染料结构与吸收光谱关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高用ZINDO/S方法预测染料分子吸收光谱的准确度,本文提出了一种新的思路,即暂且抛弃某一固定的OWF_(π-π)(π-π重叠加权因子,ZINDO/S方法中的一个可调参数)值对大多数化合物的适用性,把OWF_(π-π看作是分子共轭程度的一个量度。对同一系列的化合物,首先根据其吸收光谱的实测值选择OWF_(π-π),使吸收光谱计算值与实测值相吻合,而后利用回归方法揭示OWF_(π-π)与分子构型参数的关系。
     本文的研究结果表明,对于不同结构类型的染料分子,影响OWF_(π-π)的主要分子构型参数也不相同。根据本文的研究,主要影响参数包括以下几种:(1)偶合组分和重氮组分之间的夹角α对OWF_(π-π)有较大的影响,OWF_(π-π)随α的增大而线性减小,如某些偶氮苯衍生物、氨基嘧啶类染料母体、偶合组分和重氮组分之间夹角α变化较大的活性染料等。(2)给电子取代基或吸电子取代基的电荷对OWF_(π-π)有较大的影响,OWF_(π-π)随电荷的变化而线性变化,如某些偶氮苯衍生物、吡啶酮类染料母体、硝基二苯胺类化合物、偶合组分和重氮组分之间夹角α变化不大的活性染料、1,4—二(取代)氨基蒽醌衍生物等。(3)键长和共轭双键数对OWF_(π-π)有较大的影响,OWF_(π-π)随键长(如平面型的偶氮苯衍生物、菁类和氧杂菁类等)和双键数(如共轭烯烃类、β—胡萝卜素和番茄红素等)的变化而线性变化。(4)取代基类型和取代基位置对OWF_(π-π)有较大的影响,如萘醌类发色母体、蒽醌类发色母体等。(5)对酞菁类这一特殊类型的发色体,配位氮原子平均电荷和中心原子电负性对OWF_(π-π)有较大的影响,OWF_(π-π)随它们的增大而线性增大。上述结果均能从量子化学的角度进行解释。本文的研究结果还表明,用OWF_(π-π)与分子构型参数的关系可对吸收半峰宽进行初步的预测。
     综上可见:
     (1)将OWF_(π-π)作为分子共轭程度的量度是合适的,将简单母体OWF_(π-π)与分子构型参数的关系用于同类发色母体吸收半峰宽的预测和同一系列复杂染料分子吸收光谱的计算也是可行的,因此,本文的研究为提高吸收光谱预测的准确度提供了一种新的思路。
     (2)各种发色母体OWF_(π-π)与分子构型参数之间确实存在某种关系,这种关系不仅可以用量子化学理论进行较好的解释,而且在同一系列中具有一定的外推适用性,因而大大地提高了吸收光谱预测的准确度。
     (3)对染料吸收光谱的准确预测,可从本质上揭示分子结构与吸收光谱之间的关系,为染料分子结构设计提供理论依据;此外,对染料样品剖析也将起到很大的帮助作用。
In order to improve the prediction accuracy of the absorption spectroscopy of dyes by ZINDO/S method, a new idea was introduced in this thesis, that is, OWF?(the simplification of π-π overlap weighting factor', one of the adjustable parameters in ZINDO/S method) was considered as a measurement of the conjugation extent of a molecule, rather than a certain fixed value applicable to all molecules. For compounds of the same kind, firstly, the value of OWFπ-π was so determined that the calculated absorption maximum could coincide with observed ones well, then, the method of regression was used to reveal the relationship between OWFπ-π and molecular conformation parameters.
    The results of this study showed that the primary conformation parameter affecting OWFπ-π
    was different for different kinds of molecules. According to this study, OWFπ-πwas affected by the following conformation parameters. (1) The angle between diazo component and coupling component affected OWFπ-πgreatly for some azobenzene derivatives, aminopyrimidine derivatives and some reactive dyes, in this instance, OWFπ-π decreased linearly with the increase of the angle. (2) The charges on the substituents affected OWFπ-π greatly for some azobenzene derivatives, pyridone derivatives, nitrodiphenylamine derivatives, some reactive dyes and 1, 4-diamino anthraquinone derivatives, in this instance, OWFπ-π changed linearly with the change of the charges. (3) The length of certain bond(s) and the number of conjugate double-bond affected OWFπ-π greatly, OWFπ-π changed linearly with the change of bond length (for planar azobenzene derivatives and cyanine derivatives) and the change of conjugate double-bond number (for conjugate alkene, p-carotene and lycopene). (4) The type and position of substituents affected
     OWFπ-π greatly for naphthoquinone and anthraquinone derivatives. (5) The charges on coordinated bonded nitrogens and the electronegativity of central atom affected OWFπ-π greatly for phthalocyanine compounds, OWFπ-π increased linearly with the increase of the charges and the electronegativity. All the above phenomena could be explained in terms of quantum chemistry. In this study, it was also shown that the absorption half-bandwidth could be predicted roughly according to the relationship between OWFπ-π and molecular conformation parameters.
    In conclusion: (1) It is appropriate to consider OWFπ-π as a measurement of the conjugation extent of a
    
    
    
    
    molecule and it is feasible to predict the absorption half-bandwidth and absorption maximum of complex dyes according to the relationship between OWFπ-π and molecular conformation parameters obtained from simple molecules of the same kind. Consequently, a new thought to improve the prediction accuracy of the absorption spectroscopy is presented in this dissertation.
    (2) There is indeed some relationship between OWFπ-π and molecular conformation parameters. The obtained relationship not only could be explained in terms of quantum chemistry, but also could be extrapolated in the same series of molecules. Therefore, the prediction accuracy of absorption spectroscopy could be improved evidently.
    (3) The accurate prediction of absorption spectroscopy could on one hand, reveal the relationship between molecular conformation and absorption spectroscopy, and on the other, offer a theoretical basis for the design of dye molecules. Furthermore, it could also give assistance in the analysis of dye samples.
引文
[1] 候毓汾,吴祖望,胡家振,颜色与有机分子结构,化学工业出版社,1985年;
    [2] 候毓汾,朱振华,王任之,染料化学,化学工业出版社,1994年;
    [3] 杨薇,杨新玮,国内染料工业现状——几类水溶性染料的发展(一),上海染料,2002,30(2):1~9:
    [4] 杨薇,杨新玮,国内外活性染料进展,染料工业,2001,38(2):5~7,43和38(3):1~5;
    [5] 陈荣圻,活性染料的进展(三)——纪念国产活性染料诞生40周年,印染,1999,25(1):50~54;
    [6] 吴祖望,王德云,近十年活性染料的理论与实践的进展——纪念活性染料四十年,染料工业,1998,35(1):1~8;
    [7] 鹏搏,晓琴,近年来活性染料技术进展,化工进展,1994,(4):18~24:
    [8] K. Y. Chu, J. Griffiths, Colour and constitution of the nitro-and dintro-p-phenylenediamines and their N-methyl derivatives, J. Chem. Soc., Perkin Trans. Ⅰ, 1978, 1194~1198;
    [9] J. Griffiths, Practical aspects of colour prediction of organic dye molecules, Dyes Pigm., 1982,3: 211~233;
    [10] 李宗石,孙育贤,程侣柏,用HMO法计算偶氮化合物的吸收光谱,大连工学院学报,1979,18(4):70~82;
    [11] Y. Kogo, Colour and constitution of thiophene and thiazole azo dyes, Dyes Pigmy, 1985, 6:31~38;
    [12] 陈兴,高昆玉,程侣柏,胡家振,杂环偶氮染料的结构与颜色的研究(Ⅱ),染料工业,1986,23(5):14~17;
    [13] L. B. Cheng, X. Chen, K. Y. Gao, J. Z. Hu, J. Griffiths, Colour and constitution of azo dyes derived from 2-thioalkyl-4,6-diaminopyrimidines and 3-cyano-1,4-dimethyl-6-hydroxy-2-pyridone as coupling components, Dyes Pigm., 1986, 7: 373~388;
    [14] 陈兴,高昆玉,程侣柏,胡家振,杂环偶氮染料的结构与颜色的研究(Ⅰ),染料工业,1986,23(3):18~23;
    
    
    [15] 陈兴,程侣柏,PPP-MO法在染料分子设计中的作用,染料工业,1992,29(5):6~13;
    [16] K. Y. Chu, J. Griffiths, Naphthoquinone colouring matters, Part 2, J. Chem. Res., 1978, (s): 180~181;
    [17] K. Y. Chu, J. Griffiths, Naphthoquinone colouring matters, Part 1, J. Chem. Soc., Perkin Trans. Ⅰ, 1978, 1083~1087;
    [18] K. Y. Chu, J. Griffiths, Naphthoquinone colouring matters, Part 3, J. Chem. Soc., Perkin Trans. Ⅰ, 1979, 696~701;
    [19] G. Green-Buckley, J. Griffiths, Naphthoquinone colouring matters, Part 4, J. Chem.Soc., Perkin Trans. Ⅰ, 1979, 702~707;
    [20] 程侣柏,李宗石,孙育贤,用PPP-SCF-CI法计算简单有机化合物的吸收光谱,大连工学院学报,1980,19(2):51~63;
    [21] 李宗石,程侣柏,分子轨道理论在染料化学中的应用(Ⅴ),高等学校化学学报,1982,3(4):509~515;
    [22] Y. Kogo, H. Kikuchi, M. Matsuoka, T. Kitao, Colour and constitution of anthraquinonoid dyes, Part 1, J. Soc. Dyers Color., 1980, 96: 475~480;
    [23] Y. Kogo, H. Kikuchi, M. Matsuoka, T. Kitao, Colour and constitution of anthraquinonoid dyes, Part 2, J. Soc. Dyers Color., 1980, 96: 526~529;
    [24] D. A. Brown, M.J.S. Dewar, Fluorene analogues of triphenylmethane dyes: calculation of their light absorption by the molecular-orbital method, J. Chem. Soc., B, 1954, 2134~2136;
    [25] 张若蘅,程侣柏,侯毓汾,三甲基四氢喹啉型杂环染料的研究Ⅱ,大连工学院学报,1988,27(增刊):9~18;
    [26] M. Yanagita, S. Kanda, S. Tokita, The relationship between the steric hindrance and absorption spectrum of fluoran dyes, Part Ⅱ, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 1999,327: 53~56;
    [27] C. Weiss, H. Kobayashi, M. Gouterman, Spectra ofporphyrins, Part Ⅲ, J. Mol. Spect.,1965, 16: 415~450;
    [28] L. Türker, Theoretical Optical Spectra of some [2_2](1,4)-cyclophane Fused Tetraazaporphyrins, J. Mol. Struct. (Theochem), 2002, 588: 133~138;
    
    
    [29] H. R. Blattmann, E. Heilbronner, G. Wagniere, Electronic states of perimeter π systems, Ⅳ, J. Am. Chem.Soc., 1968, 90 (18): 4786~4789;
    [30] J. Griffiths, M. Lockwood, Chromogens based on non-benzenoid aromatic systems, Part Ⅲ, J. Chem. Soc., Perkin Trans. Ⅰ, 1976, 48~54;
    [31] A. Mehlhorn, B. Schwenzer, K. Schwetlick, MO-calculations of the energy transfer activities of organic π-structures in the photo-fries rearrangement, Ⅰ, Tetrahedron, 1977, 33: 1483~1488;
    [32] E. Horiguchi, K. Shirai, M. Matsuoka, M. Matsui, Syntheses and Spectral Properties of Non-planar Bis(styryl)diazepine Fluorescent Dyes and Related Derivatives, Dyes Pigm., 2002, 53: 45~55;
    [33] S. M. Al-Hazmy, K. N. Kassab, S. A. El-Daly, E. M. Ebeid, Spectral Properties of (5-Phenyl-1,3,,4-oxadiazol-2-yl)-7-hydroxycoumarin (POHC), Speetroehim. Aeta, Part A, 2000,56: 1773~1780;
    [34] R. M. Christie, C. H. Lui, Studies of Fluorescent Dyes, Part 1: An Investigation of the Electronic Spectral Properties of Substituted Coumarins, Dyes Pigm., 1999,42: 85~93;
    [35] R. M. Christie, C. H. Lui, Studies of Fluorescent Dyes, Part 2: An Investigation of the Synthesis and Electronic Spectral Properties of Substituted 3-(2'-benzimidazolyl)coumarins, DyesPigm., 2000, 47: 79~89;
    [36] A. E. H. Machado, J. A. Miranda, S. Guilardi, D. E. Nicodem, D. Severino, Photophysics and Spectroscopic Properties of 3-benzoxazol-2-yl-chromen-2-one, Spectrochim. Acta, Part A, 2003, 59: 345~355;
    [37] J. S. Melo, P. F. Fernandes, Spectroscopy and Photophysics of 4- and 7-hydroxycoumarins and their Thione Anologs, J. Mol. Struct.. 2001,565-566: 69~78;
    [38] W. M. F. Fabian, K. S. Niederreiter, G. Uray, W. Stadlbauer, Substituent Effects on Absorption and Fluorescence Spectra of Carbostyrils. J. Mol. Struct., 1999, 477: 209~220;
    [39] J. Griffiths, Modern dye chemistry, Chem. Brit., 1986, 22: 997~1000;
    [40] J. Griffiths, M. Lockwood, B. Roozpeikar, Orientation effects in the benzene chromophore bearing one donor and two acceptor groups, J. Chem. Soc., PerMn Trans. H, 1977, 1608~1610;
    [41] K. Y. Chu, J. Griffiths, D. Ward, Light-absorption and-emission properties of cyanovinyl-
    
    substituted dimethoxybenzenes, J. Chem. Res., 1981, (s): 300~301;
    [42] M. Nepra, O. Machalick, M. eps, R. Hrdina, P. Kapusta, V. Fidler, Structure and properties of fluorescent reactive dyes: electronic structure and spectra of some benzanthrone derivatives, Dyes Pigm., 1997, 35 (1): 31~44;
    [43] J. M. Maud, Optical Transitions in Oligothiophene Radical Cations (Positive Polarons): A Semi-empirical Study, Syn. Metals, 1999, 101: 575~578;
    [44] N. DiCésare, M. Bellette, M. Leclerc, G. Durocher, HF/3-21G Ab Initio Calculations on Methoxy-Substituted Bithiophenes, J. Mol. Struct. (Theochem), 1999, 467: 259~273;
    [45] M. Breza, V. Luke, I. Vrábel, On the Dependence of Optical Properties on Conformational Changes in Oligothiophenes, Ⅰ: Electron Absorption Spectra, J. Mol. Struct. (Theochem), 2001,572: 151~160;
    [46] V. Luke, M. Breza, V. Laurinc, Structure Dependence of Optical Properties of Bridged Bis-thienyls, Ⅰ: Simple Five-membered Aromatic Bridges, J. Mol. Struct. (Theochem), 2002, 582:213~224;
    [47] V. Luke,, M. Breza, D. Végh, P. Hrdlovi, J. Krajèovi, V. Laurinc, Optical Properties of 2,3-diaza-1,3-butadiene Bridged Oligothiophenes, A Combined Experimental and Theoretical Study, Syn. Metals, 2002, 129: 85~94;
    [48] V. Luke, M. Breza, D. Végh, P. Hrdlovi, J. Krajèovi, V. Laurinc, Non-linear Optical Properties of New Bridged Bis-thienyls, Ⅰ. Pyrazine-based Bridges: Theory, Synthesis and Spectra, Syn. Metals, 2001, 124: 279~286;
    [49] 任爱民,封继康,刘文革,孙秀云,付伟,金宏威,两种C_(60)双氰衍生物的结构、光谱和二阶非线性光学性质的理论研究,高等学校化学学报,1999,20(10):1609~1614;
    [50] 任爱民,封继康,孙秀云,傅伟,王素凡,两种C_(60)双炔衍生物的结构、光谱和二阶非线性光学性质的理论研究,化学学报,1999,57(7):730~739;
    [51] 张锁秦,封继康,任爱民,付伟,李耀先,C_(60)—TTF及其衍生物的二阶非线性光学性质的理论研究,化学学报,2000,58(12):1582~1588;
    [52] 阚玉和,苏忠民,孙世玲,杨彦杰,朱玉兰,任爱民,封继康,2,5—取代基—3,4—C_(60)吡咯衍生物的电子光谱和非线性光学性质规律的理论研究,高等学校化学学报,2002,23
    
    (3):444~447;
    [53] 张锁秦,封继康,任爱民,付伟,李耀先,C_(60)—TTF及其衍生物的结构与光谱的理论研究,高等学校化学学校,2001,22(6):987~990;
    [54] S. I. Gorelsky, A. B. P. Lever, M. Ebadi, Ruthenium d-orbital Delocalization in Bis(bipyridine) ruthenium Derivatives of Redox Active Quinonoid Ligands, Coord. Chem. Rev,., 2002, 230:97~105;
    [55] S. I. Gorelsky, A. B. P. Lever, Electronic Structure and Spectra of Ruthenium Diimine Complexes by Density Functional Theory and INDO/S, Comparison of the Two Methods, J. Organomet. Chem., 2001, 635: 187~196;
    [56] S. I. Gorelsky, E. S. Dodsworth, A. B. P. Lever, A. A. Vlcek, Trends in Metal-ligand Orbital Mixing in Generic Series of Ruthenium N-donor Ligand Complexes, Effect on Electronic Spectra and Redox Properties, Coord. Chem. Rev., 1998, 174: 469~494;
    [57] M. K. Nazeeruddin, S. M. Zakeeruddin, R. H. Baker, S. I. Gorelsky, A. B. R Lever, M. Grtzel, Synthesis, Spectroscopic and a ZINDO Study of cis- and trans-(X_2)bis(4,4'-dicarboxylic acid-2,2'-bipyridine)ruthenium(Ⅱ) Complexes, Coord. Chem. Rev., 2000, 208: 213~225;
    [58] C. D. S. Sebastio, W. F. Douglas, Metastable Excited State and Electronic Structure of [Ru(NH_3)_5NO]~(3+) and [Ru(NH_3)_4(OH)NO]~(2+), Spectrochim. Acta, Part A, 1999, 55:1515~1525;
    [59] V. A. Basiuk, E. V. Basiuk, J. G. Lara, Molecular Modeling of Octahedral Complex Cations Composed of [Ni(Ⅱ)(rac-Me_6[14]aneN_4)]~(2+) Units and Bidentate Carboxylate Ligands, J. Mol. Struct. (Theochem), 2001, 536: 17~24;
    [60] K. M. T. Oliveira, M.Trsic, Comparative Theoretical Study of the Electronic Structures and Electronic Spectra of Fe~(2+)-, Fe~(3+)-porphyrin and Free Base Porphyrin, J. Mol. Struct, (Theochem),2001, 539: 107~117;
    [61] L. F. Yang, Z. H. Peng, X. M. Ren, G. Z. Cheng, P. Cai, Spectroscopic and Theoretical Studies on Copper(Ⅱ) Complex of Maleinitriledithiolate and 1,10-Phenanthroline, Spectrochim. Acta, Part A, 2001, 57: 2745~2754;
    [62] 张锁秦,封继康,任爱民,苏忠民,取代吡啶系列分子的光谱和二阶非线性光学性质的理论研究,高等学校化学学报,1999,20(11):1754~1758;
    
    
    [63] 高晓顺,封继康,肖长永,孙家钟,N—取代吩噻嗪衍生物分子的结构和二阶非线性光学性质的理论研究,化学学报,1997,55:242~249;
    [64] 尚兴宏,贡雪东,肖鹤鸣,田禾,4种菁染料化合物结构和性能的密度泛函理论研究,南京理工大学学报,2002,26(2):186-191;
    [65] J. Peszke, W. liwa, AMl CI and ZINDO/S Study of Quaternary Salts of Diazaphenanthrenes with Haloalkanes, Spectrochim. Acta, PartA, 2002, 58:2127~2133;
    [66] X. L. Zhu, X. Z. You, Y. Zhong, Z. Yu, S. L. Guo, An Improved Calculation Method on Optical Second-order Susceptibilities of Organic Materials, Chem. Phys., 2000, 253: 241~248;
    [67] W. Fu, J. K. Feng, G. B. Pan, Theoretical Study on the Third-order Nonlinear Optical Properties of a Series of Derived 9,9'-spirobifluorenes, J. Mol. Struct. (Theochem), 2001, 545:157~165;
    [68] H. Moustafa, S. H. Shalaby, K. M. E. Sawy, R. Hilal, Electronic Structure of some Adenosine Receptor Antagonists, Ⅲ: Quantitative Investigation of the Electronic Absorption Spectra of Alkyl Xanthines, Spectrochim. Acta, Part A, 2002, 58:2013~2027;
    [69] W. M. F. Fabian, J. M. Kauffman. Computational Methods as an Aid in the Design of Fluorophores with Predictable Absorption and Emission Wavelengths, J. Lumin., 1999,85: 137~148;
    [70] P. M. V. B. Barone, R. S. Braga, A. Camilo Jr., D. S. Galvo, Electronic Indices from Semi-empirical Calculations to Identify Carcinogenic Activity of Polycyclic Aromatic Hydrocarbons, J. Mol. Struct. (Theochem), 2000, 505: 55~66;
    [71] J. D. Nero, B. Laks, Spectroscopic Study of Polyazopyrroles (a Narrow Band Gap System),Syn. Metals, 1999, 101 : 440~441 ;
    [72] A. Pielesz, A. Wlochowicz, Semi-empirical Infrared Spectra Simulations for some Aromatic Amines of Interest for Azo Dye Chemistry, Spectrochim. Acta, Part A, 2001, 57: 2637~2646;
    [73] Y. J. Liu, Y. Liu, D. J. Zhang, H. Q. Hu, C. B. Liu, Theoretical Investigation on Second-order Nonlinear Optical Properties of(Dicyanomethylene)-pyran Derivatives, J. Mol. Struct., 2001, 570:43~51;
    [74] A. Scemama, P. Chaquin, M. C. Gazeau, Y. Bénilan, Semi-empirical Calculation of Electronic
    
    Absorption Wavelengths of Polyynes, Monocyano- and dicyanopolyynes, Predictions for Long Chain Compounds and Carbon Allotrope Carbyne, Chem. Phys. Lett., 2002, 361: 520~524;
    [75] J. Fabian, L. A. Diaz, G. Seifert, T. Niehaus, Calculation of Excitation Energies of Organic Chromophores: a Critical Evaluation, J. Mol. Struct. (Theochem), 2002, 594:41~53;
    [76] K. Torskangerpoll, K. J. Borve, φ. M. Andersen, L. J. Saethre, Color and Substitution Pattern in Anthocyanidins, A Combined Quantum Chemical-chemometrical Study, Spectrochim. Acta, Part A, 1999, 55: 761~771;
    [77] S. M. Bonesi, R. E. Balsells, Electronic Spectroscopy of Carbazole and N- and C-substituted Carbazoles in Homogeneous Media and in Solid Matrix, J. Lumin, 2001, 93:51~74;
    [78] P. M. V. B. Barone, S. O. Dantas, D. S. Galvo, A Semi-empirical Study on the Electronic Structure of Ellipticines, J. Mol. Struct. (Theochem), 1999, 465:219~229;
    [79] S. O. Dantas, P. M. V. B. Barone, S. F. Braga, D. S. Galvo, A Dual-mode Photoswitching Mechanism and Charge Transfer on Chiroptical Systems - Theoretical Study, Syn. Metals, 2001, 116: 275~279;
    [80] M. D. McClain, D. S. Dudis, Electronic and Structural Consequences of n-doping: Bithiazole Oligomers and Partially Reduced Bithiazolium Cations, Syr Metals, 2001, 116: 199~202;
    [81] M. C. Zerner, C. Reidlinger, W. M. F. Fabian, H. Junek, Push-pull Dyes Containing Malononitrile Dimer as Acceptor: Synthesis, Spectroscopy and Quantum Chemical Calculations, J. Mol. Struct. (Theochem), 2001,543:129~146;
    [82] M. Bellette, J. F. Morin, S. Beaupré, M. Leclerc, G. Durocher, Electronic Spectroscopy and Photophysics of Phenylene - Fluorene Derivatives as well as their Corresponding Polyesters, Syn. Metals, 2002, 126: 43~51;
    [83] T. Hoshiba, T. Ida, M. Mizuno, T. Otsuka, K. Takaoka, K. Endo, C-13 NMR Chemical Shifts and Visible Absorption Spectra of Unsymmetrical Fluoran Dye by MO Calculations, J. Mol. Struct., 2002, 602~603: 381~388;
    [84] L. B. Cheng, X. Chert, Y. F. Hou, J. Griffiths, An approach to the prediction of absorption bandwidths of dyes using the PPP-MO procedure, Dyes Pigm., 1989, 10: 123~140;
    [85] 段彩明,程铸生,朱正华,活性基团的结构与活性染料反应活泼性之间的关系,华东
    
    化工学院学报,1983,9(3):281~290;
    [86] 俞荣根,程铸生,朱正华,一些新型2-甲砜基卤代嘧啶型活性染料的反应性研究,华东化工学院学报,1985,11(1):33~39;
    [87] 汤炜,朱正华,陈孔常,活性基团结构与活性染料反应性间的关系,化工学报,1986,(3):329~341;
    [88] 汤炜,朱正华,陈孔常,反应性染料结构与性能间的关系,华东化工学院学报,1987,13(3):285~293;
    [89] G. Klopman, Chemical reactivity and the concept of charge- and frontier-conrolled reactions,J. Am. Chem. Soc., 1968, 90 (2): 223~234;
    [90] 汤炜,朱正华,陈孔常,用CNDO/2分子轨道法研究模拟活性染料的水解、醇解反应,华东化工学院学报,1988,14(2):181~187;
    [91] R. Elber, M. Karplus, Multiple Conformational States of Proteins: A Molecular Dynamics Analysis of Myoglobin, Science, 1987, 235:318~321;
    [92] W. F. Gunsteren, H. J. C. Berendsen, Computer Simulation of Molecular Dynamics -Methodology, Applications, and Perspectives in Chemistry, Angew. Chem., 1990, 29: 992~1023;
    [93] M. Karplus, G. A. Petsko, Molecular Dynamics Simulations in Biology, Nature, 1990, 347:631~639;
    [94] H. J. C. Berendsen, J. P. M. Postma, W. F. Gunsteren, A. Dinola, J. R. Haak, Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys., 1984, 81(8): 3684~3690;
    [95] 陈念陔,高坡,乐征宇,量子化学理论基础,哈尔滨工业大学出版社,2002年;
    [96] 陈志行,有机分子轨道理论,山东科学技术出版社,1991年;
    [97] J. A. Pople, Approximate Self-Consistant Molecular Orbital Theory, Ⅰ: Invariant Procedures, J. Chem. Phys., 1965, 43(10): S129~135;
    [98] J. A. Pople, Approximate Self-Consistent Molecular Orbital Theory, Ⅱ: Calculations with Complete Neglect of Diffrential Overlap, J. Chem. Phys., 1965, 43 (10): S136~151;
    [99] J. A. Pople, Approximate Self-Consistent Molecular Orbital Theory,Ⅲ: CNDO Results for AB_2 and AB_3 System, J. Chem. Phys., 1966, 44(9): 3289~3296;
    [100] M. J. S. Dewar, W. Thiel, Ground States of Molecules, 38: The MNDO Method
    
    Approximations and Parameters, J. Am. Chem. Soc., 1977, 99(15): 4899~4907;
    [101] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Steware, A New General Purpose Quantum Mechanical, J. Am. Chem. Soc., 1985, 107(13): 3902~3909;
    [102] J. J. R Stewart, MOPAC: A Semiempirical Molecular Orbital Program, J. Comp. Aided. Mol. Design, 1990, 4: 1~105;
    [103] M. J. S. Dewar, K. M. Dieter, Evaluation of AM1 Calculated Proton Affinities and Deprotonation Enthalpies, J. Am. Chem. Soc., 1986, 108(25): 8075~8086;
    [104] J. J. P. Stewart, Optimization of Parameters for Semiempirical Methods, Ⅰ: Method, J. Comp. Chem., 1989, 10(2): 209~220;
    [105] J. J. P. Stewart, Optimization of Parameters for Semiempirical Methods,Ⅱ: Applications, J. Comp. Chem., 1989, 10(2): 221~264;
    [106] J. J. P. Stewart, Optimization of Parameters for Semiempirical Methods, Ⅲ: Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, To, Hg, Tl, Pb, and Bi, J. Comp. Chem., 1991,12(3): 320~341;
    [107] W. D. Anderson, T. R. Cundarl, M. C. Zerner, An Inermediate Neglect of Differential Overlap Model for Second-Row Transition Metal Species, Int. J. Quantum Chem., 1991, 39(1):31~45;
    [108] A. D. Bacon, An Intermediate Neglect of Differential Overlap Theory for Transition Metal Complexes: Fe, Co, and Cu Chlorides, Theoret. Chim. Acta, 1979, 53(1): 21~54;
    [109] K. K. Stavrev, M. C. Zemer, Outer-Sphere Charge-Transfer Effects on the Spectroscopy of the [Ru(NH_3)_5(py)]~(2+) Complex, J. Am. Chem. Soc., 1995, 117(33): 8684~8690;
    [110] M. C. Zerner, G. H. Loew, R. Kirchner, U. T. M. Westerhoff, An Intermidiate Neglect of Differential Overlap Technique for Spectroscopy of Transition-Metal Complexes, J. Am. Chem. Soc., 1980, 102 (2): 589~599;
    [111] K. Stavrev, M. C. Zerner, A Theoretical Treatment of the Absorption and Emission Properties of Cu(Ⅱ) Porphyrin, Chem. Phys. Lett., 1995, 233(1~2): 179~84;
    [112] K. K. Stavrev, M. C. Zerner, Theoretical Study of the Jahn-Teller Effect on the Spectroscopy of VCl_4, Chem. Phys. Lett., 1996, 263(5): 667~670;
    
    
    [113] J. D. Bene, H. H. Jaffe, Use of the CNDO Method in Spectroscopy, Ⅰ: Benzene, Pyridine, and the Diazine, J. Chem. Phys., 1968, 48(4): 1807~1813;
    [114] J. D. Bene, H. H. Jaffe, Use of the CNDO Method in Spectroscopy,Ⅱ: Five- Membered Rings, J. Chem. Phys., 1968, 48(9): 4050~4055;
    [115] K. K. Stavrev, M. C. Zerner, On the Jahn-Teller Effect on Mn~(2+) in Zinc-blend ZnS Crystal, J. Chem. Phys., 1995, 102(1): 34~38;
    [116] J. E. Ridley, M. C. Zerner, Triplet States via Intermediate Neglect of Differential Overlap: Benzene, Pyridine and the Diazines, Theoret. Chim. Acta, 1976, 42(3): 223~236;
    [117] J. E. Ridley, M. C. Zerner, An Intermediate Neglect of Differential Overlap Technique for Spectroscopy: Pyrrole and the Azines, Theoret. Chim. Acta, 1973, 32(2): 111~134;
    [118] E. Sawicki, Physical Properties of the Aminoazobenzene Dyes, Ⅶ: Absorption Spectra of 4-Aminoazobene Dyes in Ethanol, J. Org. Chem., 1957, 22 (7): 915~923;
    [119] R.Wizinger, Der Verteilungssatz der Auxo Chrome, Chimia, 1965, 19 (5): 339~350;
    [120] J. Griffiths, B. Roozpeikar, Synthesis and Electronic Absorption Spectra of Dicyano-derivatives of 4-Diethylaminoazobenzene, J. Chem. Soc., PerMn Trans. I, 1976 (1): 42~45;
    [121] S. S. Malhotra, M. C. Whiting, Researches on Polyenes, Part Ⅶ: The Preparation and Electronic Absorption Spectra of Homologous Series of Simple Cyanines, Merocyanines, and Oxonols, J. Chem. Soc., 1960, (10): 3812~3822;
    [122] D. Leupold, S. Dhne, Berechnung der Quadrupol-Merocyanine Einschlieβlich Iindigoider Farbsysteme, nach einer Vervollstndigten LCAO-MO-Methode, Theoret. Chim. Acta, 1965, 3 (1):1~20;
    [123] 李峰,陈莉华,烯烃同系物紫外光谱的量子化学研究,光谱实验室,1998,15(3):24~28;
    [124] H.Labhart, Zur Quantitativen Beschreibung des Einflusses von Substituenten auf das Absorptionsspektrum Ebener Molekeln Anwendung auf Anthrachinon, Helv. Chim. Acta, 1957, 40(5): 1410~1420;
    [125] B. N. Achar, P. K. Jayasree, Novel 'Synthetic Metals' Based on Symmetrically Tetrasubstituted Nickel Phthalocyanines, Syn. Metals, 1999, 104:101~106;
    [126] 彭必先,高德涛,闫天堂,酞菁光盘染料的研究进展,中国科学院研究生院学报,2000,
    
    17(1): 43~56;
    [127] B. N. Achar, P. K. Jayasree, "Synthetic Metals" Based on Nickel(Ⅱ) 2,9,16,23-tetrahalo-substituted Phthalocyanine Derivatives, Syn. Metals, 2000, 114: 219~224;
    [128] X. D. Gong, H. M. Xiao, H. Tian. A Density Functional Theory Study on the Structure and Properties of the Tert-butyl Substituted Phthalocyanines, J. Mol. Struct., (Theochem), 2002, 593:93~100;
    [129] R. M. Christie, Colour and Constitution Relationships in Organic Pigments, Part 5: The Influence of Solvents, the Central Metal Atom and Substituents on the Electronic Spectra of Phthalocyanines, Dyes Pigm., 1995, 27(1): 35~43;
    [130] L. A. Soares II, M. Trsic, B. Berno, R. Aroca, Electronic Spectra of Metal Phthalocyanines and Configuration Interaction ZINDO Calculations for Tetra-azaporphyrin Complexes with the First Transition Metal Series, Spectrochim, Aeta, Part A, 1996, 52: 1245~1253;
    [131] J. Mack, M. J. Stillman, Assignment of the Optical Spectra of Metal Phthalocyanines through Spectral Band Deconvolution Analysis and ZINDO Calculations, Coord. Chem. Rev., 2001, 219~221: 993~1032;
    [132] V. Mastryukov, C. Y. Ruan, M. Fink, Z. Wang, R. Pachter, The Molecular Structure of Copper- and Nickel-phthalocyanine as Determined by Gas-phase Electron Diffraction and Ab Initio/DFT Computations, J. Mol. Struct.. 2000, 556: 225~237;
    [133] L. Edwards, M. Gouterman, Porphyrins, ⅩⅤ: Vapor Absorption Spectra and Stability: Phthalocyanines, J. Mol. Spect., 1970, 33:292~310;
    [134] D. Jorg, R. W. Hubert, Water-soluble Fibre-reactive Dyes, Process for their Preparation and the Use Thereof, EP 542214, 1993;
    [135] 卢俊瑞,活性艳蓝KNR合成研究,染料工业,1996,33(4):17~21;
    [136] 卢俊瑞,孙秀荣,穆晓燕,刘德意,溴氨酸芳氨化工艺方法研究,染料工业,1991,31(2):21~24,15;
    [137] 卢俊瑞,杨红艳,蔡文轩,程序变温法合成活性艳蓝KNR,染料工业,1997,34(5):9~12;
    [138] 卢俊瑞,鲍秀荣,田绍民,溴氨酸芳氨基化反应催化剂的研究,染料工业,1993,30
    
    (6):24~28,38;
    [139] 潘鑫,张岩,含氨基的芳基羟乙基砜的合成方法,CN85102826,1987;
    [140] H. Ernst, S. H. Helmut, W. Dieter, Verfahren zur Herstellung yon Anthrachinon-schwefelsurehalbester-Verbindungen, DE 2634855, 1978;
    [141] F. Taira, N. Hiroyuki, S. Mikio, K. Kimiyuki, O. Katuhiko, Verfahren zur Herstellung von Schwefelsure halbestem, DE 3005348, 1980;
    [142] E. Andreas, C. I. Reactive Blue 19 Direct Synthesis in Good Yield and Purity, DE 4422160,1996;
    [143] 崔林,4-氨基苯基—β—羟乙基砜硫酸酯(对位酯)工艺改进研究,染料工业,2001,38(1):12~13;
    [144] S. Klaus, Manufacture of 4-Aminophenyl 2-Sulfatoethylsulfone with Minimal Contamination by p-Chloroaniline, DE 19540544, 1997;
    [145] H. Stefan, F. Eberhard, W. Winfried, Production of Parabase Ester from Aniline, DE19732814, 1999;
    [146] N. Nobuzi, S. Utazi, T. Takemi, H. S. Ichi, T. Yasuo, Verfahren zur Herstellung von Schwefelsure halbestem, DE 3026808, 1981;
    [147] K. Norio, T. Kazuhiro, M. Shinzaburo, G. Kunihisa, K. Tatsuo, Process for Producing Aminophenyl-β-hydroxyethylsulfone, EP 0092909, 1983;
    [148] S. Lothar, Process for the Continuous Preparation of Aminoaryl or Aminoalkyl β-sulfatoethyl Sulfones, EP 510480, 1992;
    [149] R. Walter, R. S. Ring, Process for Producing Aminoaryl-β-sulphatoethylsulphone Compounds, WO 8905290, 1989;
    [150] H. Stefan, F. Eberhard, W. Winfried, Improved Method for Producing Parabase Esters, W09906363, 1999;
    [151] 单尚,胡耿源,刘清,间硝基苯基—β—羟乙基砜的合成改进及表征,精细化工,1997,14(1):52~55;
    [152] 彭勤纪,熊春贤,程侣柏,β—羟乙基砜硫酸酯及β—羟乙基砜的水解和酯化反应动力学研究,染料工业,1994,31(2):16~20;
    
    
    [153] K. Norio, S. Shinzo, S. Tushihiro, Preparation of m-Animophenyl β-hydroxyethyl Sulfone,JP 05201960, 1992;
    [154] K. Kunioli, K. Massao, Preparation of m-Aminophenyl β-hydroxyethyl Sulfone, JP 6339854, 1986;
    [155] Sumitomo Chem. Co. Ltd., m-Aminophenyl β-hydroxyethyl Sulfone, JP 60123461, 1983;
    [156] 吴祖望,卢圣茂,林莉,王云德,季友卫,王桂娟,耐碱型活性蓝19及其性能研究,染料工业,2001,38(2):1~4;
    [157] M. Fritz, N. Walter, S. Arno, Dye Preparation for Dying or Printing Cellulose Fiber Materials, DE 2412964, 1975;
    [158] N. Kiyoharu, A. Sadaharu, Dye Composition and its Use for Dyeing and Printing Cellulose Fibers, EP 14326, 1980;
    [159] I. Yoshio, I. Kunihiko, Reactive Dye Composition and Method of Dying Fiber Materials, JP 01287176, 1988;
    [160] Sumitomo Chem. Co. Ltd., Reactive Dye Compositions, JP 81103250, 1980;
    [161] H. Naok, T. Takemi, K. Nobuaki, H. Shuhei, Reactive Anthraquinons Dye Compositions and Dying and Printing Cellulosic Fibers Therewith, JP06107962, 1992;
    [162] 李全顺,β—胡萝卜素的研究进展,辽宁大学学报(自然科学版),2002,29(3):203~208;
    [163] 徐勤丰,类胡萝卜素的工业合成,中国医药工业杂志,1992,23(11):523~526,495;
    [164] 陆豫,钟劲松,陈葆仁,β—胡萝卜素的合成,南昌大学学报(理科版),1995,19(3):235~238;
    [165] 詹豪强,β—胡萝卜素的工业合成,化工生产与技术,1997,(2):14~17;
    [166] M. Rosenberger, R McDougal, J. Bahr, Canthaxanthin, A New Total Synthesis, J. Org. Chem., 1982, 47(11): 2130~2134;
    [167] M. Rosenberger, P. McDougal, G. Saucy, J. Bahr, New Approaches to the Synthesis of Canthaxanthin, Pure Appl. Chem., 1979, 51(4): 871~886;
    [168] J. Paust, Recent Progress in Commercial Retinoids and Carotenoids, Pure Appl. Chem., 1991, 63(1): 45~58;
    [169] J. Paust, J. Schneider, H. Jaedicke, Manufacture of Canthaxanthin, US 4212827, 1980;
    
    
    [170] H. Jaedicke, J. Paust, J. Schneider, Verfahren zur Herstellung von Canthaxanthin, DE2657477, 1978;
    [171] 廖传华,周玲,顾海明,黄振仁,超临界CO_2萃取β—胡萝卜素的实验研究(Ⅰ),精细化工,2002,19(6):365~366,371;
    [172] 高建峰,β—胡萝卜素的营养价值及生物合成,粮食与饲料工业,2001,(1):48~50;
    [173] 童海宝,蔡杨,马海森,徐大刚,任征,杨晔,费利江,发酵法生产天然β—胡萝卜素,精细与专用化学品,2002,(2):15~16;
    [174] 王勇,钱凯先,β—胡萝卜素的生物合成与分子构型,生物技术,1998,8(1):1~3;
    [175] 王岁楼,张平之,β—胡萝卜素的生物合成与发酵促进剂,生物学杂志,2000,17(3):4~5;
    [176] 陈伟,丁霄霖,番茄红素化学和生物学特性,粮食与油脂,2002,(7):47~49;
    [177] 王永生,袁其朋,番茄红素的生产工艺研究进展,微生物学通报,2002,29(2):60~64;
    [178] 高蓝,番茄红素的研究与开发进展,中国食品添加剂,2000,(4):37~40;
    [179] 李琳,吴永娴,曾凡坤,番茄红素的研究进展,食品科学,2000,21(5):8~11;
    [180] 范永仙,汪钊,番茄红素的生产工艺研究进展,食品科技,2002,(3):53~55;
    [181] 王燕燕,邸进申,郑辉杰,番茄红素分离与分析的研究进展,中国食品添加剂,2002,(4):16~20;
    [182] 刘立国,吴晶,番茄红素及其生产应用研究,精细与专用化学品,2002,(13):14~16;
    [183] 孙庆杰,丁霄霖,番茄红素的保健作用与开发,食品与发酵工业,1997,23(4):72~75;
    [184] 孙庆杰,丁霄霖,超临界CO_2萃取番茄红素的初步研究,食品与发酵工业,1998,24(1):3~6;
    [185] 邓宇,杨燕,陆海燕,张卫强,番茄红素提取工艺的初步研究,化工科技,2002,10(1):11~14;
    [186] 蔡俊,邱雁临,谈小兰,夏服宝,段新斌,番茄红素提取工艺的研究,食品与发酵工业,2000,26(2):50~52;
    [187] 邓宇,张卫强,番茄红素提取方法的研究,现代化工,2002,22(2):25~28;
    [188] 吴定,路桂红,番茄红素提取工艺及性质研究,食品科技,2002,(10):37~38,45;
    [189] 李玉环,王锋,刘群,皂化法提取番茄红素的研究,食品科学,2002,23(8):146~150;
    
    
    [190] H. Pfander, B. Traber, Intermediate Compounds for Making Metabolites of Lycopene, US 6040475, 2000;
    [191] H. Pfander, B. Traber, Process for Making Metabolites of Lycopene, US 6008417, 1999;
    [192] Y. Miura, K. Kondo, H. Shimada, T. Saito, K. Nakamura, N. Misawa, Production of Lycopene by the Food Yeast, Candida Utilis That Does Not Naturally Synthesize Carotenoid, Biotech. Bioeng., 1998, 58(2~3): 306~308;
    [193] L. Salem, Intermolecular Orbital Theory of the Interaction between Conjugated Systems, Ⅰ: General Theory, J. Am. Chem. Soc., 1968.90(3): 543~552;
    [194] L. Salem, Intermolecular Orbital Theory of the Interaction between Conjugated Systems, Ⅱ:Thermal and Photochemical Cycloadditions, J. Am. Chem. Soc., 1968, 90(3): 553~566;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700