剪力墙中断的高层框—剪结构抗震性能分析与工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高层建筑实际设计中,经常遇到这种情况,在结构上部,由于建筑功能的要求或其他原因,要减少剪力墙的尺寸,甚至完全取消。这种断层剪力墙的高层框架-剪力墙结构(简称框-剪结构)是一种新型的高层结构,其特点是采用断层剪力墙来满足现代高层建筑使用功能的要求。剪力墙的变形曲线为悬臂梁型,而框架的变形曲线为剪切型。下部的剪力墙可减少下部框架的内力;而上部的剪力墙则增加上部框架的内力。中断上部剪力墙,减轻上部框架的内力,有其合理性。所以,从力学上来讲,全高剪力墙并不一定是必要的。针对框-剪结构协同工作的受力变形特点,先探讨了框-剪结构中中断部分剪力墙的合理性,提出了可中断剪力墙高度的3个条件:
     ①剪力墙中断的框-剪结构的顶点侧移不应大于全高剪力墙框-剪结构的顶点侧移;
     ②剪力墙中断以上框架部分的层间位移角不应大于1.45倍全高剪力墙时的最大层间位移角,因为建筑抗震设计规范(GB50011-2001)规定:框架弹性层间位移角[θe] =1/550,而框-剪的[θe] =1/800,两者比值为1.45;
     ③剪力墙中断以上的框架部分所承受的楼层地震剪力Vt不应大于全高剪力墙时框架部分所承受最大楼层地震剪力V fmax的n倍,n为剪力墙中断以上部分的框架柱数与全高剪力墙时框架柱数的比值。构造了简明的层单元,一层框-剪结构可只用一个层单元来模拟。应用两种模型:层单元模型、杆系-层模型,采用振型分解反应谱法,分析不同高度和结构刚度特征值的断层剪力墙框-剪结构的地震反应,两种模型给出相近的计算结果。根据可中断剪力墙的高度的3个条件,计算表明:随着刚度特征值的增加,可中断剪力墙的高度随之增加,给出了两者之间的表达式;结构高度对中断剪力墙高度的影响较小。
     基于钢筋砼杆件截面的轴力-弯矩-曲率关系,建立了考虑杆件P ??效应和剪切变形,且能分析框架极限状态的非线性有限元法。提出了改进能力谱法,定义了砼框架结构唯一的延性系数,确定Pushover曲线的极限状态点为性能点,通过性能点位于由延性系数所折减的非弹性需求谱曲线上的条件,求出框架所能抵抗的最大地震加速度,评估框架的抗震性能。兼顾承载能力,得出相对受压区高度0.25~0.35,轴压比0.6~0.8的框架,具有较好的抗震性能。
     根据所提出的非线性有限元法,将剪力墙当作特别杆单元,对不同高度、配筋、轴压比和刚度特征值的中断剪力墙的框-剪结构进行了极限状态弹塑性分析。根据可中断剪力墙的高度的3个条件,计算表明:相对高度值与配筋和轴压比无关;与结构高度关系较小;随着刚度特征值的增加,相对高度值随之增加,并给出了两者之间的表达式。
     Wilson-θ法分为加速度未经过和经过动力平衡方程修正的Wilson -θ①法和Wilson -θ②法;推导了单自由度体系的Wilson -θ①、②法的状态传递算子,由传递算子的谱半径来判断Wilson -θ①、②法的稳定性。Wilson -θ①法的稳定性是无条件的。计算结果表明:Wilson -θ②法的稳定性不是无条件的;并给出了Wilson -θ②法的稳定范围。修正了一些文献中的一个错误:认为Wilson -θ①、②法都是无条件稳定的。
     用杆系-层模型和Wilson -θ①法,以及EL Centro地震记录,分析不同高度和结构刚度特征值的断层剪力墙的框-剪结构地震反应。根据可中断剪力墙的高度的3个条件,计算表明:随着刚度特征值的增加,可中断剪力墙的高度随之增加,给出了两者之间的表达式;结构高度对中断剪力墙高度的影响较小。动力时程分析的结果与层单元模型、杆系-层模型和极限状态弹塑性分析结果相近。
In the design of tall building, the dimension of upper part of shear wall would be reduced, and even the upper wall would be cut, due to the architecture demand or other reasons. The frame-shear wall structure with shear wall interruption is a new type of tall building, its characteristic is to meet the function of modern tall building by shear wall interruption. The deformation of shear wall is the type of cantilever bending beam, but the deformation of frame is the type of cantilever shear beam. The lower part of shear wall can decrease the internal forces of lower part of frame; but upper part of shear wall can increase the internal forces of upper part of frame. It may be rational to cut the upper part of shear wall and to reduce the internal forces of the upper frame. Therefore, in the view of mechanics, the full height of wall is not necessarily imperative. Based on the disformation characteristic of the frame-shear wall structure cooperation work, the rationality of the frame-shear wall structure with shear wall interruption is discussed. The 3 conditions of interruptable shear wall height are established:
     ①The top lateral displacement of the frame-shear wall structure with shear wall interruption is less than top displacement of the frame-shear wall structure with full height shear wall.
     ②Interstorey drift as a percentage of height above the shear wall interruption is less than 1.45 times of maximum interstorey drift in the structure with full height shear wall, because it is stipulated in code for seismic design of buildings (GB50011-2001): elastic interstorey drift in frame [θe] =1/550; elastic interstorey drift in frame-shear wall structure [θe] =1/800, the ratio between them is 1.45.
     ③The seismic shear force Vt of frame above the shear wall interruption is less than n times of maximum seismic shear force V fmax of frame in the structure with full height shear wall, n is the ratio of column number above the shear wall interruption to the column number in the structure with full height shear wall.
     The concise storey element is fabricated which can model one storey of the frame-shear wall structure. Based on SRSS method, both storey element model and the member-relative storey model are used to analyze the seismic response of frame-shear wall structures with shear wall interruption for different heights and rigidity characteristics. Two models give the similar results. According to 3 conditions of interruptable shear wall height, calculation results indicate: with the increase of the rigidity characteristic, the interruptable shear wall height increases also. The equation between the rigidity characteristic and the interruptable shear wall height is also presented. The height of the structure influences little on the interruptable shear wall height.
     Based on the relationship among axial force–bending moment–curvature of the concrete bar section, the nonlinear finite element method considering bar P–Δeffect and shear deformation is established which is able to analyze the ultimate state. The improved capacity spectrum method is put forward, where the unique ductility factor of concrete frame is defined, and the point of ultimate state in pushover curve is regarded as the demand point. On the condition that the demand point locates at the inelastic demand spectrum curve reduced by ductility factor, the maximum seismic spectrum acceleration is obtained to evaluate the seismic behavior of frame. Balancing load carrying capacity, it’s concluded that the frames with 0.25~0.35 relative depth of compressive zone and 0.6~0.8 axial compressive ratios perform benign seismic behavior.
     Based on the above nonlinear finite element method, regarding the shear wall as the special bar elements, the frame-shear wall structures with shear wall interruption for different heights, reinforcements, axial compressive ratios and rigidity characteristics are analyzed by static elastic-plastic method. According to 3 conditions of interruptable shear wall height, calculation results indicate: the interruptable shear wall height is not relative to reinforcements and axial compressive ratios, little relative to height of the structure. With the increase of the rigidity characteristic, the interruptable shear wall height increases also. The equation between the rigidity characteristic and the interruptable shear wall height is also presented.
     There remain two kinds of Wilson-θmethods, namely, Wilson-θ①and②methods. In Wilson-θ①method, the accelerations are not modified by the dynamic equilibrium equations; in Wilson-θ②method, the accelerations are modified. The amplification matrixes of Wilson-θ①and②methods for single-degree-of-freedom system are derived. The stabilities of Wilson-θ①and②methods are examined by the spectral radii of the amplification matrixes. The stability of Wilson-θ①method is unconditional. The calculation results indicate: the stability of Wilson-θ②method is not unconditional. The stability ranges of Wilson-θ②method are also put forward. The conclusion corrects an error in some references in which both Wilson-θ①and②methods are wrongly considered as unconditional stability.
     Based on the member-relative storey model, Wilson-θ①method and EL Centro ground motion record, the seismic response if frame-shear wall structures with shear wall interruption for different heights and rigidity characteristics are analyzed by time history method. According to 3 conditions of interruptable shear wall height, calculation results indicate: with the increase of the rigidity characteristic, the interruptable shear wall height increases also. The equation between the rigidity characteristic and the interruptable shear wall height is also presented. The height of the structure influences little on the interruptable shear wall height. The conclusion of dynamic time history analysis is similar to the conclusions of storey element model, the member-relative storey model and static elastic-plastic method.
引文
1 赵西安. 高层建筑结构实用设计方法(第三版)[M]. 上海:同济大学出版社,1998. 167~197
    2 包世华, 方鄂华. 高层建筑结构设计(第二版)[M]. 北京:清华大学出版社,1990. 270~294
    3 李君如, 詹肖兰, 欧阳炎. 高层建筑结构分析[M]. 北京:人民交通出版社,1990. 188~214
    4 包世华. 新编高层建筑结构[M]. 北京:中国水利水电出版社,2001. 151~193
    5 中华人民共和国建设部. 高层钢筋混凝土结构技术规程(JGJ3-2002)[S]. 北京:中国建筑工业出版社,2002. 68~88
    8 张波. 框剪结构剪力墙中断处楼层刚度比分析[D].[学位论文]. 福建:华侨大学土木工程学院,2000. 26~45
    9 王全凤, 王凌云等. 含断层剪力墙的框架-剪力墙地震特性[J]. 华侨大学学报(自然科学版),1998,19(4): 380~386
    10 王全凤, 王凌云等. 不规则框架-剪力墙结构的地震特性[J]. 地震工程与工程振动,2005,25(4): 105~111
    11 刘祖文. 含断层剪力墙的框-剪结构动力时程分析[J]. 华侨大学学报(自然科学版),2001,22(2): 174~177
    12 冯宏团, 张海龙. 框-剪结构剪力墙中断分析[J]. 建筑结构,2005,35(12): 45~46
    13 王全凤, 张波, 罗漪. 框-剪结构剪力墙中断和楼层刚度比分析[J]. 建筑结构,2003,33(5): 39~41
    14 徐培福, 王翠坤, 肖从真. 剪力墙竖向不连续结构的震害与抗震设计概念[J]. 建筑结构学报,2004,25(5): 1~9
    15 王全凤, 张波. 含断层剪力墙框-剪结构的楼层地震剪力[J]. 华侨大学学报(自然科学版),2001,22(4): 389~393
    16 Jack P. Moehle, Luis F. Alarcon. Seismic Analysis Methods for Irregular Buildings[J]. J. of Structural Engineering,1986, 112(1): 35~52
    17 Jack P. Moehle. Seismic Analysis of R/C Frame-Wall Structures[J]. J. of Structural Engineering, 1984, 110(11): 2619~2634
    18 Jack P. Moehle. Seismic Response of Vertically Irregular Structures[J]. J. of Structural Engineering, 1984, 110(9): 2002~2014
    19 Wang Quanfeng, Wang Lingyun, Liu Qiansheng. .Seismic response of stepped frame-shear wall structures by using numerical method[J]. Int. J., Computer Methods in Applied Mechanics & Engineering, 1999, 173(1): 31~39
    20 Wang Quanfeng, Wang Lingyun, Liu Qiansheng. Effect of shear wall height on earthquake response[J]. Int. J., Engineering Structures, 2001, 23(4): 376~384
    21 Safak E, Frandel A. Structural response to 3D simulated earthquake motions[J]. J. of Structural Engineering, 1994, 120(10), 2820~2839
    22 Wang Quanfeng. Optimal Analysis for Shear Wall Quantity of Frame-Shear Wall System with Variable Stiffness under Seismic Load[C]. Proc. Of the 3rd Int. Conf. On tall Buildings, Ying Tat Printing Co., 1984,783~787
    23 王全凤. 变刚度框架-剪力墙结构抗地震荷载剪力墙数量的优化分析[J]. 建筑结构学报,1983,5(4): 45~56
    24 王全凤等. 框架-剪力墙高层建筑抗地震荷载剪力墙数量的优化分析[J]. 土木工程学报,1981,14(3): 1~12
    25 唐兴荣. 高层建筑转换层结构设计与施工[M]. 北京: 中国建筑工业出版社,2002. 160~194
    26 梁兴文等. 框支连续墙梁抗震性能及设计计算[J]. 建筑结构学报,1998,19(4): 9-17
    27 郑山锁等. 底部框剪砌体房屋抗震分析与设计[M]. 北京: 中国建材工业出版社,2002. 11~42
    28 刘西拉. 结构工程学科的现状与展望[M]. 北京: 人民交通出版社,1997. 2~44
    29 中华人民共和国建设部. 建筑抗震设计规范(GB50011-2001)[S]. 北京:中国建筑工业出版社,2001. 41~61
    30 黄存汉. 底部两层框架砖房抗震设计探讨[J]. 建筑结构学报,1993,14(7):8~11
    31 陈熙之等. 底层框架-多层组合墙房屋抗震变形分析[J]. 地震工程与工程抗震,1994,14(6): 94~101
    32 高小旺等. 底部两层框架上部六层砖房 1/3 比例模型的抗震试验研究[J]. 建筑科学,1994,10(3): 12~18
    33 何汉文, 胡勋. 底部两层框架砖房抗震设计的几个问题[J]. 建筑结构,1993,23(7): 12~17
    34 童岳生, 钱国芳. 底层加抗震墙框架结构房屋抗震计算[J]. 西安冶金建筑学院学报,1987, (2): 13~20
    35 张爱社. 底部加抗震墙的框架结构体系振动台研究[D]. [学位论文]. 西安建筑科技大学,1995,18~32
    36 周丽萍. 底部加 RC 抗震墙框架结构体系的分析研究[D]. [学位论文]. 西安建筑科技大学,1995,9~31
    37 陈瑶等. 部分墙不到顶的框剪结构[J]. 江苏建筑,1994, (3): 80~83
    38 李少泉, 周军. 墙体高度对高层框-剪结构地震效应的影响[J]. 工业建筑,2002,32(11): 25~27
    39 宋雅桐等. 结构分析程序设计[M]. 南京: 东南大学出版社,1990. 228~272
    40 江见鲸等. 建筑结构计算机分析及程序[M]. 北京: 清华大学出版社,1998. 179~209
    41 孙业扬, 余安东等. 高层建筑杆系-层间模型弹塑性动态分析[J]. 同济大学学报,1980, (1): 87~98
    42 梁启智. 高层建筑结构分析与设计[M]. ,广州:华南理工大学出版社,1992. 253~281
    43 吕西林等. 钢筋混凝土结构非线性有限元理论与应用[M]. 上海: 同济大学出版社,1997. 109~166
    44 朱伯芳. 有限单元法原理与应用[M]. 北京: 水利电力出版社,1979. 14~21
    45 王寿康. 框架与剪力墙的刚度配置[J]. 建筑结构,2001,31(4): 64~65
    46 王寿康等. 变刚度框架-剪力墙结构的力法解及其简化[J]. 建筑结构,2001,31(4): 61~63
    47 黄世敏,魏链. 地震作用下沿高变刚度框剪结构的计算方法[J]. 建筑科学,1997,13(4): 11~16
    48 黄世敏. 高层建筑结构的位移控制研究[D]. [学位论文]. 中国建筑科学研究院,1995, 23~35
    49 Moehle, J. P. Seismic analysis of R/C frame-wall structure[J]. J. of Struct. Eng., ASCE, 110(9): 2002~2014
    50 李丛林, 赵建昌. 变刚度框—剪结构协同工作分析的连续—离散化方法[J]. 建筑结构,1993, 23(3): 7~10
    51 魏琏, 黄世敏. 地震作用下沿高变刚度框剪结构剪力墙数量的计算方法[R]. 北京: 中国建筑科学研究院,1996, 1~25
    52 贺友双. 框剪结构最优抗震墙量及自振周期计算方法[J]. 工程抗震,1992, (1): 10~14
    53 Heidebrecht AC, Smith BS. Approximate Analysis of Tall Wall Frame Structures[J]. .J. of Struct. Div., ASCE, 1973, 99(1): 199~211.
    54 Freeman S A, Nicoletti J P, Tyrdl J V. Evaluation of existing buildings for seismic risk-a case study of puget sound naval shipyard[C]. Bremerton, Washington, Proc .1st U .S .National Conf .Earthquake Engng.,EERI, Berkley, 1975, 113~122,
    55 Saiidi M, Sozen MA. Simple nonlinear seismic analysis of r/c structures[J]. J Struct Division, ASCE 1981,107(4): 107:937~952.
    56 Fajfar P, Fischinger M. Non-linear seismic analysis of RC buildings: Implications of a case study[J]. Eur Earthq Eng 1987;1:31~43.
    57 Fajfar P, Fischinger M. N2—a method for non-linear seismic analysis of regular buildings[C]. Proc. 9th world conf. earthquake engin., 1987, 111~116
    58 Uang C, Bertero VV. Evaluation of seismic energy in structures[J]. Earthq Eng Struct Dynam, 1990, (19): 77~90.
    59 Gupta A, Krawinkler H. Estimation of seismic drift demands for frame structures[J]. Earthquake Engineering & Structural Dynamics, 2000; (29):1287~1305.
    60 Rodriguez M. A measure of the capacity of earthquake ground motions to damage structures[J]. Earthq Eng Struct Dynam, 1994, (23): 627~643
    61 Fajfar P, Gaspersic P. The N2 method for the seismic damage analysis of RC buildings[J]. Earthq Eng StructDynam, 1996 (25): 31~46
    62 Chopra AK, Goel RK. A modal pushover analysis procedure for estimating seismic demands for buildings[J]. Earthq Eng Struct Dynam, 2002, (31): 561~582
    63 Chopra AK, Goel RK. Direct displacement-based design: use of inelastic vs. elastic design spectra[J]. Earthq Spectra, 2001, 17(1): 47~64
    64 Krawinkler H. New trends in seismic design methodology[C]. Proc. 10th Eur. conf. earthquake engn., 1994, 821~830.
    65 SEAOC. Vision 2000. Performance based seismic engineering of buildings[S]. Sacramento (USA), Structural Engineers Association of California, 1995, 10~37
    66 Kappos A. Analytical prediction of the collapse earthquake for r/c buildings: Suggested methodology[J]. Earthq Eng Struct Dynam, 1991, (20): 167~176.
    67 ASCE-FEMA. Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency (FEMA) 356[S]. Washington, DC, USA, 1997, 5~65
    68 BSSC, NEHRP. guidelines for the seismic rehabilitation of buildings, FEMA-273, developed by ATC for FEMA[S]. Washington, DC, 1997, 3~83
    69 ATC. Seismic Evaluation and Retrofit of Concrete Buildings, vol. 1, ATC-40[S]. Redwood City (USA), Applied Technology Council; 1999, 1~94
    70 Computers & Structures Inc. SAP2000—Structural Analysis Program, Version 8.2[M], Berkeley, California, USA, 2003, 1~234
    71 Bracci JM, Kunnath SK, Reinhorn AM. Seismic performance and retrofit evaluation for reinforced concrete structures[J]. Journal of Structural Engineering, ASCE, 1997, 123(1): 3~10.
    72 Gupta B, Kunnath SK. Adaptive spectra-based pushover procedure for seismic evaluation of structures[J]. Earthquake Spectra, 2000, 16(2): 367~392
    73 Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering[M]. Prentice-Hall: Englewood Cliffs, NJ, 2000, 13~214
    74 Villaverde R. Simplified response spectrum seismic analysis of non-linear structures[J]. Journal of Structural Engineering Mechanics, ASCE, 1996, 122: 282~285
    75 Han SW, Wen YK. Method of reliability-based seismic design. I: Equivalent non-linear system[J].. Journal of Structural Engineering, ASCE 1997, 123: 256~265
    76 Vidic, T., Fajfar, P., and Fischinger, M. Consistent inelastic design spectra: strength and displacement[J].Earthquake Engineering and Structural Dynamics, 1994, 23: 507~521
    77 李刚, 程耿东. 基于性能的结构杭震设计一理论,方法与应用[M].北京: 科学出版社,2004, 36~48.
    78 王亚勇. 关于设计反应谱,时程法和能量方法的探讨[J]. 建筑结构学报, 2000,21(1): 21~28
    79 方鄂华, 钱稼如,赵作周. 弹塑性静力分析与时程分析[C]. 湖北武汉:第十五届全国高层建筑结构学术交流会,1998, 38~43
    80 钱稼如, 罗文斌. 建筑结构基于位移的抗震设计,建筑结构[J]. 2001,31(4) 3~6
    81 杨浦, 李东, 李英民, 赖明. 抗震结构静力弹塑性分析(push-over)方法的研究进展[J]. 重庆建筑大学学报,2000,22(3): 87~92
    82 杨浦, 李英民等. 结构弹塑性分析方法的改进[J]. 建筑结构学报,2001,21(1): 44~51
    83 朱杰江, 吕西林, 王震波. 带加强层框架一芯筒结构的非线性推覆分析[J]. 上海大学学报(自然科学版),2003,9(5): 445~450
    84 何浩祥, 李宏男. 基于规范弹性反应谱建立需求谱的方法[J]. 世界地震工程,2002,18(3): 57~63
    85 汪大绥, 贺军利 ,张凤新. 静力弹塑性分析(Push-over Analysis)的基本原理和计算实例[J]. 世界地震工程,2004, 20(1): 45~53
    86 汪梦甫, 周锡元 .钢筋混凝土框架一剪力墙结构非线性地震反应实用分析方法的研究[J]. 土木工程学报,2002,35(6): 32~38
    87 陈瑜, 龚炳年等译校. 高层建筑结构分析与设计[M]. 北京: 地震出版社,1993, 37~49
    88 叶燎原, 潘文. 结构静力弹塑性分析(push-over)的原理和计算实例[J]. 建筑结构学报,2000, 21(1): 37~42
    89 刘军进, 张晋, 吕志涛. 静力弹塑性分析(push-over)方法在模拟伪静力试验方面的研究[J]. 建筑结构,2002, 32(8): 63~65
    90 方鄂华, 何国松, 容柏生 ,张文华. 广州天王中心大厦弹塑性地震反应分析[J]. 建筑结构学报,2000,21(6): 10~15
    91 朱杰江, 吕西林, 容柏生. 复杂体型高层结构的推覆分析方法和应用[J]. 地震工程与工程振动,2003,23(2): 26~36
    92 耿耀明, 黄鼎业. 预应力混凝土框架结构抗震能力的静力弹塑性分析方法[J]. 工业建筑,2003,33(9): 29~31
    93 小谷俊介. 日本基于性能结构抗震设计方法的发展[J]. 建筑结构,2000,30(6): 3~9
    94 杨溥, 李铁民, 王亚勇, 赖明. 结构静力弹塑性分析(push-over)方法的改进[J]. 建筑结构学报,2000,21(1): 44~-50
    95 尹华伟, 汪梦甫, 周锡元. 结构静力弹塑性分析方法的研究和改进[J]. 工程力学,2003,20(4): 45~49
    96 熊向阳, 戚震华. 侧向荷载分布方式对静力弹塑性分析结果的影响[J]. 建筑科学,2001, 17(5): 8~13
    97 叶献国, 种迅, 李康宁, 周锡元. Pushover 方法与循环往复加载分析的研究[J]. 合肥工业大学学报(自然科学版),2001,24(6): 1019~1024
    98 侯爱波, 汪梦甫. 循环往复加载的 Push-over 分析方法及其应用[J]. 湖南大学学报(自然科学版),2003, 30(3): 145~152
    99 王威, 孙景江. 基于改进能力谱方法的位移反应估计[J]. 地震工程与工程振动,2003,23(6): 37~43
    100 魏琏, 王森等. 静力弹塑性分析方法的修正及其在抗震设计中的应用[J]. 建筑结构, 2006, 36(8): 97~102.
    101 吕西林, 周定松. 考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J]. 地震工程与工程振动,2004,24(1): 39~48.
    102 侯爽, 欧进萍. 结构 Pushover 分析的侧向力分布及高阶振型影响[J]. 地震工程与工程振动,2004, 24(3): 89~97.
    103 胡双平. 钢筋混凝土框架一剪力墙结构基于能力谱法的抗震计方法研究[D]. [学位论文].安建筑科技大学,2006, 13~28
    104 汪梦甫, 沈蒲生. 钢筋混凝土框剪结构非线性地震反应分析[J]. 工程力学,1999,16(4): 136~144
    105 吕西林, 周德源等. 建筑结构抗震设计理论与实例[M]. 上海: 同济大学出版社, 2002, 112~170
    106 江见鲸, 陆新征, 叶列平. 混凝土结构有限元分析[M]. 北京: 清华大学出版社, 2005, 263~283
    107 卓幸福, 蔡益燕. 用板墙单元分析框架剪力墙结构[J]. 建筑结构学报,1992,13(3): 29~42
    108 蒋通. 高层框-剪结构空间协同弹塑性地震反应分析[J]. 地震工程与工程振动,1998,18(2): 69~78
    109 汪梦甫, 周锡元. 钢筋混凝土框架-剪力墙结构非线性地震反应实用分析方法的研究[J]. 土木工程学报,2002,35(6): 32~38
    110 李国强,周向明,丁翔. 钢筋混凝土剪力墙非线性地震分析模型[J]. 世界地震工程, 2000, 16(2): 13~18
    111 蒋欢军, 吕西林. 用一种墙体单元模型分析剪力墙结构[J]. 地震工程与工程振动, 1998, 18(3): 40~48
    112 胡少伟, 苗同臣. 结构振动理论及其应用[M]. 北京: 中国建筑工业出版社,2005,175~187
    113 Mario Paz. Structural Dynamics Theory and Computation 3rd Edition[M]. Van Nostrand Reinhold, New York, 1991, 415~419
    114 于建华, 谢用九, 魏永涛. 高等结构动力学[M]. 成都: 四川大学出版社,1999,100~101
    115 晏启祥, 刘浩吾, 何川. 一种改进的 Wilson-θ法及其算法稳定性,土木工程学报[J], 2003, 36(10): 76~79
    116 黄庆丰, 王全凤, 胡云昌. Wilson-θ法直接积分的运动约束和计算扰动[J]. 计算力学学报, 2005, 22(4):477~481
    117 Keierleber C. W., Rosson B. T., F.sce P.E. Higher-order implicit dynamic time integration method[J]. Journal of Structural Engineering, 2005, 131(8): 1267-1276
    118 Wilson, E. l., Farhoomand, I., and Bathe, K. J. Nonlinear dynamic of complex structure,[J]. Earthquake Eng. Struct. Dyn., 1973, 1(3): 241~252
    119 William Weaver, Jr., Paul R. Johnston, Structural Dynamics by Finite Elements[M]. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987, 220~225
    120 张汝清, 殷学纲等. 计算结构力学[M] 重庆: 重庆大学出版社, 1987, 116~139
    121 Kabeyasawa T., Shioara H. and S. Otana. U.S. Japan cooperative research on R/C full-scale building test, part 5: discussion on dynamic response system[C]. Proc. 8th WCEE, 1984, 627~634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700