低扬程大型泵站过渡过程特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低扬程大型泵站主要用于提水排涝、灌溉工程及国家战略性调水工程中。21世纪,解决水资源问题是世界诸多国家头等重要的大事。就我国而言,一方面北方缺水是多年以来急切需要解决的突出问题;另一方面,南方特别是华东、中南各省(市)在雨季及时排涝也是关系到国民经济发展和人民生命财产安全的大事。如何使低扬程大型泵站安全、可靠地运行,掌握其起动和停机时的过渡过程特性是非常必要的。
     本文主要以带虹吸式出水流道的大型低扬程泵站为对象研究泵站的起动过渡过程特性。针对虹吸式出水流道分析机组起动开始到水流越过驼峰为止过渡过程的水动力特性。假设流道属刚性管系,不计水体压缩性,推导出了起动任意时刻泵扬程和力矩表达式。假设流道内气体未达虹吸驼峰顶处真空破坏阀排气压力前的起动过渡过程处于绝热压缩状态,运用能量方程结合动量方程和刚性水击理论,计算分析出了流道中的气体压力在起动过渡过程中的变化规律。运用前人提出的电动机起动过程中瞬态端电压的近似计算公式,首次提出起动过程计及电动机定子端电压变化影响的电磁力矩的近似实用表达式。在分析各力矩表达式的基础上,联合泵装置水动力特性和空气动力特性的表达式首次建立起表达泵系统起动动态特性数学模型。针对数学模型的具体形式,寻求求解的具体数值方法,并进行编程求解,揭示出大型低扬程泵站起动过渡过程的特性。
     在大型低扬程泵站中,当水力装置水头较低,管道较短时,发生水击的相数很高,无需考虑系统弹性的影响。因此在基于能量特性的低扬程大型泵站停泵过渡过程特性研究中,利用刚性水锤理论分析了大型低扬程泵站停泵过渡过程中泵机组动力特性、泵装置水动力特性及流体动力学有压非恒定管流运动特性等,推导出了低扬程泵装置停泵过渡过程力矩平衡方程,分别建立了停泵动态过程(正转正流、正转逆流、逆转逆流)中泵及泵装置诸工作参数随时间变化的数学模型。为适应工程实际的需要,针对大型低扬程泵站过渡过程的具体特点,把一维管流刚性水击基本方程与水泵全特性曲线苏特变换方程结合起来,对事故停泵时泵处的边界条件方程进行改进,首次提出大型低扬程泵站停泵过渡过程简易计算方法的数学模型,揭示了大型低扬程泵站停泵过渡过程中各种重要参数诸如转速、流量、扬程、转矩等随时间变化关系。在推导过程中首次提出了利用苏特全特性曲线求停泵过渡过程中水泵流量-扬程曲线的方法,建立了停泵过渡过程简易计算的力矩平衡方程式,利用水泵全特性曲线的矩形域最小二乘曲面拟合的数学模型和停泵动态特性计算联合求解的方法。本文所提出的停泵过渡过程理论解决了以往对低扬程大型泵站停泵过渡过程无法求解的难点,对泵站的合理设计和安全可靠运行具有重要的理论意义和实用价值。
     论文还结合淮阴一站、淮阴二站、樊口泵站和花兰窖泵站具体工程资料对本文所提出的起动和停泵过程几种计算模型的正确性进行了验证。实例验证表明,本文所建数学模型是正确的,可供泵站工程研究、设计、运行应用。
The large-scale pumping station with low head is mainly applied in important water-lifting, drainge and irrigation engineering and water regulation of state stragitic importance. The water resource problem has been a most importance event in the 21st century. The north parts of China is very short of water, on another hand drainge in the rain season in southern area as Anhui, Jiangsu, Zhejiang, Hunan, Hubei province and Shanghai City becomes an important event regarding to state economical development and people's lifes. So it is necessary how to make the operation of large-scale pumping station with low head safe and reliable and understand its transient charactistics during start-up and shut-down process.
     This paper takes the large-scale pumping station of low head with siphon discharge as the objective for transient characteristics research during start-up process. The dynamic process during this transient period with regard to siphon discharge was researched. The flow passage was supposed to be rigid system, also the compressity of water wasn't considered, the expression of torque relate to head at any time during start-up was derived. It is assumed that it is adiabatic compression during start-up process before the atmophere pressure in flow passage rise to relief pressure, the thermodynamic equation, momentum equation and rigid water hammer theroy have been applied for the analysis and calculation the variation law of air during this transient process. Formula for approximate estimation of transient voltage during this process was obtained, also an useful expression for the electromagnetism moment was gained. At the end, expression for various torque calculation was analyzed, so the machematical model for the dynamic characteristics during pump start-up based on the hydro-dynamic characteristics of pump and gas-dynamic characteristics of air was constructed in this paper. A program solution for this problem was found in order to search the specific numerical method with regard to different kind of form of this mathematical model.
     In large-scale pumping station, the head is low and normally the flow passage is short, thus the phase number for water hammer is high and therefore the system compressiblity can be neglected. During the transient characteristics research based on performance characteristics of large-scal pumping station during shut-down process, the compressible water hammer theroy was not considered, a theretical analysis about the dynamic characteristics of pump unit, and pump system and the flow characteristics of unsteady pipe flow under pressure during shut-down process, and so on, were done. The mathematical model was also obtained for various condition, and the calculation solution for specific mathematical model was carried out. In order to simplify the calculation and meet the practical engineering need, aimed at the specific features of the transient process of low head large-scale pumping station, applying the basic equation of rigid water hammer for one dimensional pipe flow in conjuction with transformation equation of pump's full Suter characteristics curves, the boundary condition at pump when pump been suddenly shut down was adapted. Methamatical model for simple transient calculation during pump shut-down process for large-scale pumping station was put forwad for the first time in conjuction with the hydraulic characteristic of pump system. The main aim of this paper is to discover the relation between various important parameters such as speed, discharge, head, torque with regard to time. In the derivation, full Suter characteristics curves to detetmine the relationship between head and discharge was used, and the torque balance equation during pump shut-down process was built for the first time, and a method using mathematical model based on pump full characteristics curves coupling with the dynamic characteristics during pump shut-down process was applied for the first time. So the transient theroy during pump shut-down stated in this paper has solved the difficulty which is impossible to solve in the past for large-scale low head pumping station, therefore it has significant theoretical meaning and practical value for reasonable design, safe and reliable operation for pumping station.
     Furthermore, validation about several computation models for start-up and shut-down process established in this paper with regard to specific engineering references, such as Huiyin Pumping Station I, Huiyin Pumping Station II, Fankou Pumping Station and Hualanjiao Pumping Station was made. It was found that the mathematical models constructed in this paper is right and therefore could be applied in research, design and operation of pumping engineering.
引文
[1]关醒凡编著.现代泵技术手册.北京:宇航出版社,1995
    [2]仇宝云.南水北调工程泵装置理论与关键技术研究.[博士学位论文],江苏大学,2004
    [3]水利部农村水利司,中国灌溉排水发展中心.我国大中型泵站更新改造规划报告.2003
    [4]张修真主编.南水北调-中国可持续发展的支撑工程.北京:中国水利水电出版社,1999
    [5]丁浩.水电站压力引水系统非恒定流.北京:水利电力出版社,1986
    [6]M.H.Chaudry著,陈家远等译.实用水力过渡过程.四川省水力发电工程学会,1985
    [7]刘竹溪,刘光临.泵站水锤及其防护.北京:水利电力出版社,1988
    [8]Wylie E B,Streeter V L,Suo L.Fluid Transient in Systems.Prentice-Hall,Englewood cliffs,N.J.1993
    [9]西北农学院农水教研组.利用爆破膜防止泵站水锤的试验研究.西北农学院学报,1973(3)
    [10][美]E B怀利,V L斯特里特.瞬变流.北京:水利电力出版社,1983
    [11]魏先导.水力机组过渡过程计算.北京:水利电力出版社,1991
    [12]刘光临,郭满华.水泵全面特性曲线的计算机仿真.水利学报,1998(8):1-7
    [13]龚时宏,刘光临.离心泵全特性若干问题研究.农业机械学报,1994,25(4):38-43
    [14]刘光临,蒋劲等.泵站水锤阀调节防护试验研究.武汉水利电力大学学报,1991,12
    [15]杨建东.导叶关闭规律的优化及对水力过渡过程的影响.水力发电学报,1999(2):75-83
    [16]刘梅清,冯卫民.单项调压塔防水锤特性的数值模拟与研究.水利学报,1995(10):23-28
    [17]刘光临,刘梅清,贾琦.泵系统中调压塔水锤防护特性研究.水利学报,1995(3):1-11
    [18]刘光临,刘梅清.多泵并串联复杂系统水锤分析及控制.农业机械学报,1998,29(3):59-64
    [19]刘梅清,刘光临,冯卫民.大型泵站水力过渡过程计算及蓄能式液压启闭闸门的研究.农业机械学报,2000,31(3):55-58
    [20]刘光临,邓华.伴随液柱分离的泵系统水锤计算与研究.水利学报,1995(12):17-22
    [21]翁晓红,匡许衡,宋元胜等.进排气阀压力涌浪的防护特性研究.中国农村水利水电,1998(8).29-31
    [22]金锥,姜乃昌,汪兴华.停泵水锤及其防护.北京:中国建筑工业出版社,1993
    [23]丁峰,彭永臻,高春娣.水泵管道布置对瞬变过程断流形态与弥合升压的影响.给水排水,1997,25(7):62-64
    [24]索丽生,刘宇敏,张键.气垫调压室的体型优化计算.河海大学学报,1998,26(6):11-15
    [25]杨晓东,栾鸿儒.泵站水锤计算中的自动分段法.给水排水,1993,3
    [26]栾鸿儒,杨晓东.逆止阀旁通管消除水锤的研究和计算.水泵技术,1987,3
    [27]杨晓东,朱满林,李郁侠.装有进排气阀的长压力输水系统水锤计算研究.水利学报,1998(1):60-64
    [28]杨晓东,朱满林.微阻缓闭止回阀的水锤防护研究.给水排水,1998,24(5):60-63
    [29]杨晓东,朱满林.液控蝶阀在长距离压力管道中的应用.中国给水排水,1998,14(5):53-54
    [30]姚青云.泵站水锤两阶段关闭调节防护.宁夏农学院学报,1997,18(1):36-39
    [31]严登丰著.泵站过流设施与截流闭锁装置.北京:中国水利水电出版社,2000
    [32]严登丰编著.泵站工程.北京:中国水利水电出版社,2005
    [33]中华人民共和国国家标准.泵站设计规范.GB/T50265-97.北京:中国计划出版社,1997
    [34]王学芳,叶宏开,汤荣鸣,何枫.工业管道中的水锤.北京:科学出版社,1995
    [35]叶宏开,刘宇敏,张键.管道中由气泡时的水锤计算.清华大学学报,1993,5
    [36]储训,陈履编著.大型泵站建设和更新改造对策.南京:河海大学出版社,2000
    [37]李彦军.低扬程大型泵站停泵动态特性理论研究.[硕士学位论文],扬州大学,2003
    [38]江苏机电排灌工程研究所.淮阴泵站起动与停泵动态特性试验研究报告.1998
    [39]江苏农学院.樊口泵站起动、停泵动态特性试验研究报告(一),1989
    [40]沈日迈主编.江都排灌站(第3版).北京:水利电力出版社,1986
    [41]#12
    [42]严登丰,刘超.泵系统起动动态特性计算.水利学报,1989(1)
    [43]湖北省水利勘测设计院.水利水电勘测设计(樊口泵站技术讨论会专刊),1982(1)
    [44]陈松山.大型轴流泵停泵动态特性理论研究.[硕士学位论文],江苏农学院,1993
    [45]严登丰.关于泵站拍门的模拟问题.水利水电技术,1979(9)
    [46]陈炎炉主编.大型电力排灌站.北京:水利电力出版社,1984
    [47]杨开林.电站与泵站中的水力瞬变及调节.北京:中国水利水电出版社,2000
    [48]杨西侠,廖莉,林家恒.基于遗传算法的供水泵站优化控制研究.应用基础与工程科 学学报,1999.7(2):210-214
    [49]周东华,孙优贤.控制系统的故障检测与诊断技术.北京:清华大学出版社,1999
    [50]周诗海,佘长明.混流泵断流方式的思考.排灌机械,2001,19(2):27-28
    [51]朱兴福,朱平,莫岳平等.软起动技术在泵站中的应用研究.中国农村水利水电,2003(6):31-33
    [52]杨鹏,吴桂峰.计算机网络在水利枢纽中的应用研究.排灌机械,2000,18(1)
    [53]马太玲,袁保惠.灌溉泵站变频调速实用性及经济性分析.排灌机械,2001,19(2):19-21
    [54]朱建军,吕省三.浅析大型泵站技术供水设计中存在的问题.排灌机械,2001,19(2):22-24
    [55]储训,陈履,钱钧.大型泵站科学管理对策.排灌机械,200l,19(4):3-7
    [56]罗仕宏,朱华明,刘朝福等.大型双向X型流道泵站机组减振技术研究.排灌机械,2001,19(4):18-20
    [57]李生玉.固海扬水工程泵站调查与改造技术.排灌机械,2001,19(5):21-23
    [58]Scholz.M.A learing Strategy for neural networks based on a modified evolutionary strategy.In Proc.Parallel Problem Solving from Nature,H.P.Schwefel and R.Manner,Eds.Heidelberg:Springer Verlag,1991
    [59]金希东,李治.遗传-灾变算法及其在神经网络和控制系统中的应用.神经网络理论与应用研究.成都:西南交大出版社,1996
    [60]Fenrich,H.J.,Lautenbach,K..System modeling with high level Petri nets.Theor.Comput.Sci.,Vol13(198)
    [61]袁崇义.PETRI网原理.北京:电子工业出版社,1998
    [62]Committee Draft ISO/IEC 15909,High-level Petri Nets - Concepts,Definitions and Graphical Notation.Version 3.4,October 2,1997
    [63]朗文辉,黄胜,骆德汉.卷接机组故障诊断德模糊行为PETRI网研究.振动,测试与诊断,Vol19(4)
    [64]Gunter Rodolph.Convergence analysis of canonical genetic algorithms.IEEE transactions on neural networks,1994,5(1)
    [65]Xiaofeng Qi and Francesco Palmeri.Theoretical Analysis of Evolutionary Algorithms with an Infinite Population Size in Continuous Space,Part Ⅰ:Basic Prroperties of Selection and Mutation.IEEE transactions on neural networks,1994,5(1)
    [66]Xiaofeng Qi and Francesco Palmeri.Theoretical Analysis of Evolutionary Algorithms with an Infinite Population Size in Continuous Space,Part Ⅱ:Basic Prroperties of Selection and Mutation.IEEE transactions on neural networks,1994,5(1)
    [67]Michael O.Odetayo.Knowledge acquisition and adaption:a generic approach.Expert System.1995,12(1)
    [68]Leung Y W,Wang Y P.An orthogonal genetic algorithms with quantization for global numerical optimization.Hong Kong:Hong Kong Baptist University,1999
    [69]Back T,Hoffmeister F.Extended selection mechanisms in generic algorithms.In Proc 4~(th)Conf Generic Algorithm,199 l
    [70]Pal N R,Nandi S,et al.Self-Crossover- a new genetic operator and its application to feather selection.International journal of System Science,1998,29(2)
    [71]Srinivas M,Pataikl M.Adaptive probabilities of crossover and mutation in genetic algorithms.IEEE Trans Syst Man,Cybern,1994,24(4)
    [72]Davis L,Adaptive operator probabilities in genetic algorithms.In Proc 3~(rd) In Conf Genetic Algorithm.1989
    [73]Yen J.A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex Method.IEEE Tran Syat Man,Cybern,1998,28(2)
    [74]Peng Chen.Plant Inspection and Diagnosis Robot for the Detection of a Failure Machine Part by GA ContrOl.Proc.Of 1998 IEEE/RSJ International Conference on Intelligent Robot and System(IROS'98),Vol.3,1998,1664-1669
    [75]Peng Chen.Failure Diagnosis for Gear Equipment by Rough Sets and Partially-linearized Neural Network,Proc.Of International Conference on Advanced Mechatronics (ICAM'98).1998,808-813
    [76]陈山鹏。异常诊断のための齿车装置の动特性解析。日本设备管理学会志。Vol.10.no.1,1998,8-14
    [77]#12
    [78]Peng Chen.Self-reorganization of symptom parameters in frequency domain for failure diagosis by genetic algorithms.Journal of Intelligent & Fuzzy System,IOS Press,1998,Vol.6 No.1,27-37
    [79]严登丰,刘超,金禾.淮阴泵站起动试验研究.江苏农学院学报,1988(4)
    [80]袁寿其.低比转速离心泵理论与设计.北京:机械工业出版社,1997
    [81]陈新芳.大型轴流泵起动动态特性计算.华东水利学院学报,1979(3)
    [82]刘大恺.大型轴流泵装置的研究.排灌机械论文集,1980
    [83][日]泵技术者联盟水泵手册编委会编,严登丰译.水泵手册.北京:水利电力出版社,1983
    [84][日]秋元德三著,支培法、徐关泉、严亚芳译.水击与压力脉动.北京:电力工业出版社,1987
    [85]扬州大学.谏壁抽水站综合技术改造水泵装置模型试验研究报告.2003年9月
    [86]江苏机电排灌工程研究所.大型贯流泵泵站起动动态特性计算分析.2000年6月
    [87]齐藤纯夫(Sumio SAITO).ポンプ起动时の过渡特性.日本机械学会论文集(B篇)第47卷419号,NO.7,1981
    [88]A.A洛马金著,梁荣厚译.离心泵与轴流泵.北京:机械工业出版社,1978
    [89][美]A.J.斯捷潘诺夫.离心泵和轴流泵.北京:中国工业出版社,1965
    [90]陈玉璞等编著.流体动力学.南京:河海大学出版社,1986
    [91]吴望一.流体力学.北京:北京大学出版社,1983
    [92](苏)B·Ф切巴耶夫斯基主编,窦以松等译.泵站设计与抽水装置试验.北京:水利电力出版社,1989
    [93](日)秋元德三著,支培法、徐关泉、严亚芳译.水击与压力脉动.北京:电力工业出版社,1987
    [94]陆伟刚.泵站油压快速闸门理论和设计研究.江苏农学院硕士学位论文,1990
    [95]张大群.泵站拍门的动态系统分析与优化设计探讨.水利水电技术,1984(6)
    [96]冯汉民主编.水泵学.北京:水利电力出版社,1991
    [97]陆佑楣,潘家铮.抽水蓄能电站.北京:水利电力出版社,1992
    [98]张善杰,唐汉,高瑞章.实用计算方法.南京:南京大学出版社,1998
    [99](美)D.Hanselman,B.littlefield著,张航,黄攀译.精通MATLAB6.北京:清华大学出版社,2002
    [100]龚剑,朱亮.MATLAB 5.X入门与提高.北京:清华大学出版社,2000
    [101]何强,何英.MATLAB扩展编程.北京:清华大学出版社,2002
    [102]王林锁,索丽生,刘德有.可逆式水泵水轮机全特性曲线处理新方法.水力发电学报,2000(3):68-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700