新型长周期光纤光栅特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导师饶云江教授首次发明了高频CO_2激光脉冲写入长周期光纤光栅的方法。该方法利用高频脉冲的热冲击效应,由于脉冲能量集中、单个脉冲加热时间短、因此加热效率高,能高效率高质量地写入低成本的长周期光纤光栅。
    
    本文深入研究了该方法写入的新型长周期光纤光栅的特性并取得了一些创新性研究成果,主要工作和成果如下:
    1、首次系统分析了CO_2激光写入的长周期光纤光栅的形成机理,并把其归结为残余应力释放、密度变化、掺杂剂热扩散和熔融变形四个方面。详细介绍了高频CO2激光脉冲写入长周期光纤光栅的方法,该方法写入的光栅没有熔融变形。分析了单侧CO2激光加热导致长周期光纤光栅横截面折射率分布的不均匀性。
    2、详细阐述了长周期光纤光栅的耦合模理论并提出了个人的见解,运用设定平均有效折射率调制而不是设定kL值的方法进行了透射谱的模拟计算,以便更加直观地理解长周期光纤光栅的实际写入过程。
    3、研究了高频CO_2激光脉冲写入的长周期光纤光栅的温度和轴向应变特性。谐振波长随温度和轴向应变线性变化,透射峰幅值随轴向应变线性减小但对温度不敏感。定量分析表明谐振波长的温度和轴向应变灵敏度及其变化方向与光纤类型、模式耦合的阶次等因素有关。提出了在包层外涂一层折射率随温度变化的涂覆层或运用轴向应变特性降低谐振波长的温度敏感性的方法。
    4、在国际上独立发现了高频CO_2激光脉冲写入的长周期光纤光栅的弯曲特性具有明显的弯曲方向相关性——圆周范围存在两个谐振波长(透射峰幅值)对弯曲最敏感的方向和两个谐振波长(透射峰幅值)对弯曲最不敏感的方向;在谐振波长和透射峰幅值对弯曲比较敏感的圆周方向,谐振波长随弯曲线性‘蓝’移,透射峰幅值随弯曲线性减小。利用耦合模理论合理解释了该长周期光纤光栅独特的弯曲特性。设计了可彻底解决交叉敏感问题的弯曲不敏感的传感器,不仅可以测量弯曲曲率而且可以判别弯曲方向的弯曲传感器和可调增益均衡器。提出了利用弯曲效应降低谐振波长的温度灵敏度和通过消除弯曲引起的轴向应变效应从而提高弯曲测量精度的方法。
    5、在国际上首次了发现高频CO_2激光脉冲写入的长周期光纤光栅谐振波长的扭曲特性具有明显的扭曲方向相关性——顺时针扭曲时谐振波长线性‘红’移,逆时针扭曲时谐振波长线性‘蓝’移,无论顺时针还是逆时针扭曲损耗幅值都近似线性减小。在国际上首次发现若被扭曲的光纤比被扭曲的光栅长得多,则其谐振波长和幅值的变化将出现周期性起伏。利用扭曲引起圆双折射进而导致偏振态变化的相关理论合理解释了该长周期光纤光栅独特的扭曲特性。设计了不仅可以直
    
    接测量扭曲率而且可以判别扭曲方向的扭曲传感器,提出了利用扭曲特性降低长周期光纤光栅偏振相关性的方法。
    6、在国际上首次发现了高频CO_2激光脉冲写入的长周期光纤光栅谐振波长的横向负载特性具有明显的负载方向相关性,圆周0°~180°范围内存在一个谐振波长线性‘红’移最敏感的方向和一个线性‘蓝’移最敏感的方向以及两个对横向负载不敏感的方向。损耗峰幅值随横向负载线性减小但其灵敏度的方向相关性较弱。不同圆周方向的横向负载对谐振波长偏振相关性的影响的差异较大,但横向负载对损耗峰幅值偏振相关性的影响较小。利用横向负载引起双折射进而导致光栅的光学主轴旋转的相关理论合理解释了该长周期光纤光栅独特的横向负载特性及其偏振相关性。设计了利用单个长周期光纤光栅实现温度和横向负载同时测量的传感器和可实现谐振波长和幅值快速独立调节的可调增益均衡器。
In this thesis, the characteristics of novel long-period fiber gratings (LPFGs) induced by focused high-frequency CO_2 laser pulses are studied. The main work is provided as follows:
    1. The formation mechanism for LPFGs written by CO_2 laser is analyzed and summarized as four factors, including residual stress relaxation, density change, thermo-diffusion of dopants, and softening deformation, for the first time, to our knowledge. A novel LPFG written by high-frequency CO2 laser pulses is proposed and demonstrated, and the technology do not caused softening deformation. The CO_2 laser incident on the fiber result in an asymmetric refractive-index distribution within the cross-section of the LPFG.
    2. The mode coupling for the LPFG is analyzed, and a new viewpoint about HE/EH mode is introduced. The transmission spectrum of the LPFG is simulated by means of using averaged effective refractive-index modulation rather than kL, resulting that the simulation of the LPFG is more straightforward and consistent with its fabrication process.
    3. The resonant wavelength of the novel LPFG written by high-frequency CO_2 laser pulses shifts linearly with temperature or axial strain. The amplitude of the loss peak decreases linearly with axial strain, whereas, it is hardly affected by temperature change. Quantitative analysis shows that the temperature and strain sensitivities or shift direction of resonant wavelength for such a LPFG are dependent on fiber types and coupling mode orders. Several methods that can reduce temperature sensitivity of resonant wavelength are proposed and demonstrated.
     It is discovered independently that the bend-sensitivity of the novel LPFG written by high-frequency CO_2 laser pulses depends strongly on curved direction, i.e. there are two orientations corresponding to the most bend-insensitive, and the other two orientations corresponding to the most bend-sensitive. The resonant wavelength shifts linearly and the amplitude decreases linearly with bend curvature applited when the curvature plane is at the bend-sensitive orientations. The unique bend characteristics of the LPFG are analyzed using the coupled-mode theory. Based on these results, several approaches for sensing or communication application are proposed, such as a bend-insensitive LPFG sensor, a temperature-insensitive sensor by means of bend effect compensation, a bend sensor that can, not only measure the applied bend curvature
    
    4. directly, but also determine the bend direction, a tunable gain equalizer, and a method that can improve the bend measurement precision by means of eliminating the strain effect resulting from bending.
    5. It is demonstrated, for the first time to our knowledge, that the torsion characteristic of resonant wavelength for the novel LPFG written by high-frequency CO_2 laser pulses depends strongly on twist direction. That is, the resonant wavelength shifts linearly toward the longer wavelength as the LPFG is twisted clockwise, whereas it shifts linearly toward the longer wavelength as the LPFG is twisted clockwise, and the amplitude decrease linearly with the twist rate applied. If the twisted fiber is much longer than the LPFG, the resonant wavelength shifts wavelike toward the longer (or shorter) wavelength as the LPFG is twisted clockwise (or anticlockwise), and the amplitude decrease wavelike with the twist rate applied. The unique torsion characteristics of the novel LPFG are analyzed using the twist-induced circular birefringence. Based on these results, a torsion sensor that can, not only measure the applied twist rate directly, but also determine the twist direction, and a method that the polarization dependence of the LPFG can be decreased by means of twisting appropriately, are proposed.
    6. It is demonstrated, for the first time to our knowledge, that the transverse-load characteristic of resonant wavelength for the novel LPFG written by high-frequency CO_2 laser pulses depends strongly on load direction, whereas the linear decrease of the loss peak amplitude is independent on lo
引文
[1] I. Bennion, J. A. R. Williams, L. Zhang, et al.. UV-written in-fiber Bragg gratings. Opt. Quantum Electron, 1994, 28, pp.93-159
    [2] K. O. Hill, Y. Fujii, D. C. Johnson, et al., Photosensitivity in optical fiber waveguide: application to reflection filter fabrication, Appl. Phys. Lett., 1978, 32(10), pp. 647-649
    [3] G. Meltz, M. M. Morey, and W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett., 1989, 14(5), pp. 823-825
    [4] K. O. Hill. Bragg gratins fabricated in monomode photosensitive optical fiber by UV expose through a phase mask. Appl. Phys. Lett., 1993, 62(10), pp. 1035-1037
    [5] K. O. Hill, B. Malo, K. A. Vineberg, F. Biloedau, D. C. Johnson, and I. Skinner. Efficient mode conversion in telecommunication fiber using externally written gratings. Electronics Lett., 1990, 26, pp. 1270-1272
    [6] K. O. Kill, F. Bilodeau, B. Malo, and D. C. Johnson. Birefringent photosensitivity in monomode optical fiber : Application to the external writing of rocking filters. Electronics Lett., 1991, 27, pp. 1548-1550
    [7] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie. Long-Period fiber gratings as band-rejection filters. J. Lightware Technol. , 1996, 14(1), pp. 58-65
    [8] V. Bhatia, and A. M. Vengsarkkar. Optical fiber long-period grating sensors. Opt. Lett., 1996, 21, pp. 692-694
    [9] T. Erdogan. Fiber grating spectra, J. of Lightwave Technol., 1997, 15(8), pp. 1277-1294
    [10] T. Erdogan. Cladding-mode resonances in short and long period fiber grating filters. J. Opt. Soc. Am. A, 1997, 14(8), pp. 1760-1773
    [11] D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar. Long-period fibre grating fabrication with focused CO2 laser pulses, Electronics Lett., 1998, 34(3), pp. 302-303
    [12] D.D. Davis, T.K. Gaylord, E.N. Glytsis, and S. C. Mettler. CO2 laser-induced long-period fibre gratings: spectral characteristics cladding modes and polarization independence. Elextron. Lett., 1998, 34(14), pp. 1416-1417
    [13] F. Ouellette. Dispersion cancellation using linearly chirped Bragg grating filters in optical aveguides. Opt. Lett., 1987, 12(10), pp. 847-849
    [14] V. Mizrahi, and J. E. Sipe. Optical properties of photosensitive fiber phase gratins. J. of Lightwave Technol., 1993, 11(10), pp. 1513-1517
    
    
    [15] C. R. Giles. Lightwave application of fiber Bragg gratings. J. of Lightwave Technol., 1997, 15(8), pp. 1391-1404
    [16] G. Agrawal, and S. Radic. Phase-shifted fiber Bragg gratings and their applications for wavelength demultiplexing. IEEE Photon. Technol. Lett., 1994, 6(8), pp. 995-997
    [17] H. Asseh, H. Storoy, J. T. Kringlebotn, et al.. 10cm long Yb+ DFB fiber laser with permanent phase shifted grating, Electronics Lett., 1995, 31(10), pp. 969-970
    [18] T. Erdogan, and J. E. Sipe, Tilted fiber phase gratings. J. Opt. Soc. Am. A, 1996, 13(2), pp. 296-313
    [19] R. Kashyap, R. Wyatt, and P. F. McKee, Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratins. Electronics Lett., 1993, 29, pp. 1025-1026
    [20] C.Y. Lin, and L. A. Wang, Loss-tunable long period fibre grating made from etched corrugation structure. Electonics Lett., 1999, 35(21), pp. 1872-1873
    [21] In Kag Hwang, Seok Hyun Yun, and Byoung Yoon Kim. Long period fiber gratings based on period micobends. Opt. Lett., 1999, 24(18), pp. 1263-1265
    [22] S. Y. Liu, H. Y. Tam, and M. S. Demokan. Low-cost microlens array for long-period grating fabrication. Electronics Lett., 1999, 35(1), pp. 79-81
    [23] H. Patrick, and S. L. Gilbert. Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber. Opt. Lett., 1993, 18, pp. 1484-1486
    [24] J. L. Archambault, L. Reekie, and P. St. J. Russell. 100% reflectivity Bragg reflectors produced in optical fibers by single excimer pulses. Electronics Lett., 1993, 29(5), pp. 453-454
    [25] I. Raint, and F. Haller. Study of the photosensitivity at 193nm and comparison with photosensitivity at 240nm influence of fiber tension: Type IIA aging. J. of Lightwave Technol., 1997, 15, pp. 1464-1469
    [26] Huiyong Liu, Polymer optical fiber bragg gratings. A thesis submitted in fulfillment of the requirement for degree of doctor philosophy. School of Electrical Engineering and Telecommunications, The University of New South Wales, February 2003
    [27] Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu. Highly tunable Bragg gratings in single-mode polymer optical fibers. IEEE Photonics Technol. Lett., 1999, 11(3), pp. 352-354
    [28] H. Y. Liu, G. D. Peng, P. L. Chu, Y. Koike and Y. Watanabe. Photosensitivity in low-loss perfluoroploymer(CYTOP) fibre material. Electronics Lett., 2001, 37(6), pp. 347-348
    [29] D. K. Lam, and B. K. Garside. Characterization of single-mode optical fiber filters. Appl. Optics, 1981, 20(3), pp. 440-445
    [30] G. A. Ball, and W. W. Morey, Continuously tunable single-mode erbium fiber laser, Opt. Lett., 1992, 17, pp.420-422
    
    
    [31] G. A. Ball, and W. W. Morey, Compression-tuned single-frequency Bragg grating fiber laser. Opt. Lett., 1994, 19(23), pp. 1979-1981
    [32] M. J. Gander, W. N. Macpherson, R. McBride et al.. Bend measurement using Bragg gratings in multicore fibre, Electronics Lett., 2000, 36(2), pp. 120-121
    [33] W. G. Zhang, X. Y. Dong, D. J. Feng et al.. Linear fiber-grating-type sensing tuned by applying torsion stress, Electronics Lett., 2000, 36(20). pp. 1686-1688
    [34] R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre, Electronics Lett., 1996, 32(13), pp. 1223-1224
    [35] J. L. Cruz, L. Dong and L. Reekie. Improved thermal sensitivity of fiber Bragg gratings using a polymer overlayer. Electronics Lett., 1996, 32(4), pp. 385-387
    [36] J. L. Arce-Diego, R. Lopez-Ruisanchez, J. M. Lopez-Higuera and M. A. Muriel. Fiber Bragg grating as an optical filter tuned by a magnetic field. Opt. Lett., 1997, 22(9), pp. 603-605
    [37] 原荣. 光纤通信网络. 北京. 电子工业出版社. 1999. pp. 52-55
    [38] J. T. Kringlebotn, J. L. Archambault, L. Reekie, et al.. High efficientLoe noise grating feedback Er+Yb3+ codoped fibre grating, Electronics Lett., 1994, 30(12), pp. 972-973
    [39] J. Chow, G. Town, B. Eggleton et al.. Multi-wavelength generation in an Erbium-doped fiber laser using in-fibre comb filters. IEEE Photon. Technol. Lett., 1996, 8(1), pp. 60-62
    [40] S. Li and K. T. Chan, Electrical wavelength-tunable actively mode-locked fibre ringe laser with a linearly chirped fiber Bragg grating. IEEE Photon. Technol. Lett., 1998, 10(6), pp.799-801
    [41] V. Mizrahi. Four channel fiber grating demultiplexer. Electron. Lett., 1994, 30(10), pp. 780-781
    [42] F. Bakhti, P. Sansonetti, C. Sinet, et al. Optical add/drop multiplexers based on UV-written Bragg grating in a fused 100% coupler. Electron. Lett., 1997, 33(9), pp. 803-804
    [43] W. H. Loh, F. Q. Zhou, J. J. Pan. Novel designs for sampled grating-based multiplexers-demultiplexers. Opt. Lett., 1999, 24(12), pp. 1457-1459
    [44] Y. J. Rao. In-fibre Bragg grating sensors. Meas. Sci. Technol., 1997, 8, pp. 355-375
    [45] A. D. Kersey, M. A. Davis, H. J. Patrick, et al.. Fiber grating sensors. J. of Lightwave Technol., 1997, 15(8), pp. 1442-1463
    [46] Y. J. Rao, A. B. L. Ribeiro, D. A. J.ackson, et al.. Combined spatial- and time-division multiplexing scheme for fibre grating sensors with drift-compensated phase-sensitive detection. Opt. Lett., 1995, 20, pp. 2149-2151
    [47] Y. Zhang, D. Feng, Z. G. Liu, et al.. High-sensitivity pressure sensor using a shield polymer coated fiber Bragg grating. IEEE Photon. Technol. Lett., 2001, 13(6), 618-619
    [48] A. D. Kersey, and M. J. Marrone. Fibre Bragg high-magnetic-field probe. Proc. 10th Inter. Conf. On Optical Fibre Sensor. Pp. 53-56
    
    
    [49] J. Mora, A. Diez, J. L. Cruz, and M. V. Andres. A magnetostrictive sensor interrogated by fiber gratins for DC-current and temperature discrimination. IEEE Photon. Technol. Lett., 2000, 12(12), pp. 1680-1682
    [50] 曾祥楷, 光纤光栅传感理论及多参数传感技术研究, 重庆大学博士后研究工作报告, 2002, 5
    [51] V. V. Spirin, M. G. Shlyagin, S. V. Mieridonov, and I. Marquez. Temperature-insensitive strain measurement using differential double Bragg grating technique. Optics and Laser Technol., 2001, 33, pp. 43-46
    [52] J. Echevarria, A. Quintela, C. Jauregui and J. M. Lopez-Higuera. Uniform fiber Bragg grating first- and second-order diffraction wavelength experimental characterization for strain-temperature discrimination. IEEE Photon. Technol. Lett., 2001, 13(7), pp. 696-698
    [53] Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Liang, Y. Zhu, Y. P. Wang S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion. Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system. Optics and Lasers in Engineering, 2002,38, pp. 557-566
    [54] Rao Yunjing, Zeng Xiangkai, Zhu Yong, Wang Yiping, Zhu Tao, Ran Zengling, Zhang Lin, and Ina Bennion. "Temperatrue-strain discrimination sensor using a WDM chirped in-fibre Bragg grating and extrinsic Fabry-Perot". Chinese Physics Letters, 2001, 18(5), pp. 643-645
    [55] Zeng Xiang-Kai, and Rao Yun-Jiang. Simultaneous static strain, temperature and vibration measurement using an intergrated FBG/EFPI sensor. Chinese Physics Lett., 2001, 18(12), pp. 1617-1619
    [56] Xiang-Kai Zeng, Yun-Jiang Rao, Yi-Ping Wang, Zeng-Ling Ran, and Tao Zhu. "Transverse load, static strain, temperature and vibration measurement using a cascaded FBG/EFPI/LPFG sensor system". The 15th Optical Fibre Sensors Conference, Technical Digest, 2002, pp.199-202
    [57] S. Huang, M. M. Oha and R. M. Measures. Phase-based Bragg intragrating distributed strain sensor. Appl. Opt., 1996, 35(7), pp. 1135-1142
    [58] M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dakin. Measurement of arbitrary strain profiles within fibre gratings, Electron. Lett., 1996, 32(11), pp. 1028-1029
    [59] G. Duck, and M. M. Ohn. Distributed Bragg grating sensing with a direct group-delay measurement technique. Opt. Lett., 2000, 25(2), pp. 90-92
    [60] D. C. Johnson, F. Bilodeau, B. Malo, et al.. Long-length, long-period rocking filters fabricated from conventional monomode telecommunications optical fiber. Opt. Lett., 1992, 17(22), pp. 1635-1637
    [61] I. Sohn, J. Kim, N. Lee, H. Kwon, and J. Song. Tunable gain-flattening filter using long-period
    
    fiber grating based on periodic core deformation. in Design, Fabrication, and Characterization of Photonic Devices II. 2001, Proc. of SPIE 4594, pp. 110-117
    [62] M. Yokota, H. Oka, and T. Yoshino. Mechanically induced long period fiber grating and its application for distributed sensing. OFS'2002, pp. 135-138
    [63] V. I. Karpov, M. V. Grekov et al. , Mode-field converters and long-period gratings fabricated by thermodiffusion in nitrogen-doped silica-core fibers. OFC'98, 1998, ThG3, pp. 279-280
    [64] 艾江, 叶爱伦, 刘宇乔. 一种新的长周期光纤光栅制作方法. 光学学报, 1999, Vol.19(5), pp. 709-712
    [65] 黎敏, 廖延彪, 赖淑蓉, 陈荣声, 一种新型的光纤光栅制作方法. 激光杂志,2001, 22(1), pp. 24-25
    [66] D. P. Hand, and P. St. J. Russell. Photoinduced refractive-induex changes in germanosilicate fibers. Opt. Lett., 1990, 15(2), pp. 102-104
    [67] J. P. Bernardin, and N. M. Lawandy. Dynamics of the formation of Bragg graing in Germanosilicate optical fibers. Opt. Lett., 1990, 15(3), pp. 194-199
    [68] Yamasaki S, Akiyama M, Nishide K, Wada A, Yamauchi.R. Characteristics of long period fiber grating utilizing periodic stress relaxation under high temperature environment. OFS'13, Proceedings of SPIE 3746, 1999, pp. 385~388
    [69] B. H. Kim, T.-J. Ahn, Y. Park, D. Y. Kim, B. H. Lee. Y. Chung, U. C. Pack and W.-T. Han, Measurement of refractive index change due to CO2 laser irradiation using an LPG pair in optical fibers. APOC'2001, Proceedings of SPIE 4579, 2001, pp. 286-295
    [70] J. E. Sipe, L. Poladian and C. M. de Sterke, Propagation through nonumiform grating structures, J. Opt. Soc. Amer. A. 1994, 11(40), pp. 1307-1320
    [71] H. J. Patrick, A. D. Kersey, and F. Bucholtz. Analysis of the response of long period fiber gratings to external index of refraction. J. of Lightwave Technol., 1998, 16(9), pp. 1606-1612
    [72] K. S. Chiang, Y. Q. Liu, X. Y. Dong, et al.. Analysis of etched long-period fibre grating and its response to external refractive index. Electron. Lett., 2000, 36(11), pp.966-967
    [73] Xuewen Shu, Lin Zhang, and Ian Bennion. Sensitivity characteristics of long-period fiber gratings. J. of Lightwave Technology, 2002, Vol. 20, No. 2, pp. 255-266
    [74] G. W. Chern, and L. A. Wang. Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings. J. Opt. Soc. Am. A., 1999, Vol. 16, No. 11, pp. 2675-2689
    [75] M. Yamada, K. Sakuda, Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrtic approach, Appl. Opt., 1987, 26(16), pp. 3474-3478
    [76] H. Ke, J. H. Peng and C. C. Fan, Analysis of long-period fiber grating with fast-varying
    
    parameters and its Optimization by Genetic Algorithm. APOC 2001, Proc. of SPIE Vol. 4579, pp. 274-281
    [77] 刘勇, 叶志清. 龙格-库塔法和传输矩阵法求解非均匀长光纤光栅问题的比较. 江西师范大学学报(自然科学版),2001, 25(1), pp. 57-61
    [78] E. Peral and J. Capmany, Generalized bloch wave analysis for fiber and waveguide gratings. J. Lightwave Technol., 1997, 15(8), pp. 1295-1302
    [79] L. Poldian, Graphical and WKB anlysis of nonuniform Bragg gratings. Phys. Rev. E., 1993, 48(6), pp. 4758-4767
    [80] A. Bouzid and M. A. G. Abushagur, Scattering analysis of slanted fiber gratings. Appl. Opt., 1997, 36(3), pp. 558-562
    [81] A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, "Long-period fiber-grating-based gain equalizers," Opt. Lett., 1996, 21, pp. 336-338
    [82] A. M. Vengsargar. Long-period fiber gratings shape optical spectra. Laser Focus World, 1996, 32(6), pp. 243-248
    [83] 冉曾令, 饶云江, 朱涛, 江建, 曾祥楷, 王义平. "基于新型长周期光纤光栅的掺铒光纤放大器". 光子学报,2003, Vol.32, No. 1, pp. 72-75
    [84] P. K. Lam, A. J. Stevenson, and J. D. Love. Bandpass spectra of evanescent coupler with long period grating. Electron. Lett., 2000, 36(11), pp. 967-969
    [85] 何瑾琳, 孙小菡, 张明德, 逢焕刚, 相移长周期光纤光栅的光谱特性及其在光分插复用器中的应用,光学学报,2000, 20(8), pp. 1106-1111
    [86] V. Grubsky, D. S. Staroduboy, and J. Feinberg. Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings. OFC'2000, Baltimore, 2000, FB5
    [87] X. J. Gu. Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber grating. Opt. Lett., 1998, 23(7), pp. 509-510
    [88] C. D. Su, and L. A. Wang. Multiwavelength fiber source by using long period fiber gratings in superfluorescent fiber source. Electron. Lett., 1999, 35(11), pp. 927-929
    [89] W. T. Chen, and L. A. Wang. Laser-to-fiber coupling scheme by utilizing a lensed fiber integrated with a long-period fiber grating. IEEE Photon. Tech. Lett., 12(5), pp. 501-503
    [90] W. T. Chen, and L. A. Wang. Optical coupling between single-mode fibres by utilising long-period fibre gratings. Electron. Lett., 1999, 35(5), pp. 421-423
    [91] B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar. All-optical switching in long-period fiber gratings. Opt. Lett., 1997, 22(12), pp. 883-885
    [92] Nguyen Hong Ky, H. G. Limberger and R. P. Salathe, et al., Efficient broadand intracore gratng LP01-LP02 mode converters for chromatic-dispersion compensation. Opt. Lett., 1998, 23(6), pp.
    
    445-447
    [93] D. B. Stegall, and T. Erdogan. Dispersion control with use of long-period fiber gratings. J. Opt. Soc. Am. A, 2000, Vol. 17, No. 2, pp. 304-312
    [94] Y. H. Kim, B. H. Lee, Y. Chung, U. C. Pack, and W. -T. Han. Measurement of the pump-induced phase change in Yb3+/Al3+ co-doped optical fibers using a long-period fiber grating pair. OFC2002, ThY4, pp. 564-565
    [95] Y. Ishii, K. Shima, S. Okude, K. Himeno, K. Nishide, and A. Wada. Precise determination of local birefringence of optical fibers by long-period fiber grating analysis. OFC2002, ThGG53, pp. 686-689
    [96] Georges Humbert and Abdelrafik Malki, Temperature characterization of long-period fiber gratings fabricated with electric arc discharge. APOC'2001, Proceedings of SPIE Vol. 4579, 2001, pp. 176-181
    [97] D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler. Very-high-temperature stable CO2-laser-induced long-period fibre gratings. Electron. Lett. 1999, 35(9), pp. 740-742
    [98] Y. Liu, L. Zhang, J. A. R. Whllams, and I. Bennion. Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating. IEEE Photonics Technol. Lett., 2000,12, pp. 531~533
    [99] H. J. Patrick, C. C. Chang, and S. T. Vohra. Long period fibre gratings for structural bend sensing. Electron. Lett., 1998, 34(18), pp. 1773~1775
    [100] VanWiggeren G D, Gaylord T K, Davis D D, Anemogiannis E, Garrett B D, Braiwish M I and Glytsis E N. Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings. Electron. Lett, 2000, 36(16), pp. 1354~1355
    [101] Wang L A, Lin C Y, Chern G W. Torsion sensor made of corrugated long period fiber grating. in 14th International conference on optical fiber sensors, 2000, Proc. of SPIE, 4185, pp. 640~643
    [102] T.-J. Ahn, B.-H. Kim, B. H. Lee. Y. Chung, U. C. Pack and W. -T. Han, Torsion sensing characteristics of optical fiber with a long-period grating pair. APOC'2001, Proc. of SPIE 4579, pp. 154-161
    [103] V. Bhatia, M. K. Burford, N. Zabaronick, K> A. Murphy, and R. O. Claus. Strain and refractive index sensors using temperature-insensitive long-period grating. Tech. Dig. OFS-11, 1996, PD Fr 3-1
    [104] S. Luo, Y. Liu, A. Sucheta, M. Evans, and R. Van. Tassell. Applications of LPG fiber optical sensors for relative humidity and chemical warfare agents monitoring. in Advanced Sensor Systems and Applications, 2002, Proc. of SPIE 4920, pp. 193-204
    
    
    [105] S. W. James, S. Khaliq, and R. P. Tatam. Fiber-optic liquid-level sensor using long period grating. Optics Lett. 2001, 26(16), pp. 127-130
    [106] S. Pilevar, M. P. Delisa, Z. Zhang, C. C. Davis, W. E. Bentley, and J. S. Sirkis. Evanecent wave antibody-antigen biosensor based on long period fiber Bragg grating. The 14th OFS, 2000, Th2-3, pp. 314-317
    [107] 刘云启. 布拉格与长周期光纤光栅及其传感器特性研究. 南开大学博士学位论文, 2000, Chapter 6, pp. 89-113
    [108] H. J. Patrick, G. M. Williams, A. D. Kersey, et al.. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photo. Tech. Lett., 1996, 8(9), pp. 1223~1225
    [109] Joo-Nyung Jang, Se Yoon Kim, Sun-Wood Kim and Min- Sung Kim, Temperature insensitive long-period fibre gratings. Electronics Lett. 1999, 35(20), pp. 2134-2136
    [110] A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser. Electrically tunable efficient broad-band fiber filter. IEEE Photon. Tech. Lett., 1999, 11(4), pp. 445-447
    [111] D. M. Costantinal, H. G. Limberger, R. P. Salathe, C. A. P. Muller, S. A. Vasiliev. Tunable loss filter based on metal coated long period grating. ECOC'98, 1998, pp. 391-392
    [112] 秦莉等,长周期光纤光栅温度稳定性分析及其改善,光学学报,2000,20(2) : pp. 190-194
    [113] Yun-Jiang Rao, Yi-Ping Wang, Zeng-Ling Ran, Tao Zhu. Novel Fiber-Optic Sensors Based on Long-Period Fiber Gratings Written by High-Frequency CO2 Laser Pulses. J. of Lightwave Technology, 2003 (in press)
    [114] A. J. C. Grellier, N. K. Zayer, C. N. Pannell. Heat transfer modeling in CO2 laser processing of optical fibres. Optics Communications, 1998, 152, pp. 324~328
    [115] A. J. C. Grellier, N. K. Zayer, and C. N. Pannell. Considerations in the use of CO2 lasers for tapering fused silica fibre. the 12th OFS, OWC19, pp. 217-220
    [116] L. Drozin, P. -Y. Fonjallaz, and L. Stensland. Long-period fibre gratings written by CO2 exposure of H2-loaded, standard fibres. Electron. Lett., 2000, 36(8), pp. 742-744
    [117] T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson. Generalized expression for the growth of long period gratings. IEEE Photoncis Technology Lett., 1998, Vol. 10, No. 10, 1449-1451
    [118] T. Meyer, P. -A. Nicati, P. -A. Robert, D. Varelas, H.-G. Limberger, R. Salathe. Birefringence writing and erasing in ultra-low-birefringence fibers by polarized UV side-exposure: origin and applications. OFS-11, 1996, We5-1, pp. 368-371
    [119] A. M. Vengsarkar, Qian Zhong, Daryl Inniss, W. A. Reed, Paul J. Lemaire and S. G. Kosinski.
    
    Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method. Optics Lett., 1994, 19(16), pp. 1260-1264
    [120] T. Erdogan, and V. Mizrahi. Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers. J. Opt. Soc. Am. B, 1994, Vol. 11, pp. 2100-2105
    [121] Y. Ishii, S. Okude, K. Nishide and A. Wada. PDL reduction of long-period fiber grating by rotating exposure method. Proc. 27th Eur. Conf. on Opt. Comm.(ECOC'01-Amsterdam), We.A.3.6, pp. 354-355
    [122] O. Duhem, and M. Douay. Effect of UV-induced birefringence on long-period-grating coupling characteristics. Electronics Lett., 2000, Vol. 36, No. 5, pp. 416-417
    [123] B. H. Kim, T. -J. Ahn, Y. Park, D. Y. Kim, B. H. Lee, Y. Chung, U.C. Pack, and W. -T. Han. Measurement of refractive index change due CO2 laser irradiation using an LPG pair in optical fibers. APOC2001, Proc. of SPIE Vol. 4579, pp. 286-295
    [124] Y. Park, K. Oh, U. C. Pack, D. Y. Kim, and Charles R. Kurkjian. Residual stress in a doubly clad fiber with depressed inner cladding (DIC). J. of Lightwave Technol. 1999, 17(10), pp. 1823-1834
    [125] B. H. Kim, Y. Park, T. -J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. -T. Han. Residual stress relaxation in the core of optical fiber by CO2 laser irradiation. Opt. Lett. 2001, 26(21), pp. 1657-1659
    [126] B. H. Kim, Y. Park, D. Y. kim, U. C. Pack, and W. -T. Han. Effect of OH imputity on residual stress development in optical fiber. OFC2002, WA3, pp. 173-174
    [127] Y. G. Han, H. S. Park, W. T. Han, B. H. Lee, U.C. Paek, and Y. Chung. Temperature stability and mechanical strength of long-period fiber gratings fabricated with CO2 laser. OFC2000, TuB3, pp. 26-28
    [128] Y. Pack, T. -J. Ahn, Y. H. Kim, W. -T. Han, U. -C. Paek, D. Y. Kim. Novel technique for measuring the residual stress and the photoelastic effect profile of an optical fiber. OFC2001, TuM4-1
    [129]] S. Yamasaki, M. Akiyama, K. Nishide, A. Wada, and R. Yamauchi. Characteristics of long period fiber grating utilizing periodic stress relaxation under high temperature environment. the 13th OFS, Th2-2, pp. 385-388
    [130] T. Enomoto, M. Shigehara, S. Ishikawa, T. Danzuka, H. Kanamori. Long-period fiber grating in a pure-silica-core fiber written by residual stress relaxation. OFC'98 Technical Digest, pp. 277-288
    [131] K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao. Writing waveguides in glass with a femtosecond laser. Opt. Lett., 1996, Vol. 21, pp. 1729-1731
    
    
    [132] N. F. Borrelli, C. M. Smith, and D. C. Allan, Excimer-laser-induced densification in binary silica gallse. Opt. Lett., 1999, Vol. 24, No. 20, pp. 1401-1403
    [133] K. Morishita, S. F. Yuan, and Y. Miyake. Refractive-index changes and long-period fiber gratings made by rapid solidification. Fibre and Optical Passive Components, 2002, Proc. of 2002 IEEE/LEOS Wrokshop on, 2002, pp. 98-103
    [134] V. I. Karpov, M. V. Grekov, E. M. Dianov, K. M. Golant, S. A. Vasiliev. O. I. Medvedkov, R. R. Khrapko. Mode-field converters and long-period gratings fabricated by thermo-diffusion in nitrogen-doped silica-core fibers. OFC'98 Technical Digest, ThG4, pp. b279-280
    [135] S. G. Kosinski, and A. M. Vengsarkar. Splicer-based long-period fiber gratings. OFC'98 Technical Digest, ThG3, pp. 278-279
    [136] E. M. Dianov, K. M. Golant, R. R. Kharpko, A. S. Kurkov, A. L. Tomashuk. J. of Lightwave Techno. 1995, 13, pp. 1471-1474
    [137] V. A. Bogatyrjov, E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov. In Optical Fiber Communication Conference, 1995, Vol. 8, pp. 266-268
    [138] G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le roux, and P. St. J. Russell. Miniature all-fiber devices based on CO2 laser microstructuing of tapered fibers. Opt. Lett., 2001, Vol. 26, No. 15, pp. 1137-1139
    [139] P. J. Lemarire, R. M. Atkins, V. Mizrahi, and W. A. Reed. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres. Electron. Lett., 1993, 13, pp. 1191-1193
    [140] Qingling Wang, Arif Hidayat, Pierre Niay, and Marc Douay. Influence of blanket postexposure on the thermal stability of the spectral characteristics of gratings written in a telecommunication fiber using light at 193nm, J. of Lightwave Techno. 2000, Vol. 18, No. 8, pp. 1078-1083
    [141] H. Georges, and M. Abdelrafik. Characterizations at very high tmeprature of electric arc-induced long-period fiber gratings. Optics Communications, July 2002, 208, pp. 329-335
    [142] H. Georges, and M. Abdelrafik. Temperature characterization of long-period fiber gratings fabricated with electric arc discharge. APOC2001, Proc. of SPIE Vol. 4579, pp. 176-183
    [143] G. Rego, O. Okhontnikov, E. Dianov. High-temperature stability of long-period fiber gratings produced using an electric arc. J. of Lightwave Technol., 2001, Vol. 19, No. 10, pp. 1574-1579
    [144] G. Humbert, and A. Malki. Annealing time dependence at very high temperature of electric arc-induced long-period fibre gratings. Electron. Lett., 2002, 38(10), pp. 449-450
    [145] Kevin P. Chen, Peter R.Herman, and Jie Zhang. Fabrciation of strong long-period gratings in
    
    hydrogen-free fibers with 157-nm F2-laser radiation. Optics Lett, 2001, 26, (11), pp. 771-773
    [146] S. Y. Liu, and H. Y. Tam. Long-period gratings fabrication suing microlens array. the 13th OFS, 1999, Th2-4, pp. 393-395
    [147] S. Y. Liu, W. S. Man, H. Y. Tam, and M. S. Demokan. Fabrication of long period fibre gratings using plano-convex microlens array to control harmonics. the 14th OFS, 2000, P3-41, pp. 842-845
    [148] H. Y. Tam, 杜卫冲, Michael. S. Y. Liu, 用微透镜阵列在单模光纤中写入长周期光纤光栅的新方法, 光学学报, 1998, Vol. 18, No. 11, pp. 1599-1600
    [149] Toru Mizunami, Hideo Kawashima, and Akihiko Hayashi. A flexible fabrication technique of long-period fiber gratings using a tilted amplitude mask. Fibre and Optical Passive Components, 2002, Proc. of 2002 IEEE/LEOS Workshop on. pp. 92-97
    [150] Michael Otto, Falk Michael, Thomas Duthel, Christian Schaffer. Flexible manufacturing for long-period fibre gratings with arbitrary index modulation profiles. Fibre and Optical Passive Components, 2002, Proc. of 2002 IEEE/LEOS Workshop on. pp. 6-11
    [151] S. Kannan, L. Copelang, J. Judkins. M. LuValle, P. Lemaire. Reliability of long-period gratings. OFC'98, Technical Digest, 1998, ThG6, pp. 282-283
    [152] Bai-Ou Guan, Hwa-Yaw Tam, Siu-Lau Ho. And Xiao-Yi Dong. Inpact of Hydrogen in long-period gratings after 193nm UV Inscription. The 14th OFS, 2000, P2-42, pp. 552-555
    [153] 高侃, 蔡海文, 陈高庭, 方祖捷. 一种改善长周期光纤光栅热稳定性的方法, 光学学报, 2002, 22(9), pp. 1076-1080
    [154] C. Y. Lin, Lon A. Wang, and Gia-Wei Chern. Corrugated long-period fiber gratings as strain, torsion, and bending sensors. J. of Lightwave Techno. 2001, Vol. 19, No. 8, pp. 1159-1168
    [155] C. Y. Lin, Gia-Wei Chern, and Lon A. Wang. Periodical corrugated structure for forming sampled fiber Bragg grating and long-period fiber grating with tunable coupling strength. J. of Lightwave Techno. 2001, Vol. 19, No. 8, pp. 1211-1220
    [156] C.Y. Lin, and Lon A. Wang. A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating. IEEE Photon. Techno. Lett. 2001, Vol. 13, No. 4, pp. 332-334
    [157] Y. Jiang, Q. Li, C. H. Lin, E. Lyons, I. Tomov, and H. P. Lee. A novel strain-induced thermally tuned long-period fiber grating fabricated on a periodic corrugated silicon fixture. IEEE Photon. Techno. Lett. 2002, Vol. 14, No. 7, pp. 941-943
    [158] C. H. Lin, Q. Li, A. A. Au, Y. Jiang, E. R. Lyons, and H. P. Lee. A loss tunable long-period fiber gratings on corrugated silicon with on-chip microheater and temperature sensor. OFC2002, WC6, pp. 193-194
    
    
    [159] M. Fujimaki, and Y. Ohki. Fabrication of long-period optical fiber gratings by use of ion implantation. Opt. Lett. 2000, 25(2), pp. 88-89
    [160] M. L. von Bibra and A. Roberts. Fabrication of long-period fiber gratings by use of focused ion-beam irradiation. Opt. Lett., 2001, 26(11), pp. 765-767
    [161] M. L. von Bibra, and A. Roberts. Long period fibre gratings made with focussed ion beam irradiation. The 14th OFS, 2000, TH6-3, pp. 604-607
    [162] A. Roberts and M. L. von Bibra. J. Lightwave Technol. 1996, Vol. 14, pp. 2554-
    [163] J. Albert, B. Malo, K. O. Kill, D. C. Johnson, J. L. Brebner, and R. Leonelli, Opt. Lett., 1992, Vol. 17, PP. 1652-
    [164] S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw. Tunable mechanically induced long-period fiber gratings. Optics Lett., 2000, Vol. 25, No. 10, pp. 710-712
    [165] Thomas Lee S, Nibu A. George, P. Sureshkumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori. Chemical sensing with microbent optical fiber. Optics Lett., 2001, Vol. 26, No. 20, pp. 1541-1543
    [166] J. W. Ham, J. H. Lee, J. Y. Cho, H. S. Jang, and K. S. Lee. A birefringence compensation method for mechanically induced long-period fiber gratings in optical communication and sensing systems. OFS'2002, pp. 565-568
    [167] Joon Yong Cho, and Kyung Shik Lee. A birefringence compensation method for mechanically induced long-period fiber gratings. Optics Communication, 2002, 213, pp. 281-284
    [168] Jose L. Arec-Diego, Jorge Gonzalez-Garcia, David Pereda-Cubian, Daniel A. Gonzalez-Fernandez. Optical fiber transducer based on LPFG and Microbends for multi-parameter sensing. Lasers and Electro-Optics Society, LEOS 2001, the 14th Annual Meeting of the IEEE, Vol. 2, pp. 782-783
    [169] In Kag Hwang, Seok Hyun Yun, Erik Gentzsch, et al.. Profile-controlled long-period fiber gratings based on period microbends. OFC'99, 1999, FK6, pp. 177-179
    [170] 瞿荣辉, 赵浩, 方祖捷. 长周期光纤光栅的制作方法和应用研究进展. 激光与光电子学进展, 1999, No. 12, pp. 8-13
    [171] H. Kogelnik, "Theroy of optical waveguides". in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, Berlin, 1990)
    [172] A. W. Snyder, and J. D. Love. Optical Waveguide Theory. Chapman and Hall, London, 1984
    [173] C. Tsao, Optical Fibre Waveguide Analysis. (Oxford, New York, 1992)
    [174] 孔梅, 长周期光纤光栅的理论和应用研究, 浙江大学博士学位论文, 1999, Chapter 3, 28-38
    [175] 舒学文, 光纤光栅及其在光电子信息技术中的应用, 华中理工大学博士学位论文, 2000,
    
    Chapter 5, pp.68-87
    [176] 何万迅, 长周期光纤光栅的模式耦合及应用性研究上海交通大学博士学位论文, 2002, Chapter 3, pp. 27-46
    [177] 柳青, 李新碗, 叶爱伦, 杜鹏超,. 长周期光纤光栅包层模场分布及耦合系数. 上海交通大学学报, 2000, Vol. 34, No. 2, pp. 201-208
    [178] 李新碗, 杜鹏超, 叶爱伦. 长周期光纤光栅耦合特性及模拟分析. 电子学报2000, Vol. 28, No. 11, pp. 68-71
    [179] Kong M, Tang W Z, Zhou w. Cladding mode resonances in long period fiber gratings. ACTA PHOTONICA SINICA (光子学报), 1998, Vol. 27, No. 5, pp. 433-437
    [180] D. Gloge. Weakly guiding fibers. Appl. Opt., 1971, Vol. 10, pp. 2252-2258
    [181] C. Tsao, D. N. Payne, and W. A. Gambling. Modal characteristics of three-layered optical fiber waveguides: a modified approach. J. Opt. Soc. Am. A, 1989, Vol. 6, No. 4, pp. 555-563
    [182] T. Erdogan. Cladding-mode resonances in short- and long-period fiber grating filters: errata. J. Opt. Soc. Am. A, 2000, Vol. 17, No. 11, pp. 2113
    [183] D. G. Hall. Theory of waveguides and devices. In Integrated Optical Circuits and Components, L. D. Hutcheson, ed. (Marcel Dekker, New York, 1987), Secs. 2.4.2 and 2.4.3.
    [184] K. S. Lee, and T. Erdogan. Fiber mode coupling in transmissive and reflective tilted fiber gratings. Applied Optics, 2000, Vol. 39, No. 9, pp. 1394-1404
    [185] K. S. Lee, and T. Erdogan. Fiber mode conversion with tilted gratings in an optical fiber. J. Opt. Soc. Am. A, 2001, Vol. 18, No. 5, pp. 1176-1185
    [186] K. S. Lee, and T. Erdogan. Transmissive tilted gratings for LP01-to-LP11 mode coupling. IEEE. Photonics Technol. Lett. 1999, Vol. 11, No. 10, pp. 1286-1288
    [187] K. S. Lee, and T. Erdogan. Mode coupling in spiral fibre gratings. Electronics Lett., 2001, Vol. 37, No. 3, pp. 156-157
    [188] Mei Nar Ng, and Kin Sen Chiang. Thermal effects on the transmission spectra of long-period fiber gratings. Optics Communications, July 2002, 208, pp. 321-327
    [189] 舒学文, 光纤光栅及其在光电子信息技术中的应用, 华中理工大学博士学位论文, 2000, Chapter 6, pp. 88-100
    [190] Xuewen Shu, Lin Zhang, and Ian Bennion. Sensitivity characteristics near the dispersion turning points of long-period fiber gratings in B/Ge codoped fiber. Opt. Lett., Vol. 26, No. 22, pp. 1755-1758
    [191] Xuewen Shu, T. Allsop, B. Gwandu, Lin Zhang, and I. Bennion. Room-temperature operation of widely tunable loss filter. Electronics Lett., 2001, Vol. 37, No. 4, pp. 216-218
    
    
    [192] Xuewen Shu, Tom Allsop, Bashir Gwandu, Lin Zhang, and Ian Bennion. High-temperature sensitivity of long-period gratings in B-Ge codoped fiber. IEEE Photonics Technology Lett., Vol. 13, No. 8, pp. 818-820
    [193] Xuewen Shu, Lin Zhang, and Ian Bennion. Fabrication and characterization of ultra-long-period fiber gratings. Optics Communications, March 2002, 203, pp. 277-281
    [194] V. Grubsky, and J. Feinberg. Long-period fiber gratings with variable coupling for real-time sensing applications. Opt. Lett., Vol. 25, No. 4, pp. 203-205
    [195] J. B. Judkins, J. R. Pedrazzani, D. J. Digiovanni, and A. M. Vengsarkar. Temperature-insensitive long-period fibre gratings. Tech. Dig. OFC'96, 1996, Paper PD1
    [196] K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi. A novel temperature-insensitive long-period fibre grating using a boron-codoped-germanosilicate-core fiber. Tech. Dig. OFC'97, 1997, Paper FB2, pp. 347-348
    [197] V. Bhatia, D.K. Campbell, T. D'Alberto, G. A. Ten Eyck, D. Sherr, K. A. Murphy, R. O. Claus. Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractive-index sensing. OFC'97 Tech. Dig., P. 346-347
    [198] J. B. Judkins, P. J. Lemarire, and A. M. Vengsarkar. Long-period fibre grating devices package ofr temperature stability. United States Patent, 1998, 575-7540
    [199] Joo-Nyung Jang, Se Yoon Kim, Sun-Wook Kim, and Min-Sung Kim. Temperature insensitive long-period fibre gratings. Electronics Lett., 1999, Vol. 35, No. 24, pp. 2134-2136
    [200] A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser. Widely tunable long-period fibre gratings. Electron. Lett., 1999, 35(1), pp. 81-82
    [201] A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser. Temperature-sensitive long-period fiber gratings for wideband tunable filters. OFC2000, ThJ5, pp. 144-146
    [202] D. M. Costantini, C. A. P. Muller, S. A. Vasiliev, H. G. Limberger, and R. P. Salathe. Tunable loss filter based on metal-coated long-period fiber grating. IEEE Photonics Technology Lett., 1999, Vol. 11, No. 11, pp. 1458-1460
    [203] Xuewen Shu, Tom Allsop, Bashir Gwandu, Lin Zhang, Ian Bennion. Thermally tunable optical fiber loss filter with wide tuning range. CLEO2001, 2001, CtuF4, pp. 126-127
    [204] L. Qin, Z. X. Wei, Q. Y. Wang, H. P. Li, W. Zheng, Y. S. Zhang, and D. S. Gao. Compact temperature-compensating package for long-period fiber gratings. Optical Materials, 2000, 14, pp. 239-242
    [205] Bai-Ou Guan, Hwa-Yaw Tam, Xiao-Ming Tao, and Xiao-Yi Dong. Simultanous strain and temperature measurement using a superstructure fiber Bragg grating. IEEE Photonics Technology Lett., 2000, Vol. 12, No. 6, pp. 675-677
    
    
    [206] Bai-Ou Guan, Hwa-Yaw Tam, Siu-Lau Ho, Weng-Heng Chung, and Xiao-Yi Dong. Simultaneous strain and temperature measurement using a single fibre Bragg grating. Electronics Lett., 2000, Vol. 36, No. 12, pp. 1018-1019
    [207] Wei-Chong Du, Xiao-Ming Tao, and Hwa-Yaw Tam. Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature. IEEE Photonics Technology Lett., 1999, Vol. 11, No. 1, pp. 105-107
    [208] M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz. Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre. Electronics Lett., 1995, Vol. 31, No. 10, pp. 823-824
    [209] S. W. James, M. L. Dockney, and R. P. Tatam. Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors. Electronics Lett., 1996, Vol. 32, No. 12, pp. 1133-1134
    [210] Sungchul Kim, Jaejoong Kwon, Sungwoo Kim, and Byoungho Lee. Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube. IEEE Photonics Technology Lett., Vol. 12, No. 6, pp. 678-680
    [211] Muguang Wang, Tangjun Li, Yucheng Zhao, Huai Wei, Zhi Tong and Shuisheng Jian. Simultaneous measurement of strain and temperature Using Dual-period Fiber Grating. APOC'2001, Proc. of SPIE 4579, pp. 265-268
    [212] H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarker. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrcimination. IEEE Photonics Technology Lett., 1996, Vol. 8, No. 9, pp. 1223-1225
    [213] 刘鸿文 主编. 材料力学(第三版 上册). 高等教育出版社,1982 : 211~252
    [214] G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, and E. Anemogiannis. Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings. Opt. Lett., 2001, Vol. 26, No. 2, pp. 61-63
    [215] H. J. Patrick, and S. T. Vohra. Directional shape sensing using bend sensitivity of long period fiber gratings. the 13th OFS, The3-6, pp. 561-564
    [216] H. J. Patrick. Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fibre. Electronics Lett., 2000, Vol. 36, No. 21, pp. 1763-1764
    [217] H. J. Patrick. Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber. The 14th OFS, WE2-5, pp. 17-20
    [218] D. Inaudi, S. Vurillot, N. Casanova, and P. Kronenberg. Structural monitoring by curvature analysis using interfermetric fiber optic sensors. Smart Mater. Struct., 1998, Vol. 7, pp. 199-208
    
    
    [219] Y. Liu, L. Zhang, J. A. R. Williams, I. Bennion. Bend sensing by measuring the resonance splitting of long-period fiber gratings. Optics Communication. 2001, 193, pp. 69-72
    [220] Y. Liu, L. Zhang, and I. Bennion. Bending curvature sensing based on measurement of resonance mode splitting of long-period fibre grating. The 14th OFS, 2000, P2-44, 560-563
    [221] Stephen.W. James, Chen Chun Ye, S. Khaliq, and Ralph. P. Tatam. Bend sensing using optical fibre long period gratings. The 14th OFS, P1-08, pp. 66-69
    [222] 王义平, 饶云江, 曾祥楷. 长周期光纤光栅弯曲特性的耦合模理论分析. 光子学报,2002, Vol.31, No.10, pp. 1205-1208
    [223] J. L. Arce-Diego, D. A. Gonzalez-Fernandez, M. A. Quintela, F. J. Madruga, and J. M. Lopez-Higuera. The 14th OFS, 2000, P3-43, pp. 850-853
    [224] Kumar A, Gallawa R L, Goyal I G. Modal Characteristics of Bent Dual Mode Planar Optical Waveguides, J. Lightwave Technol., 1994, Vol. 12, No. 4, pp. 621-624
    [225] I. C. Goyal, R. L. Gallawa, and A. K. Ghatak. Bent planar waveguides and whispering gallery modes: a new method of analysis. J. of Lightwave Technology. 1990, Vol. 8, No. 5, pp. 768-773
    [226] Rao Y J, Wang Y P, Ran Z L, Zhu T, Yu B M. Characteristics of novel long -period fiber gratings written by focused high-frequency CO2 laser pulses. Asia-Pacific Optical and Wireless Communications 2001, Proceedings of SPIE Vol. 4581 : 327~333
    [227] Young-Geun Han, Won-Tack Han, Un-Chul Pack, and Youngjoo Chung. Measurement of bending curvature using bandpass filters based on phase-shifted long-period fiber gratings. OFS'2002, TuP5, pp. 143-146
    [228] Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, X. K. Zeng. "Bend-insensitive long-period fiber grating sensors". Optics and Lasers in Engineering, 2003 (in press)
    [229] Mei Nar Ng. Zhihao Chen, and Kin Seng Chiang. Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect. IEEE Photonics Technology Lett., 2002, Vol. 14, No. 3, pp. 361-362
    [230] M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Benion, P. M. Blanchard, J. G. Burnett and A. H. Greenaway. Bend measurement using Bragg gratings in multicore fibre. Electronics Lett., 2000, Vol. 36. No. 2, pp. 120-121
    [231] 朱涛, 饶云江, 冉曾令, 王义平, 江建.一种基于新型长周期光纤光栅的动态增益均衡器. 光子学报, 2003, (in press)
    [232]Yamada M, Kanamori T, Terunuma Y, Oikawa K, Shimizu M, Sudo S, and Sagawa K. Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum. IEEE Photon. Technol. Lett., 1996, Vol. 8, No. 7, pp. 882-884
    
    
    [233]Yun S K, Lee B W, Kim H K, and Kim B Y. Dynamic erbium-doped fiber amplifier based on active gain flattening with a fiber acoustooptic tunable filter. IEEE Photon. Technol. Lett., 1999, Vol. 11, No. 10, pp.1229-1231
    [234]Liaw S K, Ho K P, and Chi S. Dynamic power-equalized EDFA module based on strain tunable fiber Bragg gratings. IEEE Photon. Technol. Lett., 1999, Vol. 11, No. 7, pp. 797-799
    [235]Wysocki P F, Judkins J B, Espindola R P, Andrejco M, and Vengsarkar A M. Broad-band erbium-doped fiber amplifier flattened beyond 40nm using long-period grating filter. IEEE Photon. Technol. Lett., 1997, Vol. 9, No. 10, pp. 1343-1345
    [236]Pandit M K, Chiang K S, Chen Z H, and Li S P. Tunable long-period fiber gratings for EDFA gain and ASE equalization. Microwave and Opt. Technol. Lett., 1999, Vol. 25, No. 4, pp. 181-184
    [237] Young-Geun, Byeong Ha Lee, Won-Taek Han, Un-Chul Paek, and Youngjoo Chung. Resonance peak shift and Dual Peak Separation of long-period fiber gratings for sensing applications. IEEE Photonics Technology Lett., 2001, Vol. 13, No. 7, pp. 699-701
    [238] Xuewen Shu, Xuemei Zhu, Qinglin Wang, Shan Jiang, Wei Shi, Zhijian Huang, and Dexiu Huang. Dual resonant peaks of LP05 cladding mode in long-period gratings. Electronics Lett., 1999, Vol. 35, No. 8, pp. 649-651
    [239] Xuewen Shu, Xuemei Zhu, Shan Jiang, Wei Shi, and Dexiu Huang. High sensitivity of dual resonant peaks of long-period fibre grating to surrounding refractive index changes. Electronics Lett., 1999, Vol. 35, No. 18, pp. 1580-1581
    [240] Byeong Ha Lee, and Junji Nishii. Bending sensitivity of in-series long-period fiber gratings. Optics Lett., 1998, Vol. 23, No.20, pp. 1624-1626
    [241] Younggenun Han, Byeongha Lee, Won-Tack Han, Un-Chul Pack, and Youngjoo Chung. Fiber-optic bending sensor with a pair of long-period fiber gratings. The 14th OFS, 2000, P1-21, pp. 118-121
    [242] Soohee In, Chul Chung, and Hojoon Lee. The resonance wavelength-tuning characteristic of arc-induced by diameter modulation. 15th OFS, 2002, TuP2, pp. 131-134
    [243] Y. P. Wang, Y. J. Rao, A. Z. Hu, X. K. Zeng, Z. L. Ran, and T. Zhu. A novel fiber-optic torsion sensor based on a CO2-laser induced long-period fiber grating. 15th OFS, 2002, TuP6, pp. 147-150
    [244] R. Ulrich and A. Simon. Polarization optics of twisted single-mode fibers. Applied Optics, 1979, Vol. 18, No. 13, pp. 2241-2251
    [245] Andrea Galtarossa, and Luca Palmieri. Measure of twist-induced circular birefringence in long single-mode fibers: theory and experiments. J. of lightwave Technology, 2002, Vol. 20, No. 7,
    
    pp. 1149-1159
    [246] Tomasz R. Wolinski, and Wojtek J. Bock. Birefringence Measurement under hydrostatic pressure in twisted highly birefringent fibers. IEEE Transactions on Instrumentation and Measurement, 1995, Vol. 44, No. 3, pp. 708-711
    [247] G. D. VanWiggeren, and Rajarshi Roy. Transmission of linearly polarized light through a single-mode fiber with random fluctuations of birefringence. Applied Optics, 1999, Vol. 38, No. 18, pp. 3888-3892
    [248] D. H. O. Bebbingtong, and A. S. Siddiqui. Analytical description of backscattered states of polarization in polarization optical time-domain reflectometry measure ments on uniformly twisted linearly birefringent optical fiber. J. Opt. Soc. Am. A, 2000, Vol. 17, No. 12, pp. 2260-2266
    [249] R. Ulrich. Optics Lett., 1977, Vol. 1, No. 3, pp.109-111
    [250] R. Ulrich, et al. Optics Lett., 1980, Vol. 5, No. 6, pp. 273-275
    [251] 王伟, 李国华. 斯托克斯空间用邦加球表示光偏振态的再研究. 应用光学, 2002, Vol. 24, No. 3, pp. 23-25
    [252] W. C. Swann, S. D. Dyer, and R. M. Craig. Four-state measurement method for polarization dependent wavelength shift. Symposium on Fiber Measurements (SOFM 2002), Boulder. CO. NIST Special Publication, pp. 125-128
    [253] 廖延彪, 光纤光学, 清华大学出版社, 2000, Chapter 2, pp. 54-92
    [254] 张靖华, 双折射光纤环形腔, 上海大学学报(自然科学版), 2000, Vol. 6, No. 1, pp. 39-43
    [255] 石顺祥, 张海兴, 刘劲松. 物理光学与应用光学. 西安电子科技大学出版社, 2000, Chapter 1, pp. 3-55
    [256] 吴重庆. 光波导理论. 清华大学出版社, 2000, Chapter 7, pp. 111-138
    [257] V. Lemarquand. Synthesis study of magnetic torque sensors. IEEE Transactions on magnetics, 1999, Vol. 35, pp. 4503-4510
    [258] Udd E. Fibre Optic Smart Structures, New York: Wiley, 1995
    [259]张伟刚, 许兆文, 杨翔鹏, 开桂云, 赵启大, 袁树忠, 董孝义. 用单个光纤光栅实现扭转与温度的双参量传感测量. 光学学报, 2002, Vol. 22, No. 9, pp. 1070-1075
    [260] Weigang Zhang, Xiaoyi Dong, Dejun Feng, Zixiong Qin, and Qida Zhao. Linear fibre-grating-type sensing tuned by applying torsion stress. Electronics Lett., 2000, Vol. 36, No. 20, pp. 1686-1688
    [261] Weigang Zhang, Xiaoyi Dong, Zhigang Wu, Guang. Zhou, Jian Zeng, Shuzhong Yuan, Guiyun Kai, and Qida Zhao. Novel multimode fiber sensor by applying torsional angle tuning. in Advanced Sensor Systems and Applications, 2002, Shanghai, China, Proc. of SPIE 4920, pp.
    
    450-453
    [262] Zhaowen Xu, Zhigang Wu, Weiqing Gao, Shuzhong Yuan, Xiaoyi Dong. A novel twisted fiber strain gauge. in Advanced Sensor Systems and Applications, 2002, Shanghai, China, Proc. SPIE Vol. 4920, pp. 445-449
    [263] S. Y. Kim, S. Y. Yoon, M. S. Kim, K. H. Kwack. Birefringence reduction in long-period gratings by the fiber-twist method. CLEO 2000, pp. 576-577
    [264] Y. Liu, L. Zhang, I. Bennion. Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre, J, Elcotron. Lett. 1999, 35(8) : 661~662
    [265] L.Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion. Design and Realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors. IEEE J. of. Selected Topics in Quantum Electronics. 1999, Vol. 5, No. 5, pp. 1373-1378
    [266] Y. Liu, L. Zhang and I. Bennion. Long-period fibre grating load sensors with high transverse strain sensitivity. The 14th OFS, 2000, TH5-3, pp. 580-583
    [267] B. Ortega. L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N> Bagratashvili, and R. I. Laming. High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers. IEEE Photonics Technology Lett., 1997, Vol. 9, No.10, pp. 1370-1372
    [268] Leif Bierkan, Kjetil Johannessen, and XinXin Guo. Measurements of Bragg grating birefringence due to transverse compressive forces. 12th OFS, 1997,OTuC7, pp. 60-63
    [269] J. G. Qian, M. Liang. FGB load sensing: an investigative experiment. in Optical Components and Transmission Systems, APOC2002, Shanghai, China. Proc. of SPIE 4906, pp. 336- 342
    [270] Javier Calero, Sou-Pan Wu, Clark Pope, Shun Lien Chuang, and Joseph P. Murtha. Theory and experiments on birefringent optical fibers embedded in concrete structures. J. of Lightwave Technology, 1994, Vol. 12, No. 6, pp. 1081-1091
    [271] Rao Yunjing, Wang Yiping, Zhu Tao, Ran Zenglin, Zeng Xiangkai. Simultane ous measurement of transverse load and temperature using a single long-period fiber grating element. Chinese Physics Letters, 2003, Vol. 20, No. 1, pp. 72-75
    [272] C. Femindez-Valdivielso, I. R. Matias, and F. J. Arregui. Simultaneous measurement of strain and temperature using a fiber Bragg grating and a thermochromic material. OFS'2002, pp. 203-206
    [273] Yi-Ping Wang, Yun-Jiang Rao, Zeng-Ling Ran, Tao Zhu, Ai-Zi Hu, "A Novel Tunable Gain Equalizers Based on a Long-Period Fiber Grating Written by High-Frequency CO2 Laser
    
    Pulses", IEEE Photonics Technology Letters, 2003, Vol. 15, No. 2, pp. 251-253
    [274] Michiko Harumoto, Masakazu Shigehara, and Hiroshi Suganuma. Gain-Flattening filter using long-period fiber gratings. J. of Lightwave Technology, 2002, Vol. 20, No. 6, pp. 1027-1033

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700