reduce the invalid ET and improve the crop water productivity.
     Based on the real water-saving concept, using the crop water productivity as the starting point, the advanced technological means of remote sensing was applied to water-saving potential the estimation, which distributed features can fully reflect the spatial variation of the underlying surface. Because each type of crop water consumption characteristics, physiological characteristics are so different, therefore, in this paper, single crop water productivity, instead of the regional comprehensive crop water productivity was analyzed. As for the main local crops of cotton, for example, a profound analysis of their water characteristics, growth pattern and so on were carried out in order to more accuracy and reasonableness estimation on water-saving potential.
引文
[1]孙敏章,刘作新,吴炳方,等.卫星遥感监测ET技术及其在水管理方面人应用[J].水科学进展,2004,16(3):468-473.
    [2]Seckler D.The new era of water resources management:from dry to wet water savings[R].IWMI Research Report No.1,IIMI,Colombo,1996:1-14.
    [3]Solomon K H,Davidoff B.Relating unit and subunit irrigation performance[J].Transactions of t he ASAE,1999,42(1):115-122.
    [4]Tuong T P,Bhuiyan S I.Increasing water-use efficiency in rice production:farm-lever perspectives[J].Agricultural Water Management,1999,40(3):117-122.
    [5]Guerra L C,Bhuiyan S I,Tuong T P,et al.Producing more rice with less water.SWIM Paper 5[R].International Water Management Institute,Colombo,Sri Lanka,1998:29.
    [6]茆智.节水潜力分析要考虑尺度效应[J].中国水利,2005,(15):14-15.
    [7]朱庭云,陈玉英,王希英,等.灌溉回归水利用(续)[J].灌溉排水,1982,1(3):28-33.
    [8]聂杰..太湖平原水田区灌溉回归水分析[J].农田水利与小水电,1992,(2):2-5.
    [9]刘日顺.水田灌溉可利用回归水推估模式之研究[D].中原大学,2001.
    [10]张新,崔远来,董斌.回归水模拟的系统动力学模型[J].灌溉排水学报,2005,24(1):57-62.
    [11]崔远来,张新,罗玉峰,等.稻田回归水模拟及其评价[J].灌溉排水学报,2005,24(5):1-4.
    [12]蔡学良,崔远来,代俊峰,等.长藤结瓜灌溉系统回归水重复利用[J].武汉大学学报(工学版),2007,40(2):46-50.
    [13]李海霞,包淑萍,马如国,等.宁夏清水河扬水灌区灌溉回归水初步分析[J].宁夏工程技术,2007,6(2):104-107.
    [14]罗玉丽,姜丙洲,刘喜凤.黑河干流中游灌区节水量计算方法初探[J].节水灌溉,2008,(3):9-15.
    [15]Gosain A K,Rao S,Srinivasan R,et al.Return-flow assessment for irrigation command in the Palleru river basin using SWAT model[J].Hydrological Processes,2005,19(3):673-682.
    [16]Chappell N A,Vongtanaboon S,Yi J,et al.Return-flow prediction and buffer designation in two rainforest headwaters[J].Forest Ecology and Management,2006,224(1-2):131-146.
    [17]Dewandel B,Gandolfi J M,De C D,et al.An efficient methodology for estimating irrigation return flow coefficient s of irrigated crops at watershed and seasonal scale[J].Hydroiogical Processes,2008,22(11):1700-1712.
    [18]Mohan S,Vijayalakshmi D P.Prediction of irrigation return flows through a hierarchical modeling approach[J].Agricultural water management,2009,96(2):233-246.
    [19]田园.论引进卫星遥感监测ET(蒸发蒸腾量)技术的必要性[A].中国灌溉排水发展中心,水利部GEF海河流域项目办公室.利用遥感监测ET技术研究及应用[C].北京:中国农业科学技术出版社,2003.
    [20]Serageldin 1.Looking ahead:water,life and the environment in the twenty-first century[J].Water Resources Development.1999,15(1-2):17-28.
    [21]Molden D J,Sakthivadivei R.Water accounting to assess use and productivity of water[J].Water Resources Development.1999,1(1-2):55-71.
    [22]段爱旺.水分利用效率的内涵及使用中需要注意的问题[J].灌溉排水学报,2005,24(1):8-11.
    [23]李英.长江流域节水潜力及管理分析[J].人民长江,2001,32(11):40-42.
    [24]彭芳,田军仓,张富国.宁夏引黄灌区发展节水农业的途径及潜力分析[J].宁夏农林技,2004,(2):35-38.
    [25]邓良斌.广东省节水潜力分析[J].广东水利水电,2004,(4):59-63.
    [26]左燕霞.农业节水潜力分析与灌溉用水优化配置研究——以南水北调中线工程河北受水区为例[D].甘肃农业大学,2007.
    [27]胡成彦,刘列涛.吉林省农业用水节水潜力分析[J].吉林水利,2007,(306):37-38
    [28]蒋礼平.地下水资源可持续利用——资源节水基本概念[A].中国灌溉排水发展中心,水利部GEF海河流域项目办公室.利用遥感监测ET技术研究及应用[C].北京:中国农业科学技术出版社,2003.
    [29]李志宏.海河流域农田“真实”节水措施与对策[A].中国灌溉排水发展中心,水利部GEF海河流域项目办公室.利用遥感监测ET技术研究及应用[C].北京:中国农业科学技术出版社,2003.
    [30]Rual R,Vicente C.A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data[J].Remote Sensing of Environment,2004,(93):68-76.
    [31]Varni M,Usunoff E,Weinzettel P,et al.The groundwater recharge in the Azul aquifer,central Buenos Aires Province,Argentina[J].Physics and Chemistry of the Earth,1999,24(4):349-352.
    [32]李黔湘,王华斌,白忠,等.卫星遥感监测蒸腾蒸发量(ET)精度校验——以北京市GEF海河项目为例[J].水利水电技术,2008,39(7):1-3.
    [33]于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法[M].北京:高等到教育出版社.2006.
    [34]熊隽.基于MODIS数据的双温双源蒸散发模型研究[D].中国科学院遥感应用研究所,2008
    [35]Choudhury B J,Ahmed N U,Idso S B,et al.Relations between evaporation coefficients and vegetation indices studied by model simulations,Remote Sensing of Environment,1994,(50):1-17
    [36]Choudhury B J,ldso S B,Reginato J R.Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation[J].Agricultural and Forest Meteorology,1987,(39):283-297.
    [37]Su Z.A Surface Energy balance System(SEBS) for estimation of turbulent heat fluxes from point to continental scale[A].in Z Su and C Jacobs,(eds.),Advanced Earth Observation Land Surface Climate,Publications of the National Remote Sensing Board BCRS C.2001.USP 22,01202,91-108.
    [38]Bastiaanssen W G M,Menenti M,Feddes R A,et al.The Surface Energy Balance Algorithm for Land(SEBAL):Part 1 formulation[J].Journal of Hydrology.1998,212-213:198-212.
    [39]吴炳方,熊隽,闫娜娜,等.基于遥感的区域蒸散量监测方法一ETWatch[J].水科学进展.2008,19(5):671-678.
    [40]Hansen M C,Roy,D.P.,Lindquist,E.,Adusei,B.,Justice,C.O.,& Altstatt,A.(2008).A method for integrating MODIS and Landsat data for systematic monitoring of forest covers and changes in the Congo Basin.Remote Sensing of Environment,112,2495-2513.
    [41]Gao F,Masek J,Schwaller M,et al.On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J].IEEE Transactions on Geosciences and Remote Sensing,2006,(44):2207-2218.
    [42]Hilker T,Michael A W,Nicholas C,et al.A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J].Remote Sensing of Environment,2009,(113):1613-1627.
    [43]李玉义,篷焕成,张海林,等.新疆石河子垦区棉田水分生产效率变化动态及其潜力[J].资源科学,2008,30(1):72-77.
    [44]李少昆,王崇桃,汪朝阳,等.北疆高产棉花根系构型与动态建成的研究[J].棉花学 报,2000,12(2):67-72.
    [45]赵英时.遥感应用与分析原理与方法[M].北京:科学出版社,2003.
    [46]潘维侍,李利村,高正衡.两个不同地域类型杉木林的生物产量和营养元素分布[J].中南林业科技,1979,(4):1-14.
    [47]Field C B,Randerson J T,Maimstrom C M.Global net primary production:combining ecology and remote sensing[J].Remote Sensing of Environmental,1995,(51):74-88.
    [48]Sellers P J,Mintz Y,Sud Y C,et al.A Simple Model(SiB) for Use within General Circulation Models[J].Journal of the atmospheric sciences,1985,43(6):505-531.
    [49]Wim G M,Bastiaanssen,Samia A.A new crop yield forecasting model based on satellite measurements applied across the Indus Basin,Pakistan[J].Agriculture,Ecosystems &Environment,2003,94(3):321-340
    [50]Sellers P J,Schimel D.Remote sensing of the land biosphere and biogeochemistry in the EOS era:science priorities,methods and implementation—EOS land biosphere and biogeochemical cycles panels[J].Global and Planetary Change,1993,7(4):279-297.
    [51]Sellers P J,Meeson B W,Hal F G,et al.Remote sensing of the land surface for studies of global change:Models—algorithms—experiments[J].Remote Sensing of Environment,1995,51(1):3-26.
    [52]彭少麟,郭志华,王伯荪.RS和GIS在植被生态学中的应用及其前景[J].生态学杂志.1999,18(5):52-64.
    [53]朱文泉,陈云浩,潘耀忠,等.基于GIS和RS的中国植被光利用率估算[J].武汉大学学报(信息科学版)2004,29(8):694-698.
    [54]吐鲁番地区统计局.吐鲁番统计年鉴2007[M].北京:中国统计出版社.2007.
    [55]李少昆,李蒙春,马富裕,等.北疆棉花超高产生理基础的初步研究[J].新疆农垦科技,1997,(3):6-8.
    [516]吴路萌,陆成汉.粮食供应水分生产率分析计算与思考[J].节水灌溉,2005,(3):36-37.
    [57]Ali M H,Talukder M S U.Increasing water productivity in crop production-a synthesis[J].Agricultural Water Management,2008,(95):1201-1213.
    [58]Sander J,Zwart,Wim G.M,et al.Review of measured crop water productivity values for irrigated wheat,rice,cotton and maize[J].Agricultural Water Management,2004,(69):115-133.
    [59]郭宗楼.节水灌溉工程[M].杭州:浙江大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700