微流控芯片化学发光检测系统的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来微流控芯片检测技术得到了长足的发展。人们越来越关注微流控芯片检测系统的研究。本文主要针对目前微流控芯片检测系统相对于芯片本身过于庞大,检测灵敏度低和价格昂贵等问题进行研究,设计了微流控芯片的化学发光检测系统,其具有可调增益、高灵敏度、低噪声和便携等特点。
     本文通过对检测系统中信号处理电路的噪声分析,全面剖析影响检测系统信噪比的信号通频带Δf和反馈电阻R等诸多因素,以此作为信号检测系统的降噪依据设计了具有低通滤波功能的前置I—V转换电路。为减少检测系统的失调设计了失调电压补偿电路,另外采用六阶椭圆低通滤波器来有效地去除信号中的高频噪声,通过对不同参数之间的折中考虑设计了检测系统的信号处理电路。以光电倍增管作为光电转换器件设计了微流控芯片化学发光检测系统,考虑到微弱信号检测的屏蔽问题对系统进行了有效的电磁屏蔽和光屏蔽。经测试系统具有如下性能指标:噪声小于4.5mV,长时间工作稳定漂移小于15mV,可调增益范围为1~100倍。采用聚甲基丙烯酸甲酯为材料通过微机械加工技术设计并制作了微流控检测芯片。测试了过氧化氢浓度对鲁米诺化学发光体系发光强度的影响,得出过氧化氢浓度在30mmol/L时该体系发光强度最大。基于鲁米诺—过氧化氢的化学发光体系对铜离子进行了检测。结果表明在高信噪比的情况下铜离子的静态定点检测限为4×10-14mol/L,动态电泳检测限为2×10-10mol/L。
     通过对实际样品Cu2+的检测表明所设计的检测系统具有高的灵敏度,能够实现Cu2+的痕量检测。从而为以后开展进一步的工作奠定了基础并提供一定的借鉴。
Recently, the microfluidic chip detection technology has been developed rapidly. More and more people have throw themselves into researching the detection system for microfluidic chip. In this paper, because the contemporary microfluidic chip has the disadvantages of large size, low detection precision and high cost, the chemilumin-escence detection system of microfluidic chip has been designed here, of which has many advantages, such as variable gain, high detection precision, low noise and portability.
     The noise characteristic of signal processing circuits in the detection system will be analyzed in this paper, Then the factors that affect both the signal bandwidthΔf and the feedback resistance R of detection system’s signal to noise ratio would be obtained. According to the analysis results, the pre current to voltage conversion circuits will be designed, which has the function of low-pass filter. In order to reduce the offset voltage of the detection system, the offset voltage compensation circuits has been designed. Besides, the six-order ellipse low-pass filter will be adopted to effectively depress the high frequency noise in the signal. The signal processing circuits of the detection system could be designed after considering compromise between different parameters. Afterward, the chemiluminescence detection system will be established using the PMT as the Photoelectric conversion device. Considering the problems of shield for the weak signal detection, there are effective electromagnetism shield and light shield. After tested, the performance of the detection system is as followed: the noise is lower than 4.5mV, stability to work long time and draft is lower 15mV, the range of variable gain is 1~100. the microfluidic chip is fabricated using PMMA as material through MEMS technology. The luminescence intensity of luminal chemiluminescence system is tested though different concentration of hydrogen peroxide. The results showed that there is maximum luminescence intensity when the concentration of hydrogen peroxide is 30mmol/L. The detection for Cu2+ has been done based on the luminal- hydrogen peroxide chemilumi-nescence system, which showed that the static fixed-point detection limit for Cu2+ is 4×10-14mol/L and the dynamic electrophoresis detection limit is 2×10-10mol/L.
     After the real samples of Cu2+ have been tested, the detection results show that the detection system that has been designed here has the advantages of high sensitivity and the function of Cu2+ trace detection. As consequence, this work can establish the foundation and provide the reference for future work.
引文
1林炳承,秦建华.微流控芯片实验室.色谱. 2005, 23(5): 456~466
    2刘鹏,邢婉丽,程京.生物芯片技术——21世纪革命性的技术.学术园地. 2000, 11: 26~27
    3朱睿,肖松山,范世福.微流控芯片检测技术进展.纳米技术与精密工程. 2005, 3(1): 74~79
    4 K. Bambang, Nuriman, H. Jurriaan. Optical Sensing Systems for Microfluidic Devices: A Review. Analtica Chimica Acta. 2007, 601: 141~155
    5 A. Manz, N. Graber, H.M. Widmer. Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing. Sensors and Achtuators B1. 1990, l: 244~248
    6 D.J. Harrison, A. Manz, Z.H. Fan. Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip. Anal. Chem. 1992, 64(17): 1926~1932
    7 A. T. Woolley, R.A. Mathies. Ultra-High-Speed DNA Sequencing Using Capillary Electrophoresis Chips. Anal. Chem. 1995, 67(20): 3676~3680
    8 D.C. Duffy, J.C. Mocdonal, O.J.A. Schueller. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal. Chem.1998, 70(23): 4974~4984
    9 L. Bousse, S. Mouradian, A. Minalla. Protein Sizing on a Microchip. Anal. Chem. 2001, 73(6): 1207~1212
    10 M.L. Adams, M. Enzelberger, S. Quake. Microfluidic Integration on Detector Arrays for Absorption and Fluorescence Micro-Spectrometers. Sensors and Actuators A. Physical. 2003, 104(1): 25~31
    11 G. Vahedi, K. Kaler, C.J. Backhouse. An Integrated Method for Mutation Detection Using On-Chip Sample Preparation, Single-Stranded Conformation Polymorphism, and Heteroduplex Analysis. Electrophoresis. 2004, 25: 2346~2356
    12 J. Tanyanyiwa, E.M. Abad-Villar, P.C. Hauser. Contactless Conductivity Detection of Selected Organic Ions in on-Chip Electrophoresis. Electrophoresis. 2004, 25(6): 903~908
    13 P. Taehan, L. Sangyeop, H.S. Gi. Highly Sensitive Signal Detection of Duplex Dye-Labelled DNA Oligonucleotides in a PDMS Microfluidic Chip: Confocal Surface-Enhanced Raman Spectroscopic Study. Lab Chip. 2005, 5: 437~442
    14 C.P. Alexandra, A.T. Pereira, V. Chu. Detection of Chemiluminescence using an Amorphous Silicon Photodiode. IEEE Sensors. 2007, 7(3): 415~416
    15 L.Z. Barry, G.M. Michael, M.F. Erica. Lab-on-a-Chip for Oral Cancer Screening and Diagnosis. HEAD & NECK. 2008, 1002(10): 111~121
    16 H. Schulze, G. Giraud, J. Crain. Multiplexed Optical Pathogen Detection with Lab-on-a-Chip Devices. Biophotonics. 2009, 4(2): 199~211
    17 J. Pipper, M. Inoue, L.F.P. Ng. Catching Bird Flu in a Droplet. Nature Medicine. 2007, 13: 1259~1263
    18章刚华,周兆英,罗国安.微芯片电泳仪的研制.仪器仪表学报. 2002, 23(4): 335~338
    19林金明,李海芳,苏容国.微流控芯片的研制及其相关仪器的集成化研究.生命科学仪器. 2005, 2(2): 7~13
    20 Q. Fang, F.R. Wang, S.L. Wang. Sequential Injection Sample Introduction Microfluidic Chip based Capillary Electrophoresis System. Anal. Chem. 1999, 390: 27~31
    21苏荣国,林金明.微流控芯片化学发光检测系统的设计和应用.高等学校化学学报. 2004, 25: 74~75
    22汪洋,邹丽娟,许关东.微流控芯片检测肺癌患者血浆中p16基因异常甲基化在临床应用的评价.生物化学与生物物理进展. 2004, 31(12): 1085~1089
    23曲晓峰,任吉存.玻璃基质微流控芯片用于DNA片段的分离和C677T基因突变的快速检测.分析科学学报. 2007, 23(2): 153~155
    24 X. Chen, D.F. Cui, L.L. Zhang. Portable Fluorescence Detection System Integrated with Disposable Microfluidic Chip.纳米技术与紧密工程. 2009, 7(2): 127~131
    25 E. Verpoorte, A. Manz, H. Luedi. A Silicon Flow Cell for Optical Detection in Miniaturized Total Chemical Analysis Systems. Sens Actuators B. 1992, 6: 66~70
    26 H.S. Moosavi, Y. Jiang, L. Lester. A Multireflection Cell for Enhanced Absorbance Detection in Microchip-based Capillary Electrophoresis Devices. Electrophoresis. 2000, 21: 1291~1299
    27 M.P. Duggan, T.M Creedy, J.W. Aylott. A Non-invasive Analysis Method for on-Chip Spectrophotometric Detection using Liquid-Core Wave Guiding within a 3D Architecture. Analyst. 2003, 128: 1336~1340
    28 K. Sato, H. Kawanishi, M. Tokeshi. Application of a Bias-Current Modulation Technique to Radio-Frequency Glow Discharge Optical Emission Spectrometry. Anal Sci. 1999, 15(6): 525~529
    29 H.M. Sorouraddin, A. Hibara, M.A. Proskurnin. Integrated FIA for the Determination of Ascorbic Acid and Dehydroascorbic Acid in a Microfabricated Glass-Channel by Thermal-Lens Microscopy. Anal Sci. 2000, 16(10): 1033~1038
    30 E. CollinsG, Q. Lu. Radlanuclide and Metal Ion Detection on a Capillary Electrophoresis Microchip using LED Absorbance Detection. Sens Actuators B. 2001, 76: 244~249
    31 Q. Mao, J. Pawliszyn. Demonstration of Isoelectric Focusing on an Etched QuartzChip with UV Absorption Imaging Detection. Analyst. 1999, 124: 637~641
    32 G. Ocvirk, T. Tang, D.J. Harrison. Optimization of Confocal Epifluorescence Microscopy for Microchip-based Miniaturized Total Analysis System. Analyst. 1998, 123: 1429~1434
    33周小棉,戴忠鹏,林炳承.通用型激光诱导荧光微流控芯片分析仪的研制与性能考察.高等学校化学学报. 2004, 25(3): 336~340
    34 S.C. Jacobson, R. Hergenroeder, L.B. Koutny. Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices. Anal. Chem. 1994, 66(7): 1107~1113
    35 S.C. Jacobson, R. Hergenroeder, L.B. Koutny. Open Channel Electrochromato-graphy on a Microchip. Anal. Chem. 1994, 66(14): 2369~2373
    36 M.A. Burns, B.N. Johnson, S.N. Brahmasandra. An Integrated Nanoliter DNA Analysis Device. Science. 1998, 282(5388): 484~487
    37 P.K. Dasgupta, G.F. Zhang, J.Z. Li. Luminescence Detection with a Liquid Core Waveguide. Anal. Chem. 1999, 71: 1400~1407
    38 X.J. Huang, Q.S. Pu, Z.L. Fang. Capillary Electrophoresis System with Flow Injection Sample Introduction and Chemiluminescence Detection on a Chip Platform. Analyst. 2001, 126(3): 281~284
    39 Z.H. Song, C.N. Wang. Determination of Picogram-Levels of Acetylspiramycin in Human Urine and Serum by Flow Injection Chemiluminescence. Microchim.Acta. 2005, 149: 117~122
    40颜流水,梁宁,罗国安.整体式PDMS电泳芯片快速成型及高灵敏化学发光检测氨基酸.高等化学学报. 2003, 24(7): 1193~1197
    41 K. Tsukagoshi, T. Saito, R. Nakajima. Analysis of Antioxidants by Microchip Capillary Electrophoresis with Chemiluminescence Detection based on Luminal Reaction. Talanta. 2008, 77: 514~517
    42 H. Qiu, J. Yan, X. Sun. Microchip Capillary Electrophoresis with an Integrated Indium Tin Oxide Electrode-based Electro-chemiluminescence Detector. Anal. Chem. 2003, 75: 5435~5440
    43严宗毅.低雷诺数流理论.北京大学出版社. 2002, 505~519
    44 E.V. Dose, G.J. Guiochon. Timescale of Transient Processes in Capillary Electrophoresis. J. of Chromatography A. 1993, 652(l): 263~275
    45 C. Rice, R. Whitehead. Electrokinetic Flow in a Narrow Cylindrical Capillary. Physical Chemistry. 1965, 69(11): 4017~4024
    46林金明,赵利霞,王栩.化学发光免疫分析.化学工业出版社. 2008, 1~2
    47张虹蔚,高旭晖,常旭红.流体注射化学发光测定苯甲酸.福州大学学报(自然科学版). 1999, 27: 27~28
    48李峰,李瑛,朱果逸.流体注射化学发光测定葡萄糖.应用化学. 2002, 19(7): 705~707
    49苏荣国,林金明,屈铎.金属离子Cu2+, Co2+, Ni2+的为微芯片电泳分离及化学发光检测.化学学报. 2003, 61(6): 885~888

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700