钙离子载体A23187对脐血来源EPC作用及应用蛋白质芯片检测蛋白质表达差异的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:组织工程血管以及组织工程化组织的血管化因目前内皮种子细胞扩增能力和生物活力的不足而受到限制。内皮祖细胞(endothelial progenitor cells,EPCs)是内皮细胞的前体细胞。并可被转移至外周血,参与缺血组织的血管重建和血管的内膜化,因此EPCs有望成为今后组织工程内皮种子细胞的重要来源。为此,有关EPCs的体外诱导培养、扩增和细胞增殖、凋亡的调控亟待深入研究,在细胞行为调控中,钙离子是细胞生物行为的重要调控因子,当细胞内钙离子稳态失衡时,会导致多种细胞异常行为发生,从而引发疾病。钙离子载体A23187是一种高度选择性的钙离子载体,能与Ca2+形成稳定的复合物,使胞外的Ca2+透过细胞膜,生理性或人为性地提高胞浆游离钙水平,有效增加细胞内Ca2+浓度,增高的Ca2+作为第二信使可促使蛋白激酶C(PKC)和其他钙依赖性蛋白激酶活化,并催化细胞内多种蛋白质磷酸化,从而启动淋巴细胞活化、增殖。此外,A23187还是氧化磷酸化的解偶联体,抑制线粒体ATP酶的活性,影响细胞代谢水平。
     研究目的第一部分研究目的在于建立体外培养脐血来源内皮祖细胞的培养体系,包括脐带血采集、单个核细胞分离、内皮祖细胞诱导培养、内皮祖细胞生长特性和表型分析鉴定。第二部分研究目的在于利用移动性钙离子载体A23187作用于内皮祖细胞,观察其对内皮祖细胞的作用影响;以表面增强激光解吸离子化飞行时间质谱(surfaceenhanced laser desorption/ionization-time of flight-mass spectrometry,SELDI-TOF-MS)技术分析A23187作用后的内皮祖细胞细胞内钙离子浓度变化及其对细胞表型和细胞蛋白质表达谱的影响,探讨不同浓度A23187及引起的相应细胞内钙离子浓度变化对内皮祖细胞的调控机制和作用,为内皮祖细胞调控机制和临床应用提供研究依据。
     研究方法在第一部分中,经无菌采集后的脐带血,在2小时内经密度梯度离心获得单个核细胞,以本室已建立的内皮祖细胞培养体系培养,从脐血获得的单个核细胞接种4天后,分别选取贴壁细胞和悬浮细胞进行培养至第12天后,观察两种方法所获得细胞的形态及数量。对悬浮细胞进行培养,免疫细胞化学和流式细胞术对培养7天后的细胞进行内皮祖细胞相关细胞表型CD34、CD133、vWF、CD146,CD144鉴定,培养过程中,观察细胞生长状况并测定细胞生长曲线。在第二部分中,钙离子载体A23187以0,1,3,5μmol/L作用于培养至第七天的内皮祖细胞,作用24小时,后流式细胞术检测A23187不同浓度作用下细胞内钙离子浓度变化,并且利用流式细胞术检测不同浓度A23187作用下P1H12 (CD146)的表达量。采用SELDI蛋白质芯片检测不同A23187浓度作用下蛋白质差异表达情况:1.Western-IP裂解液进行蛋白质提取并利用BCA法测定蛋白浓度;2.蛋白活化点样;3.芯片检测;4.数据处理与分析。
     研究结果第一部分中,经观察筛选,发现从脐血获得的单个核细胞接种4天后,分别选取贴壁细胞和悬浮细胞进行培养至第12天后,观察两种方法所获得细胞的形态及数量。发现选取贴壁细胞进行培养,细胞总数较少为301±205,并且无梭形样内皮祖细胞出现;相反,选取悬浮细胞进行培养,至第12天时,细胞数量达708±142(P<0.05),并且出现梭形样内皮祖细胞。故此,本研究选用悬浮细胞进行诱导培养,其接种后前5天为生长的潜伏期,细胞开始贴壁,无明显扩增。第6天平均每个视野下细胞数目为287±45;第9天细胞数为282±46;第12天开始,细胞进入对数生长期,细胞数为805±67(P<0.05,与第6天的细胞相比);第19天细胞继续增殖,细胞数为1115±182(P<0.05,与第6天的细胞相比);第23天时,细胞进入凋亡期,数量明显减少,为265±61(P<0.05,与第6天的细胞相比)。vWF,CD146,CD144表达阳性。流式细胞术结果表明,梭形样细胞群体中,CD34阳性率为88.98%±5.15%(P<0.05),CD133阳性率为1.20%±1.44%(P<0.05)。第二部分中,经SELDI技术检测A23187不同浓度组,结果显示共有20个差异表达蛋白,其中12个高表达,8个为低表达(P<0.05)。并且内皮祖细胞CD146阳性率呈A23187浓度依赖性降低,并发现钙离子载体A23187在浓度高至10μmol/L时,有显著促进内皮祖细胞凋亡作用。
     研究结论经本研究建立的内皮祖细胞培养体系,能够自脐带血来源的单个核细胞成功诱导培养出具内皮祖细胞形态特征的细胞,经细胞表型鉴定为内皮祖细胞。对上述内皮祖细胞以钙离子载体A23187作用,发现A23187在低浓度时,抑制内皮祖细胞向成熟内皮细胞分化;高浓度时,凋亡细胞数目增加,有浓度依赖性促进内皮祖细胞凋亡,并且具有抑制内皮祖细胞向内皮细胞分化的作用。
     待研究工作:对本研究中以SELDI技术检出的差异蛋白质点进行进一步分析,采用二维凝胶电泳及质谱法对于差异表达蛋白进行鉴定。
Objective Part one:To establish a culture system of Endothelial progenitor cells from umbilical cord blood. Part two:To identify the effect of A23187 with different concentration on EPCs and use SELDI protein chip for screening protein expressions of cell protein samples of EPC after intervention of A23187.
     Methods Part one:using density gradient centrifugation to obtain Mononuclear cells,and then culture them with our labs'culture system. In this study, immunocytochemistry and flow cytometric analysis of CD144, CD146, vWF, CD34 and CD133 were performed. Part two:Culture the cells of 7+ld in the medium in gradient concentration of A23187(1μM,3μM,5μM) for 24h. Flow cytometry analysed the percentage of cells expressing CD 146. Obtain the cells, proteins were extracted from cell samples by cell disruption buffer established in our lab, respectively. The concentrations of proteins were detected by BCA method, then protein samples were applied directly to the ProteinChips arrays using the chip of WCX2.
     Results Part one:The first five days were latent period, cells became adherent, but the number of cells did not increase obviously. At the 6th day, the number of cells came up to 287±45(the average number under 10X10 visual field),and the 9th day up to 282+46 (P>0.05, compared with 6th day).After cultured for 12 days, the cells came into logarithmic phase,and the number of cells were 805.33±66.61 (P<0.05, compared with 6th day),and continued to incease at day 19, the number of cells were up to11115±182 (P<0.05, compared with 6th day).Apoptosis took place at day 23, the number of cells decreased to 265±615 (P<0.05, compared with 6th day). Immunocytochemistric analysis indicated that the cells were weakly positive for vWF, CD 144 and CD 146, and the percentage of CD34 in cobblestone-shaped cells were 88.98%±5.15%(P<0.05), and that of CD133 were 1.20%±1.44%(P<0.05) with flow cytometric analysis. Part two:SELDI analysis indicated that there were 12 protein or peptide peaks overexpressed and 8 downexpressed in A23187 treated EPCs compared with the control. A23187 also reduced the percentage of cells expressing CD146, and A23187 induced EPCs'apoptosis when it's concentration came up to 10μM.
     Conclusions:Part one:The method established by our lab for EPCs culture is effective. The first five days is a latent period, cells become adherent, but do not increase in number obviously; and from day 12, the cells come into logarithmic phase. The number of EPCs is increasing at day 19, and then the cells undergo apoptosis at day 23. Part two:A23187 induces EPCs'apoptosis at the concentration of 10μM, and it also inhibited the differentiation of EPCs to mature endothelial cells at low concentration, and A23187 induced EPCs'apoptosis when it's concentration came uo to 10μM.
     The work to be caried out:To identify the proteins expressed differentially in SELDI using 2-DE and mass spectrum.
引文
[1]Werner.N & G. Nickenig. Clinical and therapeutical implications of EPC biology in atherosclerosis. J Cell Mol Med,2006:10(2);pp318-332.
    [2]Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science,1997:275;964-7.
    [3]Salven, P., Mustjoki, S., Alitalo, R., Alitalo, K.& Rafii, S. VEGFR-3 and CD133 identify a population of CD34+lymphatic/vascular endothelial precursor cells. Blood 101,168-172.
    [4]Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C., Silver, M., Kearne, M., Magner, M., and Isner, J.M.. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 55,1999 221-228.
    [5]Miyamoto, Y., Suyama, T., Yashita, T., Akimaru, H., and Kurata, H.. Bone marrow subpopulations contain distinct types of endothelial progenitor cells and angiogenic cytokine-producing cells. J Mol Cell Cardiol 43,2007.,627-635.
    [6]Nolan, D.J., Ciarrocchi, A., Mellick, A.S., Jaggi, J.S., Bambino, K., Gupta, S., Heikamp, E., McDevitt, M.R., Scheinberg, D.A., Benezra, R., et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 27,2007 1546-1558.
    [7]Aoki, M., Yasutake, M., and Murohara, T. (2004). Derivation of functional endothelial progenitor cells from human umbilical cord blood mononuclear cells isolated by a novel cell filtration device. Stem Cells 22,994-1002.
    [8]Eggermann, J., Kliche, S., Jarmy, G., Hoffmann, K., Mayr-Beyrle, U., Debatin, K.M., Waltenberger, J., and Beltinger, C. (2003). Endothelial progenitor cell culture and differentiation in vitro:a methodological comparison using human umbilical cord blood. Cardiovasc Res 58,478-486.
    [9]Igreja, C, Fragoso, R., Caiado, F., Clode, N., Henriques, A., Camargo, L., Reis, E.M., and Dias, S. (2008). Detailed molecular characterization of cord blood-derived endothelial progenitors. Exp Hematol 36,193-203.
    [10]Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J., and Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 99,4391-4396.
    [11]Goodwin HS, Bicknese AK Chicn SN, et al. Multilineage differentiation activity by cells isolated from umbilical cord blood:expression of bone, fat, and neural markers. Biol Blood Marrow Transplant,2001,7:581—8.
    [12]Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. B100d.2004.103:1669-75.
    [13]李秀森,郭子宽,杨靖清,等.骨髓间充质干细胞的生物学特征.解放军医学杂志,2000,25:346.348.
    [14]Ferrara N, Davis—Smyth T. The biology of vascular endothehal growthfactor[Jj Endocr Rev,1997,18(1):4-25.
    [15]Takahashi T, Ueno tt, Shybuya M, et al VEGF activates protein kinase C-dependent. but Ras—independent Raf-MEK-MAP kinase pathway forDNA synthesis in primary endothelial cells[J]. Oneogene.1999,18(13):2221—2230.
    [16]Barlnai S, Shweiki D, Pinson A. et al I_Tpre。 m. dation of vascular endothcliaI growth factor expresskm induced by myocardial ischemia implication for coronary angiogenesis[J]. Cardiovasc Res,1994,28(8):1176—1179.
    [17]Wijelath ES, Rahman S, Murray J. eI al. Fibronectin promotes VEGF—induced CD34 cell differentiation into endothelial cells[J]Vasc Surg,2004,39(3):655-660.
    [18]Henrich D, Hahn P, Watfl M, et al.Serum derived from multiple trauma patients promotes the differentiation of endothelial progenitor cells in vitro:possible role of transforrming growth factor-beta 1 and vascular endothelial growth factor 165[J].Shock, 2004,21(1):13—16.
    [19]Chen Y Rabinovitch PS, Platelet-derived growth factor,epidermal growth factor,and insulin-like growth factor-Ⅰ regulate specific cell-cycle parameter of human diploid fibroblasts inserum-free culture. J CeU Physiol,1989,140:59—67.
    [20]Lucarelli E, Beccheroni A, Donati D, et al. Platelet-derived growth factors enhance proliferation of human stromal stem cells. Biomaterials,2003,24:3095-3 100.
    [21]Biallchi G, Ballfi A, Mastrogiacomo M, et al. Ex vivo enrichment ofmesenchymal cell progenitors by fibmblast growth factor 2. Exp Cell Res,2003,287: 98—105.
    [22]Goodwin HS, Bicknese AK,Chicn SN, et al. Multilineage differentiation activity by cells isolated from umbilical cord blood:expression of bone, fat, and neural markers [J]. Biol Blood Marrow Transplant,2001,7:581-8.
    [23]Y. Miyamoto, T. Suyama, T. Yashita, et al. Bone marrow subpopulations contain distinct types of endothelial progenitor cells and angiogenic cytokine-producing cells[J]. Mol Cell Cardio.,2007,43:627-35.
    [24]陈飞兰,张华容,徐承平等.SDF.1/CXCR4轴活化诱导人内皮祖细胞增殖、迁移及管型形成[J].基础医学与临床,2008,05:0428-04.
    [25]Eggermann J, Kliche S, Jarmy G, et al. Endothelial progenitor cell culture and differentiation in vitro:a methodological comparison using human umbilical cord blood. Cardiovasc Res,2003,58(2):478-486.
    [26]Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol,2004,24 (2):288-293.
    [27]Nagano M, Yamashita T, Hamada H, et al. Identification of functional endothelial progenitor cells suitable for the treatment of ischemic tissue using human umbilical cord blood.Blood,2007110(1):151-160.
    [28]Timmermans F,Hauwermeiren FV,Smedt MD,et al.Endothelial outgrowth cwlls are not derived from CD133+cells or CD45+hematopoietic precursors. Arterioscler. Thromb. Vasc. Biol,2007,27:1572-1579.
    [1]Shi H, Halvorsen YD, Ellis PN, Wilkison WO, Zemel MB. Role of intracellular calcium in human adipocyte differentiation. Physiol Genomics.2000 Aug 9;3(2):75-82.
    [2]杨昆,李强,赵亚宁.A23187诱导HL-60分化为树突状细胞的研究.四川大学学报(医学版).2007,38(2):209-212.
    [3]Liu A, Takahashi M, Narita M, Zheng Z, Kanazawa N, Abe T, et al. Generation of functional and mature dendritic cells from cord blood and bone marrow CD34+ cells by two-step culture combined with calcium ionophore treatment. J Immunol Methods.2002 Mar 1;261 (1-2):49-63.
    [4]Ramadan G, Schmidt RE, Schubert J. In vitro generation of human CD86+ dendritic cells from CD34+haematopoietic progenitors by PMA and in serum-free medium. Clin Exp Immunol.2001 Aug;125(2):237-44.
    [5]Kajitani N, Kobuchi H, Fujita H, Yano H, Fujiwara T, Yasuda T, et al. Mechanism of A23187-induced apoptosis in HL-60 cells:dependency on mitochondrial permeability transition but not on NADPH oxidase. Biosci Biotechnol Biochem.2007 Nov;71 (11):2701-11.
    [6]Przygodzki T, Sokal A, Bryszewska M. Calcium ionophore A23187 action on cardiac myocytes is accompanied by enhanced production of reactive oxygen species. Biochim Biophys Acta.2005 Jun 10;1740(3):481-8.
    [7]Li DW, Liu JP, Mao YW, Xiang H, Wang J, Ma WY, et al. Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alpha B-crystallin through inhibition of RAS activation. Mol Biol Cell.2005 Sep;16(9):4437-53.
    [8]Kano Y, Nohno T, Takahashi R, Hasegawa T, Hiragami F, Kawamura K, et al. cAMP and calcium ionophore induce outgrowth of neuronal processes in PC12 mutant cells in which nerve growth factor-induced outgrowth of neuronal processes is impaired. Neurosci Lett.2001 Apr 27;303(1):21-4.
    [9]Ito J, Shimada M, Terada T. Effect of protein kinase C activator on mitogen-activated protein kinase and p34(cdc2) kinase activity during parthenogenetic activation of porcine oocytes by calcium ionophore. Biol Reprod.2003 Nov;69(5):1675-82.
    [10]Koski GK, Schwartz GN, Weng DE, Gress RE, Engels FH, Tsokos M, et al. Calcium ionophore-treated myeloid cells acquire many dendritic cell characteristics independent of prior differentiation state, transformation status, or sensitivity to biologic agents. Blood.1999 Aug 15;94(4):1359-71.
    [11]Czerniecki BJ, Carter C, Rivoltini L, Koski GK, Kim HI, Weng DE, et al. Calcium ionophore-treated peripheral blood monocytes and dendritic cells rapidly display characteristics of activated dendritic cells. J Immunol.1997 Oct 15;159(8):3823-37.
    [12]吴军,王晓怀,杨德懋.钙离子载体体外诱导外周血造血干细胞定向分化为成熟树突状细胞的研究。免疫学杂志。2005,21(1):44-46.
    [13]马可,仉红刚。SELDI蛋白质芯片检测技术研究进展。
    [14]De Wildt R, Mundy C R, Gorich B D, et al.Antubody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol,2000,18 (9):989-994.
    [15]Wingrenl C, Steinhauerl C, Ingvarssonl G. Microarrays based on affinity-tagged single-chain Fv antibodies:Sensitive detection of analyte in complex proteomes [J]. Proteomics,2005,5(5):1281-129.
    [16]Issaq HJ, Veenstra TD, Conrads TP, Felschow D. The SELDI-TOF MS approach to proteomics:protein profiling and biomarker identification. Biochem Biophys Res Commun.2002 Apr 5;292 (3):587-92.
    [17]Woolley JF, Al-Rubeai M. The application of SELDI-TOF mass spectrometry to mammalian cell culture. Biotechnol Adv.2009 Mar-Apr;27(2):177-84.
    [18]Poon TC. Opportunities and limitations of SELDI-TOF-MS in biomedical research:practical advices. Expert Rev Proteomics.2007 Feb;4(1):51-65.
    [19]Issaq HJ, Conrads TP, Prieto DA, Tirumalai R, Veenstra TD. SELDI-TOF MS for diagnostic proteomics. Anal Chem.2003 Apr 1;75(7):148A-55A.
    [20]梁林,战丽,韩威。SELDI蛋白质芯片技术在医学领域中的应用。武警医学。2007,18 (09):697-700。
    [21]Poon TC, Hui AY, Chan HL, Ang IL, Chow SM, Wong N, et al. Prediction of liver fibrosis and cirrhosis in chronic hepatitis B infection by serum proteomic fingerprinting:a pilot study. Clin Chem.2005 Feb;51(2):328-35.
    [22]Papadopoulos MC, Abel PM, Agranoff D, Stich A, Tarelli E, Bell BA, et al. A novel and accurate diagnostic test for human African trypanosomiasis. Lancet.2004 Apr 24;363(9418):1358-63.
    [23]Fenollar F, Goncalves A, Esterni B, Azza S, Habib G, Borg JP, et al. A serum protein signature with high diagnostic value in bacterial endocarditis: results from a study based on surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. J Infect Dis.2006 Nov 15; 194(10):1356-66.
    [24]Agranoff D, Fernandez-Reyes D, Papadopoulos MC, Rojas SA, Herbster M, Loosemore A, et al. Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum. Lancet.2006 Sep 16;368(9540):1012-21.
    [25]Zhu XD, Zhang WH, Li CL, Xu Y, Liang WJ, Tien P. New serum biomarkers for detection of HBV-induced liver cirrhosis using SELDI protein chip technology. World J Gastroenterol.2004 Aug 15;10(16):2327-9.
    [26]Luo X, Carlson KA, Wojna V, Mayo R, Biskup TM, Stoner J, et al. Macrophage proteomic fingerprinting predicts HIV-1-associated cognitive impairment. Neurology.2003 Jun 24;60(12):1931-7.
    [27]Semmes OJ, Cazares LH, Ward MD, Qi L, Moody M, Maloney E, et al. Discrete serum protein signatures discriminate between human retrovirus-associated hematologic and neurologic disease. Leukemia.2005 Jul;19(7):1229-38.
    [28]Gobel T, Vorderwulbecke S, Hauck K, Fey H, Haussinger D, Erhardt A. New multi protein patterns differentiate liver fibrosis stages and hepatocellular carcinoma in chronic hepatitis C serum samples. World J Gastroenterol.2006 Dec 21; 12(47):7604-12.
    [29]Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C, et al. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem.2001 May 18;276(20):16772-9.
    [30]Chernyak A, Karavanov A, Ogawa Y, Kovac P. Conjugating oligosaccharides to proteins by squaric acid diester chemistry:rapid monitoring of the progress of conjugation, and recovery of the unused ligand. Carbohydr Res.2001 Feb 28;330(4):479-86.
    [31]Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science.1998 Nov 13;282(5392):1318-21.
    [32]Hinshelwood J, Spencer DI, Edwards YJ, Perkins SJ. Identification of the C3b binding site in a recombinant vWF-A domain of complement factor B by surface-enhanced laser desorption-ionisation affinity mass spectrometry and homology modelling:implications for the activity of factor B. J Mol Biol. 1999 Nov 26;294(2):587-99.
    [33]Meuwis MA, Fillet M, Geurts P, de Seny D, Lutteri L, Chapelle JP, et al. Biomarker discovery for inflammatory bowel disease, using proteomic serum profiling. Biochem Pharmacol.2007 May 1;73(9):1422-33.
    [32]Hodgetts A, Levin M, Kroll JS, Langford PR. Biomarker discovery in infectious diseases using SELDI. Future Microbiol.2007 Feb;2:35-49.
    [34]Liotta LA, Ferrari M, Petricoin E. Clinical proteomics:written in blood. Nature.2003 Oct 30;425(6961):905.
    [35]Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics. 2006 Dec;6(23):6326-53.
    [36]Barelli S, Crettaz D, Thadikkaran L, Rubin O, Tissot JD. Plasma/serum proteomics:pre-analytical issues. Expert Rev Proteomics.2007 Jun;4(3):363-70.
    [37]Dammann CE, Meyer M, Dammann O, von Neuhoff N. Protein detection in dried blood by surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS). Biol Neonate.2006;89(2):126-32.
    [38]Goncalves A, Charafe-Jauffret E, Bertucci F, Audebert S, Toiron Y, Esterni B, et al. Protein profiling of human breast tumor cells identifies novel biomarkers associated with molecular subtypes. Mol Cell Proteomics. 2008 Aug;7(8):1420-33.
    [39]Buhimschi CS, Bhandari V, Hamar BD, Bahtiyar M0, Zhao G, Sfakianaki AK, et al. Proteomic profiling of the amniotic fluid to detect inflammation, infection, and neonatal sepsis. PLoS Med.2007 Jan;4(1):e18.
    [40]Papale M, Pedicillo MC, Di Paolo S, Thatcher BJ, Lo Muzio L, Bufo P, et al. Saliva analysis by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF/MS):from sample collection to data analysis. Clin Chem Lab Med.2008;46(1):89-99.
    [41]Schipper R, Loof A, de Groot J, Harthoorn L, van Heerde W, Dransfield E. Salivary protein/peptide profiling with SELDI-TOF-MS. Ann N Y Acad Sci. 2007 Mar;1098:498-503.
    [42]Grus FH, Podust VN, Bruns K, Lackner K, Fu S, Dalmasso EA, et al. SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Invest Ophthalmol Vis Sci.2005 Mar;46(3):863-76.
    [43]Issaq HJ, Conrads TP, Prieto DA, Tirumalai R, Veenstra TD. SELDI-TOF MS for diagnostic proteomics. Anal Chem.2003 Apr 1;75(7):148A-55A.
    [45]Poon TC, Yip TT, Chan AT, Yip C, Yip V, Mok TS, et al. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem.2003 May;49(5):752-60.
    [46]Poon TC. Opportunities and limitations of SELDI-TOF-MS in biomedical research:practical advices. Expert Rev Proteomics.2007 Feb;4(1):51-65.
    [47]郭静, 蒲咏梅, 张东才。钙离子信号与细胞凋亡。生物物理学报。2005,21(1):1-18
    [48]王跃群,刘明耀,吴秀山。心肌细胞形成和分化过程中钙信号转导调控的研究进展。遗传。2004,26(2):227-230.
    [49]Sennvik K, Benedikz E, Fastbom J, Sundstrom E, Winblad B, Ankarcrona M. Calcium ionophore A23187 specifically decreases the secretion of beta-secretase cleaved amyloid precursor protein during apoptosis in primary rat cortical cultures. J Neurosci Res.2001 Mar 1;63(5):429-37.
    [50]尹宪明。钙离子与心血管功能。南京农专学报。1998,14(1):47-50
    [51]唐晓琼,邓华聪等。2型糖尿病患者细胞内钙离子浓度变化的研究。重庆医科大学学报。2002,27(2):133-135。
    [52]Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, et al. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat Neurosci.2002 Aug;5(8):731-6.
    [53]Feske S. Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol.2007 Sep;7(9):690-702.
    [54]王淳怡,曾衍钧,文宗曜等。红细胞在钙离子和离子载体A23187作用下呃流变特性研究。生物化学与生物物理进展。2001,28(6):870:873.
    [55]Zhu H, Gao W, Shi YF, Zhang XJ. The CCAAT-binding factor CBF/NF-Y regulates the human acetylcholinesterase promoter activity during calcium ionophore A23187-induced cell apoptosis. Biochim Biophys Acta.2007 Oct;1770(10):1475-82.
    [56]Kajitani N, Kobuchi H, Fujita H, Yano H, Fujiwara T, Yasuda T, et al. Mechanism of A23187-induced apoptosis in HL-60 cells:dependency on mitochondrial permeability transition but not on NADPH oxidase. Biosci Biotechnol Biochem.2007 Nov;71(11):2701-11.
    [57]Kozian D, Proulle V, Nitsche A, Galitzine M, Martinez MC, Schumann B, et al. Identification of genes involved in Ca2+ionophore A23187-mediated apoptosis and demonstration of a high susceptibility for transcriptional repression of cell cycle genes in B lymphoblasts from a patient with Scott syndrome. BMC Genomics.2005;6:146.
    [58]Sennvik K, Benedikz E, Fastbom J, Sundstrom E, Winblad B, Ankarcrona M. Calcium ionophore A23187 specifically decreases the secretion of beta-secretase cleaved amyloid precursor protein during apoptosis in primary rat cortical cultures. J Neurosci Res.2001 Mar 1;63(5):429-37.
    [59]Hajnoczky G, Davies E, Madesh M. Calcium signaling and apoptosis. Biochem Biophys Res Commun.2003 May 9;304(3):445-54.
    [60]Giannakis C, Forbes IJ, Zalewski PD. Ca2+/Mg(2+)-dependent nuclease: tissue distribution, relationship to inter-nucleosomal DNA fragmentation and inhibition by Zn2+. Biochem Biophys Res Commun.1991 Dec 16; 181(2):915-20.
    [61]Gaido ML, Cidlowski JA. Identification, purification, and characterization of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes. NUC18 is not histone H2B. J Biol Chem.1991 Oct 5;266(28):18580-5.
    [62]Bellomo G, Perotti M, Taddei F, Mirabelli F, Finardi G, Nicotera P, et al. Tumor necrosis factor alpha induces apoptosis in mammary adenocarcinoma cells by an increase in intranuclear free Ca2+concentration and DNA fragmentation. Cancer Res.1992 Mar 1;52(5):1342-6.
    [63]Kizaki H, Tadakuma T, Odaka C, Muramatsu J, Ishimura Y. Activation of a suicide process of thymocytes through DNA fragmentation by calcium ionophores and phorbol esters. J Immunol.1989 Sep 15;143(6):1790-4.
    [64]Tsukidate K, Yamamoto K, Snyder JW, Farber JL. Microtubule antagonists activate programmed cell death (apoptosis) in cultured rat hepatocytes. Am J Pathol.1993 Sep;143(3):918-25.
    [65]Koski GK, Schwartz GN, Weng DE, Gress RE, Engels FH, Tsokos M, et al. Calcium ionophore-treated myeloid cells acquire many dendritic cell characteristics independent of prior differentiation state, transformation status, or sensitivity to biologic agents. Blood.1999 Aug 15;94(4):1359-71.
    [66]吴军,杨德懋,杨太成等。钙离子载体诱导人外周血单个核细胞向树突状细胞分化的信号转导。细胞与分子免疫学杂志。2004,20(5):540-543。
    [67]Li Q, Ozer H, Lindner I, Lee KP, Kharfan-Dabaja MA. Protein kinase C blockade inhibits differentiation of myeloid blasts into dendritic cells by calcium ionophore A23187. Int J Hematol.2005 Feb;81(2):131-7.
    [68]吴军,杨太成,王捷等。A23187诱导恶性黑色素瘤患者的外周血单核细胞向树突状细胞分化。中国肿瘤生物治疗杂志。2004,11(4):293:195。
    [1]T. Asahara, T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li, B. Witzenbichler, G. Schatteman and J. M. Isne。 Science,1997:275:964-7
    [2]Lin Y, Weisdorf DJ, Solovey A, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest,2000;105:71-77
    [3]Mario Peichev, Afzal J. Naiyer, Daniel Pereira, et al. Expression of VEGFR-2 and AC133 by circulating human CD341 cells identifies a population of functional endothelial precursors. Blood,2000;95:952-8
    [4]J. Case, L. E. Mead, W. K. Bessler, D. Prater, H. A. White. Human CD34+AC133+VEGFR-2+cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol.35:1109-18
    [5]F. Deschaseaux, Z. Selmani, P. E. Falcoz, N. Mersin, N. Meneveau. Two types of circulating endothelial progenitor cells in patients receiving long term therapy by HMG-CoA reductase inhibitors. Eur J Pharmacol.2007; 562:111-8
    [6]E. B. Friedrich, K. Walenta, J. Scharlau, G. Nickenig and N. Werner. CD34-/CD133+/VEGFR-2+endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Cir Res,2006;3:e20-5
    [7]P. Romagnani, F. Annunziato, F. Liotta. CD14+CD341ow cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Cir Res.2005; 97:314-22
    [8]J. Hur, C. H. Yoon, H. S. Kim, J. H. Choi, H. J. Kang, K. K. Hwang, B. H. Oh, M. M. Lee and Y. B. Park. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol.2004:24:288-93
    [9]N. Mukai, T. Akahori, M. Komaki, A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res.2008, 314:430-40.
    [10]Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood.2004 Nov 1; 104 (9):2752-60.
    [11]Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood.2005 Apr 1; 105 (7):2783-6.
    [12]Ingram DA, Caplice NM, Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood.2005 Sep 1;106(5):1525-31.
    [13]Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood.2007 Mar 1;109(5):1801-9.
    [14]Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001 Jul 6;89(1):E1-7.
    [15]Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation.2001 Jun 19:103(24):2885-90.
    [16]Freundlich B, Avdalovic N. Use of gelatin/plasma coated flasks for isolating human peripheral blood monocytes. J Immunol Methods.1983 Aug 12;62(1):31-7.
    [17]Waldo SW, Li Y, Buono C, Zhao B, Billings EM, Chang J, et al. Heterogeneity of human macrophages in culture and in atherosclerotic plaques. Am J Pathol.2008 Apr;172(4):1112-26.
    [18]Anghelina D, Pewe L, Perlman S. Pathogenic role for virus-specific CD4 T cells in mice with coronavirus-induced acute encephalitis. Am J Pathol. 2006 Jul;169(1):209-22.
    [19]Zhang SJ, Zhang H, Wei YJ, Su WJ, Liao ZK, Hou M, et al. Adult endothelial progenitor cells from human peripheral blood maintain monocyte/macrophage function throughout in vitro culture. Cell Res.2006 Jun; 16(6):577-84.
    [20]Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res.2001 Feb 16;49(3):671-80.
    [21]Rehman J, Li J, Orschell CM, March KL. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation.2003 Mar 4;107(8):1164-9.
    [22]Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML, et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+hematopoietic precursors. Arterioscler Thromb Vasc Biol.2007 Jul;27(7):1572-9.
    [23]Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, et al. Human CD34+AC133+VEGFR-2+cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol.2007 Jul;35 (7):1109-18.
    [24]王佐,童中艺等,微孔法分离大鼠骨髓内皮祖细胞。生物化学与生物物理进展。2007;34(7):754-759
    [25]T. Asahara, T. Takahashi, H. Masuda, C. Kalka,. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J.1999; 14:3964-72
    [26]M. Boyer, L. E. Townsend, L. M. Vogel, J. Falk, D. Reitz-Vick, Isolation of endothelial cells and their progenitor cells from human peripheral blood. J Vasc Surg.2000; 31:181-9
    [27]Y. Miyamoto, T. Suyama, T. Yashita, H. Akimaru and H. Kurata. Bone marrow subpopulations contain distinct types of endothelial progenitor cells and angiogenic cytokine-producing cells. J Mol Cell Cardio.2007; 43:627-35.
    [28]Q. R. Wang, B. H. Wang, Y. H. Huang, G. Dai, W. M. Li and Q. Yan. Purification and growth of endothelial progenitor cells from murine bone marrow mononuclear cells. J Cell Biochem.2008;103:21-9.
    [29]M. Poreba, L. Usnarska-Zubkiewicz and K. Kuliczkowski. CD-133, a new marker for normal hematopoietic progenitor and stem cells, their leukemic counterparts and endothelial precursors. Pol Arch Med Wewn.2003; 5:551-5.
    [30]Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S. VEGFR-3 and CD133 identify a population of CD34+lymphatic/vascular endothelial precursor cells. Blood.2003 Jan 1;101 (1):168-72.
    [31]A. A. Kocher, M. D. Schuster, N. Bonaros, K. Lietz, G. Xiang. Myocardial homing and neovascularization by human bone marrow angioblasts is regulated by IL-8/Gro CXC chemokines. Molecular and Cellular Cardiology 40 (2006) 455-464.
    [32]Lorena Zentilin, Sabrina Tafuro, Serena Zacchigna, Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels. Blood.2006; 107:3546-3554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700