DNA氧化损伤标记物8-羟基脱氧鸟苷的毛细管电泳安培检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳是上世纪80年代建立并迅速发展起来的一种新型分离分析技术,具有分离效率高、分析速度快、重现性好及样品用量少等特点,已广泛应用于化学、生命科学、药物和环境分析等领域。
     研究表明,活性氧自由基(reactive oxygen species,ROS)如O_2~(-·)、O~(-·)、HO_2~·、~·OH、H_2O_2、RO~·、ROO~·等可导致DNA氧化损伤,这与衰老、肿瘤的发生、恶变以及糖尿病和心血管疾病等密切相关。在二十多种DNA氧化损伤产物中,8-羟基脱氧鸟苷(8-hydroxy-2'-deoxyguanosine,8-OHdG)被公认为是最重要的标志物之一。它与DNA复制与修复过程中,导致鸟嘌呤与胞嘧啶及腺嘌呤与胸腺嘧啶发生错位(G:C→A:T),碱基脱落及DNA链断裂,诱发DNA点突变有关。8-OHdG将是一种很好的评价致突变和癌变危险的标记物。由于尿中的8-OHdG不能被进一步代谢,因此尿中8-OHdG对评价个体癌变危险或诊断与氧自由基相关疾病方面是一种很有用的标记物,在临床上具有很高的应用价值和推广意义。
     要将8-OHdG作为肿瘤标记物用于临床常规诊断,首先要建立一种分析速度快、分离效率高、灵敏度高、选择性好、价廉、易商品化、可用于常规分离检测8-OHdG的方法。本论文的主要工作就是发展了一种基于分子印迹萃取、毛细管电泳-安培检测(capillary electrophoresis-amperometric detection,CE-AD)联用方法。利用一步分子印记固相微萃取预处理尿样,结合毛细管在柱富集技术——动态pH调节进样(dynamic pHjunction),进一步提高了方法的灵敏度,使其检测限达到2.6 nmol/L(S/N=3);8-OHdG浓度在10 nmol/L~1.5μmol/L浓度范围内与其峰面积呈现良好的线性关系(R=0.9999);迁移时间和峰面积的相对标准偏差分别为1.1%和4.0%,尿样的加标回收率为85.1%。论文中详细讨论了分离电压、检测电位、缓冲液浓度及pH值等因素对分析的影响,确定了最优化的分离检测条件。本方法具有简单、灵敏而高效的特点,并已用于健康人和癌症患者尿中8-OHdG水平的评价,结果令人满意。
     论文的另外一部分工作是研究了两种毛细管电泳在柱富集方法(场放大样品堆积和碱堆积)在测定8-OHdG中的应用。论文中详细讨论了两种技术的富集原理,以及各种实验条件对分离检测的影响。在优化的条件下,两种方法对8-OHdG的富集均可以达到20倍。
Capillary electrophoresis(CE) is a new-style separation technique which was established and quickly developed in the early 1980's.Nowadays,CE has been widely used in the fields of chemistry,life science,pharmaceutics,environment analysis and so on,due to its charming advantages of high separation efficiency,short analytical time,good resolution,and small requirements for samples.
     Reactive oxygen species(ROS),such us Superoxide(O_2~(-·))、hydroxyl radical(~·OH)、hydrogen peroxide(H_2O_2) and so on can lead to DNA oxidative damage,which has been considered to be important contributor to aging,cancer and other age-related degenerative processes.Of about 20 known adducts of oxidative DNA damage,8-OHdG has aroused considerable attention because of its demonstrated mutagenic potential,which has been shown to induce mainly G:C→T:A transversion.Currently,the pre-mutagenic 8-OHdG modification is considered to be an excellent marker for oxidative DNA damage.8-OHdG are excreted into urine without further metabolism,thus determination of urinary 8-OHdG has been proposed as a noninvasive assay of in vivo oxidative DNA damage and diagnosis of cancer early.Until now,8-OHdG mostly has been used as a biomarker of mutagenesis and carcinogenesis of chemical.
     A number of aging-related degenerative disease,especially cancer,are threatening human's health now.Therefore,fast、sensitive and simple-to-use methods for determination of urinary 8-OHdG as a biomarker to diagnose cancer early,are needed.In this thesis,a method for detection of urinary 8-OHdG was developed,based on capillary zone electrophoresis with end-column amperometric detection(CE-AD).Using single-step solid phase extraction with molecular imprinting for urine pretreatment and a sample focusing mode-dynamic pH junction injection for increasing sensitivity,the limit of detection of the method was 2.6 nmol/L for 8-OHdG at the signal-to-noise ratio of 3.The linear relationship between the peak area and the concentration of 8-OHdG is exhibited over the range from 10 nmol/L to 1.5μmol/L(R=0.9999).The precision obtained in R.S.D.was 1.1%for migration time and 4.0%for peak area,the spiked recovery of the urinary 8-OHdG was 85.1%.In order to achieve optimum condition,the effects of different factors including separation voltage, detection potential,buffer concentration and pH values,were investigated in detail.The optimized method shows good reproducibility,high sensitivity and simplicity,and has been applied to evaluate urinary 8-OHdG in healthy persons and cancer patients with satisfactory results.
     In the second part of the thesis,two modes of sample pre-concentration on column (field-enhanced sample stacking and base stacking) for enhancing the detection sensitivity of 8-OHdG by capillary electrophoresis were studied.The principles,characteristics of the two sample on-line pre-concentration techniques,and the effects of different factors were investigated in detail.Under the optimum conditions,the detection sensitivitys of 8-OHdG using two methods above were both enhanced approximately 20 times.
引文
[1] Tiselius A. A new apparatus for electrophoretic analysis of colloidal mixtures. Trans Faraday Soc, 1937, 33: 524-530.
    
    [2] Jorgenson J W, Lukacs K D. Zone electrophoresis in open tubular glass capillary. Anal Chem, 1981, 53: 1298-1302.
    [3] Krylov S, Arriaga E, Zhang Z, et al. Single-cell analysis avoids sample processing bias. J Chromatogr B, 2000, 741(1): 31-35.
    [4] Malek A, Khaledi M G. Expression and analysis of green fluorescent proteins in human embryonic kidney cells by capillary electrophoresis. Anal Biochem, 1999, 268(2): 262-269.
    [5] Hu S, Rebecca L, Zhang Z R, et al. Protein analysis of an individual Caenorhabditis elegans single-cell embryo by capillary electrophoresis. J Chromatogr B, 2002, 752(2): 307-310.
    [6] Agatha F, Nathaniel G H, Sylvia D, et al. Post-capillary reaction detection in capillary electrophoresis based on the streptavidin-biotin interaction optimization and application to single cell analysis. J Chromatogr A, 2001, 918(3): 381-392.
    [7] Qin X, Yeung E S. Differences in the chemical reactivity of individual molecules of an enzyme. Nature, 1995, 373: 681-683.
    [8] Kim W S, Dahlgren R L, Moroz L L, et al. Ascorbic acid assays of individual neurons and neuronal tissues using capillary electrophoresis with laser-induced fluorescence detection. Anal Chem, 2002, 74(21): 5614-5620.
    [9] Manz A, Hamison D, Verpoone E M, et al. Planar chips technology for minianlrization and integration of separation techniques into monitoring systems. J Chromatogr, 1992, 593: 253-255.
    [10] Harrison D J, Manz A, Fan Z, et al. Capillary elecUophoresis and sample injection systems integrated on a planar glass chip. Anal Chem, 1992, 64: 1926-1928.
    
    [11] Lagally E T, Emrich C A, Mathies R A. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip, 2001,1: 102-104.
    
    [12] Wooley A T, Maalies R A. Ultra-high-speed DNA sequencing using capillary electrophoresis chips. Anal Chem, 1995, 67: 3676-3679.
    [13] Hofmalln O, Che D, Cmickshank K, et al. Adaption of capillary isoelectric focusing to microchannels on a glass chip. Anal Chem, 1999, 71: 67-70.
    [14] Abebaw B, Richard D, Oleschuk D, et al. Microchip-based capillary electrochromatography using packed beds. Electrophoresis, 2003,24: 3018-3025.
    [15] Lyubarskaya Y V, Cam S A, Dunnington D, et al. Screening for high-affinity ligands to the Src SH2 domain using capillary isoelectric focusing-electrospray ionization ion trap mass spectrometry. Anal Chem, 1998,40: 4761-4763.
    [16] Medintz I L, Paegel B M, Blazej R G, et al. High performance genetic analysis using microfabricated capillary array elecuophoresis microplates. Electrophoresis, 2001, 22: 3845-3848.
    [17] Oleg A, Mayboroda C N, Matthias P, et al. Amino acid profiling in urine by capillary zone electrophoresis - mass spectrometry. J Chromatogr A, 2007,1159: 149-153
    [18] Wu N, Peck T L, Webb A G. 1H-NMR Spectroscopy on the Nanoliter Scale for Static and Online Measurements. Anal Chem, 1994,66(22): 3849-3857.
    [19] Melanson J E, Wong B L, Boulet C A, et al. High-sensitivity determination of the degradation products of chemical warfare agents by capillary electrophoresis-indirect UV absorbance detection. J Chromatogr A, 2001, 920: 359-364.
    [20]Kim W S,Dahlgren R L,Moroz L L,et al.Ascorbic acid assays of individual neurons and neuronal tissues using capillary electrophoresis with laser-induced fluorescence detection.Anal Chem,2002,74(21):5614-5620.
    [21]Yao Q H,Mei S R,Weng Q F,et al.Determination of urinary oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine and the association with cigarette smoking.Talanta,2004,63:617-623.
    [22]Lagally E T,Emrich C A,Mathies R A.Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis.Lab Chip,2001,1:102-105.
    [23]Andrei R,Timerbaev,Bernhard K,et al.Capillary electrophoresis of metal-based drugs.Anal Biochem,2007,369:1-7.
    [24]Carolina Q M,Ana M,Garcia C,et al.Large volume sample stacking in capillary zone electrophoresis for the monitoring of the degradation products of metribuzin in environmental samples.J Chromatogr A,2007,1164:320-328.
    [25]丁永生,薛俊,林炳承。毛细管电泳在环境分析中的应用。色谱,1998,16(3):215-219。
    [26]Gong X,Yeung E S.Genetic typing and HIV-1 diagnosis by using 96 capillary amay electrophoresis and ulffaviolet absorption detection.J Chromatogr B,2000,741:15-18.
    [27]Bognski M,McIntosh M W.Biomedical informatics for proteomics.Nature,2003,422:233- 237.
    [28]Doi T,Yoshimatsu H,Katsuragi I,et al.Alpha-amylase inhibitor increases plasma 3-hydroxybutyric acid in food-restricted rats.Experientia,1995,51(6):585-588.
    [29]Scriba G K.Selected fundamental aspects of chiral electromigration techniques and their application to pharmaceutical and biomedical analysis.J Pharm Biomed Anal,2002,27:373-399.
    [30]Li N,Cook L,Santos C,et al.Use of a small reporter molecule to determine cell- surface proteins by capillary electrophoresis and laser-induced fluorescence:use of 5SAENTA-x8f for quantitation of the human equilibrative nucleoside transporter 1 protein.Anal Chem,2002,74(11):2573-2577.
    [31]韩芳,何友昭,付国妮等。电动流动分析-胶束电动毛细管色谱联用测定食品防腐剂。分析化学,2008.9:1305-1308。
    [32]Wang Y,Liang D,Hao J,et al.Chemistry separation of double-stranded DNA fragments by capillary electrophoresis using polyvi-nylpyrrolidone and poly(N,N-dimenthylacrylamide) transient interpenetrating network.Electrophoresis,2002,23:1460-1466.
    [33]Storms H F,vander H R,Tjaden U R,et al.Capillary isoelectric focusing-mass spectrometry for shotgun approach in proteomics.Electrophoresis,2004,25:3461-3467.
    [34]Marak J.Computer-assisted choice of electrolyte systems and spacing constituents for twodimensional capillary isotachophoresis.J Chromatogr,1990,509:287-290.
    [35]Rathore A.Theory of electro-osmotic flow retention and separation efficiency in capillary electrochromatography.Electrophoresis,2002,23:3827-3846.
    [36]Laurent G,Samir C,Jean L V.Simultaneous analysis of some amphetamine derivatives in urine by nonaqueous capillary electrophoresis coupled to electrospray ionization mass spectrometry.J Chromatogr A,2000,895:111-121.
    [37]Liu S,Ren H,Gao Q,et al.Automated parallel DNA sequencing on multiple channel micro-chips.Proceedings of the National Academy of Sciences of the USA,2000,97:5369-5374.
    [38]Tu J,Halsall H B,Seliskar C J,et al.Estimation of log Pow values for neutral and basic compounds by microchip microe-mulsion electrokinetic chromatography with indirect fluorimetric detection.J Pharm Biomed Anal,2005,388(1):1-7.
    [39] Wallingford R A, Ewing A G. Capillary zone electrophoresis with electrochemical detection. Anal Chem, 1987,59:1745-1762.
    [40] Ye J N, Baldwin R P. Amperometric detection in capillary electrophoresis with normal size electrodes. Anal Chem, 1993, 65: 3525-3527.
    [41] Jin W R, Chen H F. Theory concerning the current for an end-column amperometric detector with a disk working electrode in capillary zone electrophoresis. J Chromatogr A, 1997, 765: 295-306.
    [42] Wallingford R A, Ross A, Andrew G, et al. Capillary zone electrophoresis with electrochemical detection in 12.7 .mu.m diameter columns. Anal Chem, 1988, 60 (18): 1972-1975.
    [43] Voegel P D, Baldwin R P. Electrochemical detection in capillary electrophoresis. Electrophoresis, 1997,18:2267-2278.
    [44] Hu S, Wang Z L, Li P B, et al. Amperometric Detection in Capillary Electrophoresis with an Etched Joint. Anal Chem, 1997, 69: 264-267.
    [45] Chen G , Zhang H W, Ye J N. Determination of baicalein, baicalin and quercetin in Scutellariae Radix and its preparations by capillary electrophoresis with electrochemical detection. Talanta, 2000, 53: 471-479.
    [46] Xu X Q, Ye H Z, Wang W, et al. Determination of flavonoids in Houttuynia cordata Thunb and Saururus chinensis Bail by capillary electrophoresis with electrochemical detection. Talanta, 2006, 68: 759-764.
    [47] Chu Q C, Tian X H, Jiang L M, et al. Application of capillary electrophoresis to study phenolic profiles of honeybee-collected pollen. J Agric Food Chem, 2007, 55: 8864-8869.
    [48] Huang X H, Richard N Z, Sandra S, et al. End-column detection for capillary zone electrophoresis. Anal Chem, 1991, 63: 189-192.
    [49] Ewing A G, Sandra S. Improved method for end-column amperometric detection for capillary electrophoresis. Anal Chem, 1993, 65: 577-581.
    [50] Bonassi S, Neri M, Puntoni R. Validation of biomarker as early predictor of disease. Mutat Res, 2001, 481:349-358.
    [51] Xu G W, Yao Q H, Weng Q F, et al. Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. J Pharmaceut and Biomed Anal, 2004, 36: 101-104.
    [52] Yu J X, Wu C Y. A review of rapid determinitation and toxicity assessment of pollutants by biomarker methods. Chinese J Anal Chem, 2002, 30: 107-113.
    [53] Apruzzese W A, Paul V. Analysis of DNA adducts by capillary methods coupled to mass spectrometry. J Chromatogra A, 1998, 794: 97-108.
    [54] Liebich H M, Xu G W, Stefano D, et al. Capillary electrophoresis of urinary normal and modified nucleosides of cancer patients. J Chromatogr A, 1998, 793: 341-347.
    [55] Weitzman S A, Weitberg A B, Clark E P, et al. Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science, 1985,227: 1231-1233.
    [56] Hruszkewycz A M, Bergtold D S. The 8-hydroxyguanine content of isolated mitochondria increases with lipid peroxidation. Mutat Res, 1990, 244:123-128.
    [57] Hruszkewycz A M. Evidence for mitochondria DNA damage by lipid peroxidation. Biochem Biophys Res Commun, 1988, 153: 191-197.
    [58] Sahu S C, Gray G C. Interactions of flavonoids, trace metal and oxygen: nuclear DNA damage and lipid peroxidation induced by myricetin. Cancer Lett, 1993,70: 73-79.
    [59]Yao Q H,Mei S R,Weng Q F,et al.Determination of urinary oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine and the association with cigarette smoking.Talanta,2004,63:617-623.
    [60]Kasai H,Hayami Z,Yamaizumi H,et al.Detection and indentification of mutagens and carcinogens as their adduts with guanosine derivatives.Nucl Acic Res,1984,12:2127-2136.
    [61]Kasai H,Nishimura S.Hydroxylation of deoxygtmosine at the C-8 position by ascorbic acid and other reducing agents.Nucl Acic Res,1984,12:2137-2145.
    [62]Kasai H,Nishimura S.Hydroxylation of deoxygunosine at the C-8 position by polypholes and aminophenols in the presence of hydrogen peroxide and ferricion.GASTROENTEROL CLIN N,1984,75:1037-1039.
    [63]Kuo H W,Chou S Y,Hu T W,et al.Urinary 8-hydroxy-2'-deoxyguanosine(8-OHdG) and genetic polymorphisms in breast cancer patients.Mutat Res,2007,631:62-68.
    [64]梅素容,蔡凌霜,姚庆红等。 毛细管电泳-柱末安培检测癌症病人尿中8-羟基脱氧鸟苷。高等学校化学学报,2003,11:1987-1989。
    [65]梅素容,王鹏,吴采樱等。GC-MS法测定尿中的8-羟基脱氧鸟苷。华中科技大学学报(自然科学版),2006,34:117-119。
    [66]Baba Y.Analysis of disease-causing genes and DNA-based drugs by capillary electrophoresis towards DNA diagnosis and gene therapy for human diseases.J Chromatogr B,1996,687(2):271-302.
    [67]Kuchino Y,Mori F,Kasai H.Misreading of DNA templates containing8-hydroxydeoxyguanosine at the modified base and adjacent residues.Nature,1987,327:77-84.
    [68]Wood M L,Dizdaroglu M,Gajewski E,et al.Mechanistic studies of ioning radition and oxidative mutagenesis:genetic effects of a single 8-hydroxygunosine residue.J Biol Chem,1990,29:7024-7032.
    [69]Cheng K C,Cahill D S.8-Hydroxyguanosine,an abundant form of oxidative DNA damage,cause G→T and A→C substitutions.J Biol Chem,1992,267:166-171.
    [70]Kamiya H,Miura K,Ishikawa H,et al.C-Ha-ras containing 8-hydroxygnanosine at condon 12 induces point mutations at the modified and adjacent positions.Cancer Res,1992,52:3483-3491.
    [71]Turk P W,Laayoun A,Smith S S,et al.DNA adducts 8-hydroxy-2'-deoxyguanosine affects function of human DNA methyltrans ferase.Crcinogenesis,1995,16(5):1253-1259.
    [72]Mecocci P,Mac G U,Kaufman A E,et al.Oxidative damage to itochondrial DNA shows marked age dependent increase in human brian.Ann Neurol,1993,34(4):609-616.
    [73]Mecocci P,Fano G,Full S,et al.Age-dependent increase in oxidative damage to DNA lipids and protein in human skeletal muscle.Free Redical Bio Med,1999,26(34):305-308.
    [74]Polidori M C,Mecocci P,Browne S E,et al.Oxidative damage to mitochondrial DNA is increase partial cortex.Neurosci Lett,1999,272(1):53~56.
    [75]Musarrat J,Wani A A.Quantitative immunoanalysis of promutagenic 8-hydroxy-2'deoxyguanosine in oxidized DNA.Carcinogenesis,1994,15(9):2037-2043.
    [76]Reinhard J F,Moskowitz MA,Sved A F,et al.A simple sensitive and reliable assay for serotonin and 5-HIAA in brain tissues using liquid chromatography with electrochemical detection.Life Science,1980,27:905-908.
    [77]袭著革,晁福寰,孙咏梅等。高效液相色谱-电化学检测法测定脱氧核糖核酸分子氧化损伤标志物8-羟基脱氧鸟苷。分析化学,2001,7:765-767。
    [78]Mei S R,Yao Q H,Wu C Y,et al.Determination of urinary 8-hydroxy-2'-deoxyguanosine by two approaches-capillary electrophoresis and GC-MS An assay for in vivo oxidative DNA damage in cancer patients.J Chromatogr B,2005,827:83-87.
    [79]Dayle H,Michihiro O,Robert A N,et al.[~(32)P]2-iodo-N6-methyl-(N)-methanocarba-2'-deoxyadenosine -3',5'-bisphosphate([~(32)P]MRS2500),a novel radioligand for quantification of native P2Y1 receptors.Brit J Pharmacol,2006,147:459-467.
    [80]Garceau Y,Davis I.,Hasegawa J.Fluorometric TLC determination of free and conjugated propranolol,naphthoxylactic acid,and p-hydroxypropranolol in human plasma and urine.J Pharm Sci,1978,67:826-831.
    [81]Roybal J E,Denver C O,Robert K,et al.Determination of malachite green andits metabolit in catfishtissue by HPLC with visible detection.J AOAC Int,1995,78:453-457.
    [82]Clemmensen S,Meyer O.Toxicological studies onmalachite green:a triophenyl methane dye.ARCH TOXICOL,1984,56:43-45.
    [83]龙耀庭,陆妙琴,江崇球。环境致癌加合物MNU-DNA的高效液相色谱分离与质谱鉴别。质谱学报,1994,3:58-63.
    [84]Wooley A T,Maalies R A.Ultra-high-speed DNA sequencing using capillary electrophoresis chips.Anal Chem,1995,67:3676-3679.
    [85]Petr T,Eva S,Vladimra K.Improved detection limit for a direct determination of 8-hydroxy-2'-deoxyguanosine in untreated urine samples by capillary electrophoresis with optical detection.J Chromatogra B,2004,813:255-261.
    [86]Stacy D A,Lunte C E.Enhanced pH-mediated stacking of anions for CE incorporating a dynamic pH junction.Electrophoresis,2007,28:3786-3793.
    [87]Everaerts F M,Mikkers F B,Verheggen P B.Concentration distributions in free zone electrophoresis.J Chromatogr,1979,169:1-10.
    [88]Hjelten S,Jerstedt S,Tiselius A.Peptide stacking by acetonitrile-salt mixtures for capillary zone electrophoresis.Anal Biochem,1965,11:219-223.
    [89]Chen S,Lee M L.Sample matrix effects in miceller electrokinetic capillary electrophoresis.Anal Chem,1998,70:3777-3780.
    [90]Chien R L,Bursi D S.Stacking of weakly cationic compounds by acetonitrile for capillary electrophoresis.Anal Chem,1992,64:489-496.
    [91]李敏,何友昭,淦五二等。毛细管电泳中样品在线预富集方法。分析科学学报,2002,18:169-173。
    [92]宋立国,陈洪,程介克。样品堆积-毛细管电泳的柱上浓缩技术。分析化学,1997,25:722-727。
    [93]Osbourn D M,Weiss D J,Lunte C E.Analysis of proguanil and its metabolites by application of the sweeping technique in micellar electrokinetic chromatography.Elelctrophoresis,2000,21:2768-2779.
    [94]Quifino J P,Terabe S J.Analysis of Strychnos alkaloids in traditional Chinese medicines with improved sensitivity by sweeping micellar electrokinetie chromatography.J Chromatogr A,2000,902:119-135.
    [95]Bechers J L,Booek P.Determination of dissociation constants of pharmacologically active by capillary zone electrophorsis.Elelctrophoresis,2000,21:2747-2767.
    [96]Qairino J P,Kim J B,Terabe S J.Comparison of CZE,MEKC,MEEKC and non-aqueous capillary electrophoresis for the determination of impurities in bromazepam.J Chromatogr A,2002,965:357-373.
    [97] Molina M, Silva M. Determination of opium alkalodis in crude opium using non-aqueous capillary electrophoresis. Elelctrophoresis, 2002,23: 3907-3921.
    
    [98] 杨永坛,梁冰。毛细管电泳中的样品浓缩技术。色谱,2000,18:115~119。
    [99] Enlund A M, Westerlund D. Using Capillary Electrophoresis Detection and Resorufin beta-D- Galactopyranoside as Substrate. J ChromatogT, 1997,46: 315-321.
    
    [100] Burgi D S, Chien R L. Packing of high efficiency columns for capillary electrochromato-graphy. Microcol Sep, 1991, 3: 199-202.
    [101] Palmaradottir S, Edholm L E. Using non-aqueous capillary electrophoresis. J Chromatogr A, 1995, 693: 131-143.
    [102] Montgomery R M, Saari-Nordhaus R. On-line concentration of neutral analytes for micellary electrokinetic chromatography. J Chromatogr A, 1998, 804: 55-62.
    [103] Zhang C, Thormann W. Sweeping technique combined with micellar electrokinetic chromatography for the simultaneous determination of flunitrazepam and its major metabolites. Anal Chem, 1998, 70: 540-548.
    [104] Shihabi Z K, Friedberg M J. Investigation of preconcentration strategies for the trace analysis of mufti-residue pesticides in real samples by capillary electrophoresis. J Chromatogr A, 1998, 807: 129-133.
    [105] Carabias R, Rodriguez E. On-line concentration of neutral analytes for micellar electrokinetic chromatography. J Chromatogr A, 2003,990: 291-302.
    [106] Morales S, Cela R J. On-line sample concentration in micellar electrokinetic chromatography using cationic surfactants. J Chromatogr A, 1999, 846:401-411.
    [107] Wang C, Kelly J F, Harrison D J. Sensitivity improvement on detection of Coptidis alkaloids by sweeping in capillary electrophoresis. Electrophoresis, 2000,2: 198-210.
    [108] Mazereeuw M, Tjaden U R, Reinhoud N J. Pseudo-electrokinetic packing of high efficiency columns for capillary electrochromatography. J Chromatogr Sci, 1995, 33: 686-697.
    [109] Foret F, Szoko E, Karger B L. On-column transient and coupled column isotachophoretic preconcentration of protein samples in capillary zone electrophoresis. J Chromatogr A, 1992, 608: 3-12.
    [110] Thormann W, Dieter A, Emast S. Analysis of ethyl glucuronide in human serum by capillary electrophoresis with sample self-stacking and indirect detection. Electrophoresis, 2005, 6: 10-18.
    [111] Lock S J, Thibault P. Determination of γ-hydroxybutyric acid in human urine by capillary electrophoresis with indirect UV detection and confirmation with electrospray ionization ion-trap mass spectrometry. Anal Chem, 2003, 66: 3436-3446.
    [112] Bury A, Thibault P, Laylock M V. Development of a capillary electrophoresis method for the characterization of enzymatic products arising from the carbamoylase digestion of paralytic shellfish poisoning toxins. J Chromatogr A, 1994, 688: 301-316.
    [113] Boden J, Bachmann K.On column sample concentration using field amplification in capillary electrophoresis. J Chromatogr A, 1995, 696: 321-332.
    [114] Albin M, Grossman P D, Moring S E. Sensitivity enhancement for capillary electrophoresis. Anal Chem, 1993, 65:489-492.
    [115] Janini G M, Muschik G M, Issaq H J. Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis. Cap Elec, 1994, 1: 116-120.
    [116] Mazereeuw M, Tjaden U R, Reinhoud N J. Problems of quantitative injection in capillary zone electrophoresis. J Chromatogr Sci, 1995, 33: 686-697.
    [117] Foret F, Szoko E, Kargir B L.Determination of L-threonate in calcium preparations by capillary electrophoresis. J Chromatogr, 1992, 608: 3-12.
    [118] Dankova M, Kaniansky D, Fanali S. Assay for the determination of low dosage form of formoterol dry syrup by capillary electrophoresis. J Chromatogr A, 1999, 838: 31-43.
    [119] Larsson M, Nagard S. Sensitivity enhancement for capillary electrophoresis. Microcol Sep, 1994, 6: 107-113.
    [120] Reinhoud N J, Tjaden U R, Greef J. Automated isotachophoretic analyte focusing for capillary zone electrophoresis in a single capillary using hydrodynamic back-pressure programming. J Chromatogr A, 1993,641: 155-162.
    [121] Reinhoud N J, Tjaden U R, Greef J. Development of a capillary electrophoresis method for the characterization. J Chromatogr, 1993, 653: 303-312.
    [122] Foret F, Szoko E, Karger B L. Head column field amplified sample stacking in binary system capillary electrophoresis. Electrophoresis, 1993, 14:417-428.
    [123] Stegehuis D S, Tjaden U R, Greef J. Stacking with Reverse Migrating Micelles. J Chromatogr, 1992, 591:341-349.
    [124] Kaniansky D, Zelemky I. Asymmetry of protein peaks in capillary zone electrophoresis. Anal Chem, 1994,66:4258-4264.
    [125] Mazereeuw M, Tjaden U R, Greef J. Separation and detection of peroxynitrite and its metabolites by capillary electrophoresis. J Chromatogr A, 1994, 677: 151-157.
    [126] Steghuis D S, Irth H, Tjanden U R, et al. Isotachophoresis as an on-line concentration pretreatment technique in capillary electrophoresis. J Chromatogy A, 1991, 538: 393-402.
    [127] Dankova M, Kaniansky D, Fanali S, et al. Capillary zone electrophoresis separations of enantiomers present in complex ionic matrices with on-line isotachophoretic sample pretreatment. J Chromatogr A, 1999,838:31-43.
    [128] Strausbauch M A, Lander J P. Wettstein P. Capillary Electrophoresis of Insulin-like Growth Factors: Enhanced Ultraviolet Detection Using Dynamically Coated Capillaries and Cln-Line Solid-Phase Extraction. Anal Chem, 1996, 68: 306-309.
    [129] Chien R, Burgi D S. Field amplified sample injection in high-per formance capillary electrophoresis. Anal Chem, 1991, 63: 2042-2047.
    [130] Chien R L, Helmer J C. Improvement in the method of sample stacking for gravity injection in capillary zone electrophoresis. Anal Chem, 1991, 63: 1354-1361.
    [131] Chien R L, Burgi D. Field amplified sample injection in high-performance capillary electrophoresis. J Chromatogr A, 1991,559: 141-152.
    [132] Albert M. Debusscbere L.Demesmay C, et al. Large-volume stacking for quantitative analysis of anions in capillary electrophoresis I. Large-volume stacking with polarity switching. J Chromatogr A, 1997, 757: 281-289.
    [133] Chien R L, Burgi D S. Sample stacking in laboratory-on-a-chip devices. Anal Chem, 1992, 64: 1046-1050.
    [134] Siri N, Riolet P, Bayle C, et al. Imaging surface plasmon resonance system for screening affinity ligands. Large-volume stacking for quantitative analysis of anions in capillary electrophoresis. J Chromatogr B, 2003, 793: 151-157.
    [135] Lee J H, Choi O K, Jung H S, et al. Determination of cefuroxim levels in human serum by micellar electrokinetic capillary chromatography with direct sample injection. Electrophoresis, 2000, 21: 930-934.
    [136] Quirino J P, Terabe S. Sample stacking of cationic and anionic analytes in capillary electrophoresis. J Chromatogra A, 2000,902: 119-135.
    [137] Koshi I, Maria R. Simple on-line sample preconcentration technique for peptides based on dynamic pH junction in capillary electrophoresis-mass spectrometry. J Chromatogr A, 2007,1148: 250-255.
    [138] Zhang C X, Thormann W. Dynamic pH junction technique for on-line preconcentration of peptides in capillary electrophoresis. Anal Chem, 1998, 70: 540-548.
    [139] Oguri S, Tanagaki H, Hamaya M, et al. Site-specific sampling of taurine from rat brain ollowed by on-line sample pre-concentration, throughout in-capillary derivatization and capillary electrophoresis. Anal Chem, 2003, 75: 5240-5245.
    [140] Hadwiger M E, Torchia S R, Park S, et al. Optimization of the separation and detection of the enantiomers of isoproterenol in microdialysis samples by cyclodextrin-modified capillary electrophoresis using electrochemical detection. J Chromatogr B, 1996, 681: 241-249.
    [141] Amett S D, Lunte C E. Separation and detection of peroxynitrite and its metabolites by capillary electrophoresis with UV etection. Electrophoresis, 2003,24: 1745-1752.
    [142] Aebersold R, Morrison H D. Analysis of dilute peptide samples by capillary zone electrophoresis. J Chromatogr A, 1990, 516: 79-88.
    [143] Quirino J P, Terabe S. Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis. Science, 1998,282: 465-468.
    [144] Michalke B, Schramel P. Antimony. speciation in enviro nmental samples by interfacing capillary electrophoresis on-line to an inductively coupled plasma mass spectrometer. Electrophoresis, 1998, 19:2220-2225.
    [145] Taylor R B, Reid R G, Low A S. Analysis of proguanil and its metabolites by application of the sweeping technique in micellar electrokinetic chromatography. J Chromatogr A, 2001, 916: 201-206.
    [146] Sera Y, Matsubara N, Otsuka K, et al. Use of cholate derivatives with submicellar concentration for controlling selectivity of proteins in hydrophobic interaction chromatography. Electrophoresis, 2001, 22:3509-3513.
    [147] Palmer J, Burgi D S, Munro N J, et al. High-salt stacking principles and sweeping: comments and contrasts on mechanisms for high-sensitivity analysis in capillary electrophoresis. Anal Chem, 2001, 73:725-731.
    [148] Terabe S, Quirino J P. On-line concentration for neutral analytes for micellar elevtrokinetic Chromatography. Anal Chem, 1988, 70: 149-157
    [149] Taylor R B, Reid G R, Low A S. Analysis of proguanil and its metabolites by application of the sweeping technique in micellar electrokinetic chromatography. J Chromatogr A, 2001, 916: 201-206.
    [150] Michal J M, Philip B M, Shigeru T, et al. Determination of pyridine ande adenine nucleotide metabolites in Bacillus subtilis cell extract by sweeping borate complexation capillary electrophoresis. J Chromatoger A, 2003, 989: 293-301.
    [151] Simonet B M, Rios A, Valcrecel M. Enhancing sensitivity in capillary electrophoresis. Trends in Anal Chem, 2003,22: 605-614.
    [152] Quirino J P, Terabe S. On-line concentration of neutral analytes for micellar electrokinetic chromatography II .Teversed electrode polarity stacking mode. J Chromatogr A, 1997, 791: 255-267.
    [153]Tekeuchi T,Nakajima M,Morimoto K.Relationship between the intracellular reative oxygen species and the indution of oxidative DNA damage in human neutrophil-like cells.Carcinogenesis,1996,17:1543-1548.
    [154]Hiroshi K.Analysis of a form of oxidative DNA damage 8-hydroxy-2'-deoxyguanosine as a marker of cellular oxidative stress during carcinogenesis.Mutat Res,2001,387:147-163.
    [155]Hu S G,Wang S W,He X W.An amobarbital molecularly imprinted microsphere for selective solid-phase extraction of phenobarbital from human urine and medicines and their determination by high performance liquid chromatography.Analyst,2003,128:1485-1489.
    [156]Yao Q H,Mei S R,Weng Q F,et al.Determination of urinary oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine and the association with cigarette smoking.Talanta,2004,63:617-623.
    [157]Weng Q F,Jin W R.Carbon fiber bundle-Au-Hg dual-electrode detection for capillary electrophoresis.J Chromatogr A,2002,971:217-223.
    [158]Britz-McKibbin P,Chen D D Y.Selective Focusing of Catecholamines and Weakly Acidic Compounds by Capillary Electrophoresis Using a Dynamic pH Junction.Anal Chem,2000,72(6):1242-1252.
    [159]Britz-McKibbin P,Bebault G M,Chen D D Y.Velocity-Difference Induced Focusing of Nucleotides in Capillary Electrophoresis with a Dynamic pH Junction.Anal Chem,2000,72(8):1729-1735.
    [160]Liebich H M,Xu G,Stefano C D,et al.Capillary electrophoresis of urinary normal and modified nucleosides of cancer patients.J Chromatogr A,1998,793:341-347.
    [161]姚庆红。中国科学院大连化学物理研究所硕士论文。2003。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700