大跨空间结构采用粘滞阻尼器的减震分析和优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以双层柱面网壳为主要研究对象,围绕大跨空间结构采用粘滞阻尼器的减震分析和阻尼器位置优化设计进行了研究,并通过某火车站站房结构的减震设计,解决了粘滞阻尼器在大跨空间结构中的实用问题。主要研究成果如下:
     1.首先以网壳结构为对象阐述了粘滞阻尼器的减震原理,然后论证了时程分析法和能量设计法能很好地用于大跨空间结构的减震分析;
     2.考虑阻尼器不同的设置方式、设置位置和数量、阻尼系数,不同网壳矢跨比,线性阻尼器与非线性阻尼器的对比等,分别在单向地震波和三向地震波下进行了双层柱面网壳的减震分析,总结了影响减震效果的主要参数和影响规律。结果表明,采用粘滞阻尼器的减震方法可行,效果显著;
     3.对大跨空间结构中粘滞阻尼器位置优化进行了研究,提出了将阻尼器位置优化的目标转化为最大化所有替换杆件的模态应变能百分比之和的思路,建立了简单实用的优化数学模型,采用遗传算法编制了相应的优化程序VDLO(Viscous Dampers’Location Optimization);
     4.应用编制的VDLO程序,计算了3个双层柱面网壳中阻尼器位置优化的算例,结果验证了程序的正确性。在此基础上,分析了网壳矢跨比对阻尼器最优位置的影响,总结出双层柱面网壳中阻尼器的优化布置规律,对实际工程具有重要的应用价值。规律表明,对于矢跨比1/4的网壳,阻尼器应选择替换1/4跨中的横向上弦杆;当矢跨比增大到1/3及以上时,阻尼器除横向弦杆外,应考虑替换一部分1/4跨中的腹杆;当矢跨比减小到1/5及以下时,阻尼器应选择替换1/4跨中的横向下弦杆;
     5.采用粘滞阻尼器并应用上述优化布置规律,对某火车站站房结构进行了减震设计。结果表明优化布置后的阻尼器减震效果显著,与未采用阻尼器的方案相比,内力、位移明显减小,且使结构能满足“中震不坏,大震可修”的抗震设防目标。同时还验证了优化布置规律的正确性。
This thesis studies the seismic control on large-span space structures, primarily on double-layer cylindrical latticed shells with viscous dampers and their optimal locations, and solves the applied problem of viscous dampers in large-span space structures according to the seismic control design of a railway station hall. The main achievements of this thesis are shown as following.
     1. The principle of seismic control of viscous dampers is illustrated for latticed shells, and it is demonstrated that the time-history analysis method and the energy method are applicable for the seismic control design of large-span space structures.
     2. Considering different setting manners, locations, numbers, and damping coefficients of viscous dampers, and multiple rise-span ratios of latticed shells and the comparison between linear dampers and nonlinear ones, the parameter analysis of seismic control of double-layer cylindrical latticed shells is carried out by inputting earthquake waves along one direction and three directions respectively. Then the important parameters and the corresponding rules are concluded which influence the effect of seismic control of viscous dampers on latticed shells. The results indicate that this seismic control method using viscous dampers is feasible and the control effect is remarkable.
     3. The optimal locations of viscous dampers are investigated in large-span space structures. Firstly a thread is put that the location optimization of dampers can be transformed into maximizing the sum of the percentage of modal strain energy of total replaced members, and then a simple and applicable mathematical model is built up, finally an optimization program named VDLO (Viscous Dampers' Location Optimization) is accomplished using Genetic Algorithm.
     4. The VDLO program is applied to 3 examples of searching optimal locations of viscous dampers in double-layer cylindrical latticed shells, and the results confirm the validity of the program. On the basis of this, the effect of the rise-span ratio of latticed shells is studied on optimal locations of dampers, and the rules of optimal locations of dampers are summarized in double-layer cylindrical latticed shells, which are available for practical engineering. The rules show that in the latticed shells with rise-span ratio of 1/4 dampers should replace the transverse top-chord members located in 1/4 span, and when the rise-span ratio of latticed shell increases to 1/3 or more, dampers should be considered replacing a part of web members located in 1/4 span besides the transverse chord members, and when the rise-span ratio of latticed shell decreases to 1/5 or less, dampers should replace the transverse bottom-chord members located in 1/4 span.
     5. The seismic control design of a railway station hall is finished by using viscous dampers and the above rules of location optimization. The results indicate that in comparison with the original structure without dampers, after the locations of dampers are optimized the effect of seismic control is obvious and the structural internal forces and displacements are reduced evidently so that the structure satisfies the seismic fortification criterion "no damage under moderate earthquake, repairable under rare earthquake". At the same time, it is proved that the rules of location optimization of dampers are correct.
引文
[1] 周福霖.工程结构减震控制.北京:地震出版社,1997
    [2] J.T.P.Yao. Concept of structure control. ASCE, Journal of Structural Division, 1972, 98(7):1567-1574
    [3] 王光远.高耸结构风振控制.高耸结构学术交流会,1980
    [4] 阎维明,周福霖,谭平.土木工程结构振动控制的研究进展.世界地震工程,1997,13(2):8-20
    [5] 中华人民共和国国家标准.GB 50011-2001.建筑抗震设计规范.北京:中国建筑工业出版社,2001
    [6] 江宜城,唐家祥.多维地震动作用下基础隔震结构地震响应分析.工程抗震,2002,(2):1-6
    [7] 唐家祥,刘再华.建筑结构基础隔震.华中理工大学出版社,1993
    [8] Proceeding of the International Workshop on Recent Developments in Base-Isolation Techniques for Building. Tokyo, 1992
    [9] Proceeding of the Tenth World Conference on Earthquake Engineering. Marid, Spain, 1992
    [10] Kelly J.M. Base Isolation in Japan. Report No. UCB/EERC-88/20, EERC, University of California, Berkeley, 1988
    [11] 闵书亮,刘季.滚动隔震结构的一种控制方法.哈尔滨建筑大学学报,1993,26(4):50-56
    [12] 周福霖.隔震、消能减震和结构控制技术的发展和应用(上).世界地震工程,1989,(4):16-20
    [13] 洪峰,王前信,江近仁.基底滑移隔震刚性结构的随机滑移反应和可靠性分析.地震工程与工程振动,1993,13(2):47-51
    [14] 黄永林,孔建国,章熙海,等.基础隔震技术的发展及其对未来建筑设计思想的影响.工程抗震,2000,(1):24-29
    [15] 周福霖,俞公骅,冼巧玲,等.多层和高层建筑结构减震控制新体系.工程抗震,1994,(3):10-14
    [16] 刘季,周云.结构抗震控制的研究与应用状况(上).哈尔滨建筑大学学报,1995,28(4):1-10
    [17] 周云,邓雪松,汤统壁,等.中(大陆)耗能减震技术理论研究、应用的回顾与前瞻.工程抗震与加固改造,2006,28(6):1-15
    [18] A.S.Pall, C.Marsh, Poul Fazio. Friction joints for seismic control of large panel structure. PCI, 1980, 25(6):39-61
    [19] A.S.PalI, C.Marsh. Seismic response of friction damped braced frames. ASCE, Journal of Structural Division, 1982, 108(6):1313-1323
    [20] Filiatrault A, Cherry S. Comparative performance of friction-damped system and base-isolation system for earthquake retrofit and design. EESD, 1988,16
    [21] Aiken I.D, et al. Seismic response of a nine-story steel frame with friction-damped cross-bracings. Report No. UCB/EERC-88/17, EERC, University of California, Berkeley, 1988
    [22] 朱力,程晓杰,何若全,等.摩擦消能支撑的试验研究.哈尔滨建筑大学学报,1992,25(4):45-48
    [23] 陈宗明,陈立兴,赵禹民,等.新型抗震耗能支撑的试验研究.工程抗震,1988,(3):13-26
    [24] 冼巧玲,周福霖.复合型摩擦消能支撑减震体系的地震模拟振动台试验研究.世界地震工程,1996,(3):43-51
    [25] 吴斌,欧进萍.拟粘滞摩擦耗能器的试验与分析.第五届全国地震工程会议文集,北京,1998
    [26] 张维嶽,杨蔚彪.低周反复荷载下二阶摩擦减振控制支撑框架的试验研究.建筑科学,1997,(4):3-7
    [27] 周云,刘季.耗能减震技术研究与应用进展.世界地震工程,1995,(1):20-28
    [28] 邹向阳,王晓天,刘丽华,等.结构振动控制发展概况综述.长春工程学院学报(自然科学版),2001,2(4):10-12
    [29] Bergman D.M, Godel S.C. Evaluation of cyclic testing of steel-plate device for added damping and stiffness. Report UMCE87-10, Department of Civil Engineering, The University of Michigan, Michigan, 1987
    [30] Whittaker A, et al. Earthquake simulator testing of steel plate added damping and stiffness elements. Report No. UCB/EERC-89/02, EERC, University of California, Berkeley, 1989
    [31] Proceeding of ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control. San Francisco, California, 1993
    [32] R.I.Skinner,W.H.Robinson,G.H.Mcverry著,谢礼立,等译.工程隔震概论.北京:地震出版社,1996
    [33] 周锡元,阎维明,杨润林.建筑结构的隔震、减振和振动控制.建筑结构学报,2002,23(2):2-12
    [34] 薛伟辰,郑乔文,刘振勇,等.结构振动控制智能材料研究及应用进展.地震工程与工程振动,2006,26(5):213-217
    [35] DesRoches R. Shape memory alloy-based response modification of simply supported bridge. Advances in structural dynamics, 2000,(1): 267-274
    [36] 王社良,巨生国,苏三庆.形状记忆合金的动力响应特性及振动控制.西安建筑科技大学学报,1993,31(1):14-17
    [37] 王社良,苏三庆,沈亚鹏.形状记忆合金拉索被动控制结构地震响应分析.土木工程学报,2000,23(1):47-51
    [38] 周云,徐赵东,赵鸿铁.粘弹性阻尼结构的性能、分析方法及工程应用.地震工程与工程振动,1998,18(3):96-107
    [39] Bergrnan D.M, Hanson R.D. Characteristics of viscoelastic damping devices. Proceeding of A Seminar and Workshop on Base Isolation and Passive Energy Dissipation, ATC-17, California, 1986
    [40] Lin R.C, Liang Z, T.T.Soong, et al. An experimental study of seismic structural response with added viscoelastic dampers. Technical Report NCEER-88-0018, National Center for Earthquake Engineering Research, Buffalo, New York, 1988
    [41] Aiken I.D, Kelly J.M. Earthquake simulator testing and analytical studies of two energy-absorbing systems for multistory structures. Report No. UCB/EERC-90/03, EERC, University of California, Berkeley, 1990
    [42] Tsai C.S, Lee H.H. Applications of viscoelastic dampers to high-rise buildings. Joumal of Structural Engineering, 1993, 119(4):1222-1233
    [43] K.C.Chang, T.T.Soong, S.-T.Oh, et al. Seismic behavior of steel frame with added viscoelastic dampers. Joumal of Structural Engineering, 1995, 121(10):1418-1426
    [44] M.L.Lai, K.C.Chang, T.T.Soong, et al. Full-scale viscoelastically damped steel frame. Journal of Structural Engineering, 1995, 121(10): 1443-1447
    [45] K.C.Chang, T.T.Soong, S.-T.Oh, et al. Effect of ambient temperature on seismic response of a 2/5-scale steel structure with added viscoelastic dampers. Technical Report NCEER-91-0012, National Center for Earthquake Engineering Research, Buffalo, New York, 1991
    [46] K.C.Chang, T.T.Soong, S.-T.Oh, et al. Effect of ambient temperature on a viscoelastically damped structure. Journal of Structural Engineering, 1992, 118(7):1955-1973
    [47] 徐赵东,周云,周福霖.粘弹性阻尼器三种计算模型的对比与分析.华南建设学院西院学报,1999,7(2):1-7
    [48] 徐赵东,周洲,赵鸿铁,等.粘弹性阻尼器的计算模型.工程力学,2001,18(6):88-93
    [49] 邹向阳,欧进萍.粘弹性耗能器的性能与结构减振试验研究.振动工程学报,1999,12(2):237-243
    [50] Makris N, Constantinou M.C. Viscous dampers: testing, modeling, application in vibration and seismic isolation. Technical Report NCEER-90-0028, National Center for Earthquake Engineering Research, Buffalo, New York, 1990
    [51] 欧进萍,丁建华.油缸间隙式阻尼器理论与试验研究.地震工程与工程振动,1999,19(4):82-89
    [52] 叶正强,李爱群,程文滚,等.采用粘滞流体阻尼器的工程结构减振设计研究.建筑结构学报,2001,22(4):61-66
    [53] 叶正强,李爱群,徐幼麟.工程结构粘滞流体阻尼器减振新技术及其应用.东南大学学报,2002,32(3):466-473
    [54] 杨国华,李爱群,程文瀼,等.工程结构粘滞流体阻尼器的减振机制与控振分析.东南大学学报,2001,31(1):57-61
    [55] 杨国华,李爱群,程文瀼.结构控震设计中流体阻尼器的指数选择与控制系统设计.工业建筑,2003,33(6):3-6
    [56] 翁大根,卢著辉,徐斌,等.粘滞阻尼器力学性能试验研究.世界地震工程,2002,18(4):30-34
    [57] 阎维明,谭平,周福霖.HEDC控制体系的参数优化设计.世界地震工程,1998,14(2):29-35
    [58] Reirthom A.M, Li C, Constantinou M.C. Experimental and analytical investigation of seismic retrofit of structures with supplemental damping patti-fluid viscous damping devices. Technical Report NCEER-95-0001, National Center for Earthquake Engineering Research, Buffalo, New York, 1995
    [59] Ngai Yeung. Viscous-damping walls for controlling wind-induced vibrations in buildings. [PH.D. Thesis]. HongKong: The University of HongKong, 2000
    [60] 谭在树,钱稼茹.钢筋混凝土框架用粘滞阻尼墙减震研究.建筑结构学报,1998,19(2):50-59
    [61] 欧进萍,吴斌,龙旭.结构被动耗能减振效果的参数影响.地震工程与工程振动,1998,18(1):60-70
    [62] 欧进萍,吴斌,龙旭,等.北京饭店消能减振抗震加固分析与设计:时程分析法.地震工程与工程振动,2001,21(4):82-87
    [63] 宋智斌.粘滞消能减震技术在结构抗震加固中的研究与应用.[硕士学位论文].北京:中国建筑科学研究院,2001
    [64] 陈道政,李爱群,张志强,等.西安某科研楼顶钢结构塔楼减震控制研究.建筑科学,2004,20(3):18-28
    [65] 张志强,李爱群,何建平,等.地震作用下合肥电视塔粘滞流体阻尼器减震的优化参数分析.工程抗震,2004,(2):39-45
    [66] 李宏男,闫石,贾连光.利用调液阻尼器减振的结构控制研究进展.地震工程与工程振动,1995,15(3):99-110
    [67] 李宏男,闫石,林皋.建筑结构利用TLCD减振的神经网络智能控制.地震工程与工程振动,2000,20(3):137-142
    [68] S.K. Yalla, A Karee. Optimum absorber parameters for tuned liquid column dampers. Journal of Structural Engineering, 2000, 126(8): 906-915
    [69] 欧进萍,王永富.设置TMD、TLD控制系统的高层建筑风振分析与设计方法.地震工程与工程振动,1994,14(2):61-75
    [70] Li C. Performance of multiple tuned mass dampers for attenuating undesirable structures under the ground acceleration. Earthquake Engineering and Structural Dynamics, 2000, 29(9):1405-1421
    [71] Y. Fujimo, L.M. Sun. Vibration control by multiple tuned liquid damper (MTLDS). Journal of Structural Engineering, 1993,119(12):93-106
    [72] 李承,李忠献.高层建筑地震反应多重TLD控制研究.山东科技大学学报(自然科学版),2001,20(1):104-107
    [73] 张敏政,丁世文,郭迅.利用水箱减振的结构控制研究.地震工程与工程振动,1993,13(1):40-48
    [74] 刘福义,滕军,崔兴均.调谐质量阻尼控制装置在深圳地王商业大厦风振控制中的应用.地震工程与工程振动,2002,22(1):163-168
    [75] Soong T.T, Hanson R.D. State-of-the-art of active structural control research in the US. Proceeding of US/China/Japan Trilateral Workshop on Structural Control, ShangHai, China, 1992:9-18
    [76] Inoue Y. State-of-art report of active and hybrid structural response control research in Japan. Proceeding of US/China/Japan Trilateral Workshop on Structural Control, ShangHai, China, 1992:25-34
    [77] 刘季,滕军.结构振动控制的理论与实践.哈尔滨建筑大学学报,1990,23(4):10-19
    [78] 张微敬,欧进萍.智能控制算法及其在结构振动控制中的应刚.世界地震工程,2002,18(2):32-38
    [79] 张俊平,禹奇才,周福霖.结构振动控制系统最优控制力及控制作用最优分布的一般算法.工程力学,1999,16(6):54-61
    [80] A.M.Reinhom, T.T.Soong, R.C.Lin. 1.4 Scale model studies of active tendon systems and active mass dampers for aseismic protection. Technical Report NCEER-89-0026, National Center for Earthquake Engineering Research, Buffalo, New York, 1989
    [81] T.T.Soong. Active structural control: theory and practice. Scientific & Technical, New York, 1990
    [82] 刘季,周云.结构抗震控制的研究与应用状况(下).哈尔滨建筑大学学报,1995,28(5):1-6
    [83] 田石柱,刘季.结构模型的AMD主动控制试验.地震工程与工程振动,1999,19(4):90-94
    [84] 陈国兴,金永彬,宰金珉.结构主动减震控制研究进展.地震工程与工程振动,1999,19(1):113-119
    [85] 田石柱,李暄,欧进萍.结构主动控制系统时间滞后测量与补偿方法.地震工程与工程振动,2000,20(4):101-105
    [86] 谢凌志,丁建华.结构半主动控制的发展动态.四川建筑,2001,21(2):40-42
    [87] 孙作玉,何玉敖.结构振动的变阻尼半主动遗传控制算法.天津大学学报,2000,33(1):29-32
    [88] T. Kobori, et al. Shaking table experiment of multi-story seismic response controlled structures with active variable stiffness (AVS) system. Proceeding of The 8~(th) Japan Earthquake Engineering, Tokyo, 1990
    [89] T. Kobori. Dynamics loading test of real scale steel frame with active variable stiffness device. Journal of Structural Engineering, 1991, 37:317-328
    [90] Richter P.J, et al. The EDR-energy dissipating restraint, a new device for mitigating seismic effects. Proceeding of 1990 Structure Engineering, Association of California, 1990
    [91] 刘季,李敏霞.变刚度半主动结构振动控制.振动工程学报,1999,12(2):166-172
    [92] Hrovat D, et al. Semi-active versus passive or active tuned mass dampers for structural control. Journal of Engineering Mechanics, 1983, 109(3): 691-705
    [93] Kawashima K, et al. Seismic response control of bridges by variable dampers. Journal of Structural Engineering, 1994, 120(9): 2583-2601
    [94] 孙作玉,刘季.可变阻尼器性能及半主动控制律研究.哈尔滨建筑大学学报,1998,31(4):9-13
    [95] 孙作玉,隋丽丽.变阻尼半主动结构控制振动台试验.地震工程与工程振动,2000,20(4):106-111
    [96] 周云,徐龙河,李忠献.智能流体减振控制技术的研究与应用.世界地震工程,1999,15(4):10-19
    [97] 周云,徐龙河,李忠献.半主动磁流变阻尼控制结构的地震反应分析.地震工程与工程振动,2000,20(2):107-111
    [98] 周福霖,谭平,阎维明.结构半主动减震控制新体系的理论与试验研究.广州大学学报,2002,1(1):69-74
    [99] 何亚东,何玉敖,黄金枝.建筑结构半主动控制振动台试验研究.建筑结构学报,2002,23(4):10-15
    [100] 李惠,吴波,祁皑,等.结构混合振动控制方法研究述评.哈尔滨建筑大学学报,1997,30(1):115-120
    [101] 叶继红,陈月明,沈世钊.TMD减震系统在网壳结构中的应用.哈尔滨建筑大学学报,2000,33(5):10-14
    [102] Motohiko Yamada. Vibration control of large space structure using TMD system. Proceeding of 15~(th) Asian-Pacific Conference on Structural Engineering and Construction. Cold Coast, Queensland, Australia, 1995:23-30
    [103] 叶继红,陈月明,沈世钊.网壳结构TMD减震系统的优化设计.振动工程学报,2000,13(3):376-384
    [104] 叶继红,陈月明,沈世钊.TMD系统在单层球壳振动控制中的参数分析.空间结构,1999,5(2):10-17
    [105] 叶继红,陈月明,沈世钊.TMD系统在单层柱壳振动控制中的参数分析.工业建筑,2000,30(4):9-13
    [106] 叶继红,沈世钊.TMD系统在单层鞍壳振动控制中的适用性分析.工业建筑,2000,30(4):14-17
    [107] 范峰,沈世钊.网壳结构的粘滞阻尼减振分析与试验研究.地震工程与工程振动,2000,20(1):105-111
    [108] 范峰,沈世钊.单层球壳模拟地震振动台试验及结构减振试验研究.哈尔滨建筑大学学报,2000,33(3):18-22
    [109] 范峰,沈世钊.单层柱面网壳的粘滞阻尼器减振分析.世界地震工程,2003,19(2):27-32
    [110] 范峰,沈世钊.网壳结构的粘弹阻尼器减振分析.地震工程与工程振动,2003,23(3):156-159
    [111] 梁海彤,张毅刚,吴金志.采用阻尼杆件的双层柱面网壳减震控制研究.第十届空间结构学术会议论文集,2002:211-218
    [112] 梁海彤,吴金志,张毅刚.替换阻尼杆件的双层柱面网壳被动控制振动台试验研究.地震工程与工程振动,2003,23(4):178-182
    [113] 张毅刚,梁海彤.替换可控杆件的双层柱面网壳半主动控制策略.北京工业大学学报,2003,29(3):320-324
    [114] 倪莉,张毅刚.可控制杆件在双层柱面网壳结构中的最优布置.世界地震工程,2001,17(3):98-104
    [115] Mamoru Iwata, Masanori Fujita, Akira Wada. Energy absorbing mechanism for space frame support. Proceeding of The Second World Conference on Structural Control, Tokyo, 1999
    [116] 周晓峰,陈福江,董石麟.粘弹性阻尼材料支座在网壳结构减震控制中性能研究.空间结构,2000,6(4):21-28
    [117] 高博青,董石麟.折板式网壳结构的抗震及减震研究.浙江大学学报(理学版),2002,29(5):589-594
    [118] Junjiro Onoda, Hyun Ung Oh, Kenji Minesugi. Semi-active vibration suppression of truss structures by ER Fluid. Acta Astronautica, 1997, 40(11): 771-779
    [119] 瞿伟廉,徐幼麟.ER/MR智能阻尼器对空间网壳结构地震反应的半主动控制.地震工程与工程振动,2001,21(4):24-31
    [120] T.T.Soong, G.F.Dargush. Passive energy dissipation systems in structural engineering. Chichester, England: John Wiley & Sons Ltd.
    [121] Nicos Makris, Constantinou M.C. Fractional-derivative Maxwell model for viscous dampers. Journal of Structural Engineering, 1991, 117(9): 2708-2724
    [122] 薛彦涛,李树利,李博.液体粘滞阻尼消能减震结构设计方法.建筑科学,2003,19(3):19-21
    [123] 欧进萍,吴斌,龙旭.耗能减振结构的抗震设计方法.地震工程与工程振动,1998,18(2):98-107
    [124] 俞瑞芳,周锡元.非比例阻尼弹性结构地震反应强迫解耦方法的理论背景和数值检验.工业建筑,2005,35(2):52-56
    [125] 桂国庆.非比例阻尼结构体系近似解耦分析中的误差研究.工程力学,1994,11(4):40-45
    [126] 刘文锋,李建锋.消能减震结构设计的阻尼比研究.世界地震工程,2005,21(2):80-84
    [127] 李正良,范文亮,周志祥.基于摄动法及等效线性化的耗能减震结构振型分解法.工程力学,2005,22(3):16-20
    [128] 崔峰,蒋永生,刘文锋.基于反应谱理论的复模态抗震设计方法.地震工程与工程振动,2002,22(3):32-36
    [129] 周锡元,董娣,苏幼坡.非正交阻尼线性振动系统的复振型地震响应叠加分析方法.土木工程学报,2003,36(5):30-36
    [130] 周锡元.一般有阻尼线性体系地震反应的振型分解方法.中国地震工程研究进展,北京:地震出版社,1992:120-125
    [131] Gloria Terenzi. Dynamics of SDOF systems with nonlinear viscous damping. Journal of Engineering Mechanics, 1999, 125(8): 956-963
    [132] 薛彦涛,韩雪.设置非线性粘滞阻尼器结构地震响应的时程分析.工程抗震与加固改造,2005,27(2):40-45
    [133] 郑久建.粘滞阻尼减震结构分析方法及设计理论研究.[博士学位论文].北京:中国建筑科学研究院,2003
    [134] 刘晶波,杜修力.结构动力学.北京:机械工业出版社,2005
    [135] 汤昱川,张玉良,张铜生.粘滞阻尼器减震结构的非线性动力分析.工程力学,2004,21(1):67-71
    [136] Freeman S.A, Nicoletti J.P, Tyrell J.V. Evaluation of existing buildings for seismic risk-a case study of Puget Sound Naval Shipyard, Bremerton, Washington. Proceeding of the First U.S. National Conference on Earthquake Engineering, Earthquake EERT Oakland California, 1975
    [137] Fajfar P. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics, 1999, 28:979-993
    [138] Federal Emergency Management Agency. Guidelines and Commentary for the Seismic Rehabilitation of Buildings. FEMA 273&274, 1998
    [139] 张思海.被动耗能减震结构基于性能的抗震设计方法.[硕士学位论文].西安:西安建筑科技大学,2005
    [140] 龚思礼.建筑抗震设计手册.北京:中国建筑工业出版社,2002
    [141] 周云,邓雪松,黄文虎.耗能减震结构的抗震设计原则与设计方法.世界地震工程,1998,14(4):49-56
    [142] 周云,周福霖.耗能减震体系的能量设计方法.华南建设学院西院学报,1997,5(1):9-15
    [143] 薛素铎,曹资,王健宁.双层柱面网壳弹塑性抗震性能.工业建筑,2003,33(2):59-61
    [144] 飞思科技产品研发中心.MATLAB 6.5辅助优化计算与设计.北京:电子工业出版社,2003
    [145] 刘夏石,工程结构优化设计:原理、方法和应用.北京:科学出版社,1984
    [146] 白雪霜.结构抗震加固和消能减震优化设计方法.[硕士学位论文].北京:中国建筑科学研究院,2002
    [147] Ashour S.A, Hanson R.D. Elastic seismic response of buildings with supplemental damping. Report UMCE87-1, Department of Civil Engineering, The University of Michigan, Michigan, 1987
    [148] Ashour S.A, Hanson R.D. Effect of added dampers on the seismic response of multi-story buildings. Arabian Journal for Science and Engineering, 19(3):389-402
    [149] D. Lopez Garcia. A simple method for the design of optimal damper configurations in MDOF structures. Earthquake Spectra, 2001, 17(3):387-398
    [150] D. Lopez Garcia, T.T.Soong. Efficiency of a simple approach to damper allocation in MDOF structures. Journal of Structural Control, 2002, (9):19-30
    [151] N. Gluck, A.M.Reinhom, J. Gluck, et al. Design of supplemental dampers for control of structures. Journal of Structural Engineering, 1996, 122(12): 1394-1399
    [152] Izuru Takewaki. Optimal damper placement for minimum transfer functions. Earthquake Engineering and Structural Dynamics, 1997, 26:1113-1124
    [153] Mahendra P.Singh, Luis M.Moreschi. Optimal placement of dampers for passive response control. Earthquake Engineering and Structural Dynamics, 2002, 31: 955-976
    [154] J.N.Yang, S.L.Lin, J-H. Kim, et al. Optimal design of passive supplemental dampers based on H∞ and H_2 performances. Structures, ASCE, 2000:1-8
    [155] M. Tsuji, T. Nakamura. Optimum viscous dampers for stiffness design of shear buildings. Structural Design of Tall Buildings, 1996, 5: 217-234
    [156] M. Martinez-Rodrigo, M.L. Romero. An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications. Engineering Structures, 2003, 25:913-925
    [157] 冼巧玲,周福霖,成文山.框架结构消能支撑的减震优化方法.世界地震工程,1999,15(2):49-55
    [158] 冼巧玲,成文山,周福霖.消能支撑参数优化方法的进一步研究.湖南大学学报(自然科学版),2000,27(3):73-80
    [159] 周星德,彭宣茂.基于遗传算法的建筑结构最优阻尼研究.计算力学学报,2005,22(6):780-784
    [160] Haftka R.T, Adelman H.M. Selection of actuator locations for static shape control of large space structures by heuristic integer programming. Computers and Structures, 1985, 20(1-3): 578-582
    [161] Kincaid R.K. Good solutions to discrete noxious location problems via metaheuristics. Annals of Operations Research, 1992, 40:265-281
    [162] Kincaid R.K. Minimizing distortion in truss structures: a comparison of simulated annealing and tabu search. Structural Optimization, 1993, 5:217-224
    [163] Gun-Shing Chen, Robin J.Bruno, Moktar Salama. Optimal placement of active/passive members in truss structures using simulated annealing. AIAA Journal, 1991, 29(8):1327-1334
    [164] Mark H.Milman, Cheng-Chih Chu. Optimization methods for passive damper placement and tuning. Journal of Guidance, Control, and Dynamics, 1994, 17(4):848-856
    [165] Y J Yan, L H Yam. Optimal design of number and locations of actuators in active vibration control of a space truss. Smart Materials and Structures, 2002,11:496-503
    [166] Furuya H, Haftka R T. Placing actuators on space structures by genetic algorithms and effectiveness indexes. Structural Optimization, 1995,9:69-75
    [167] Mattingly M, Roemer R B, Devasia S. Optimal actuator placement for large scale systems: a reduced-order modelling approach. Int. J. Hypertherm, 14:331-345
    [168] 卢德君.结构振动主被动控制试验研究.[硕士学位论文],哈尔滨:哈尔滨工业大学,2006
    [169] 史治宇,罗绍湘,张令弥.结构破损定位的单元模态应变能变化率法.振动工程学报,1998,11(3):356-360
    [170] 董石麟,钱若军.空间网格结构分析理论与计算方法.北京:中国建筑工业出版社,2000
    [171] 龙驭球,包世华.结构力学教程(下册).北京:高等教育出版社,1988
    [172] 陈国良,王煦法,庄镇泉,等.遗传算法及其应用.北京:人民邮电出版社,1996
    [173] 雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005
    [174] 中华人民共和国国家标准.GB 50010-2002.混凝土结构设计规范.北京:中国建筑工业出版社,2002
    [175] 钟善桐.钢管混凝土结构.北京:清华大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700