基于钴配合物干预下的马氏珠母贝优质珍珠培育过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
珍珠,历来被视作奇珍至宝,它象征纯真、完美、尊贵和权威,与璧玉并重。高品质、珠宝级珍珠一直在国内外高端市场供不应求,因此提高珍珠品质已是国内外珍珠研究领域的热点。尽管目前改进的培育方法及加工技术从一定程度上提高了珍珠的质量,但皆有不同程度的缺憾或局限性。为了探讨高品质珍珠的培育方法,本文以马氏珠母贝为研究对象,利用自己合成的新人工干预物质2-丙基-4,5-咪唑二甲酸合钴(Ⅱ)/[Co(C_8H_8N_2O_4)_2(H_2O)_2]·2C_3H_7NO,通过藻、贝、珠代谢传递途径,探究优质珍珠培育的新方法。从而为我国优质珍珠的研究与开发提供新的思路。
     本文的主要研究工作及结果如下:
     1.马氏珠母贝化学成分分析
     (1)采用高效液相色谱仪(HPLC)检测出马氏珠母贝贝肉中17种氨基酸,其中必需氨基酸(Lys、Thr、Phe、Val、Leu、Ile、Met)含量占总氨基酸的32.0%,呈味氨基酸(Arg、Ala、Gly、Asp、Glu)含量占总氨基酸的56.2%。贝壳中检测出10种氨基酸,必需氨基酸含量占总氨基酸含量的52.0%,呈味氨基酸含量占总氨基酸含量的41.8%。
     (2)采用气相色谱-质谱联用仪(GC-MS)对马氏珠母贝贝肉氨基酸水解液梅拉德反应产物进行检测,共分离出18种化合物,其中含有乙酸乙酯、特丁基对苯二酚、二乙二醇丁醚醋酸酯、柏木醇4种香味物质,占总含量的46.57%。
     (3)马氏珠母贝贝肉和贝壳的脂溶性组分采用气相色谱-质谱联用仪(GC-MS)分析检测,鉴定出的主要成分是烷烃化合物。贝壳与贝肉脂溶性成分有6种组分是相同的,分别是二乙基癸氧基硼烷、二十烷、3,8-二甲基十一烷、3,7-二甲基壬烷、二十一烷、邻苯二甲酯异丁酯。此外,马氏珠母贝贝肉的脂溶性组分中,棕榈酸的含量最高,为58.78%。
     (4)采用电感耦合等离子体原子发射光谱法(ICP-AES)对马氏珠母贝贝肉和贝壳矿物质进行分析,贝壳与贝肉中Zn、Mg、Fe三种矿物质的含量均比较高,其中常量元素Mg在贝肉和贝壳中含量均最高,在贝肉中Mg含量高达95.80mg/Kg,贝壳中Mg的含量高达514.00mg/Kg。
     2.钴配合物诱导合成及表征
     以2-丙基-4,5-咪唑二甲酸为配体化合物,与Co(NO_3)_2合成了一种新型钴配合物[Co(C_8H_8N_2O_4)_2(H_2O)_2]·2C_3H_7NO,并对其结构进行了表征。该晶体的对称单元是由一个位于对称中心的二价钴离子、两个去质子化的2-丙基-4,5-咪唑二甲酸、两个配位水和两个游离的N,N-二甲基甲酰胺组成,中心离子二价钴离子与两个N,O双齿的配体和两分子结合水进行配位,形成配位数为六的扭曲的八面体结构。游离的N,N-二甲基甲酰胺通过N-H...O和O-H...O氢健相互作用与配合物连接并形成的一个二维的空间平面。
     3.钴配合物对扁藻毒理性研究
     运用评价化学品毒性藻类测试的标准实验方法,得到钴配合物和钴离子对扁藻生长的最小无显著差异浓度(LNOEC)分别为5.0mg/L,1.25mg/L,抑制扁藻生长的96h半效应浓度(96h-EC50)分别为31.92mg/L和7.16mg/L。实验结果表明无论从LNOEC还是从96h-EC50考虑,都证明抑制扁藻生长的毒性由大到小的顺序是钴离子﹥钴配合物。
     4.钴配合物在藻、贝、珠传递过程示踪研究
     基于藻—贝—珠的传递途径,研究钴配合物和钴离子的传递效应。采用稳定同位素质谱仪(IRMS)和电感耦合等离子体原子发射光谱法(ICP-AES)对15N和钴元素分析,探讨分析扁藻对钴配合物的富集情况,以及钴配合物和钴离子在珍珠层、外套膜、珍珠囊的传递效果。结果表明,扁藻对钴配合物的富集效应,由直线提高到逐渐平稳,在第3d天达到最大吸附量。富集钴配合物和钴离子的扁藻,喂养马氏珠母贝,结果发现钴配合物中的15N和钴元素可以随摄食时间的增加,在外套膜、珍珠囊富集,最终可以代谢分泌到马氏珠母贝的珍珠层中。
     5.钴配合物对贝体碱性磷酸酶活性的影响
     采用对硝基苯磷酸二钠法测定钴配合物和钴离子对碱性磷酸酶(ALP)的活性,结果发现两者对马氏珠母贝外套膜中的ALP均有一定的激活作用,且钴离子的激活作用大于钴配合物,两者对珍珠质的分泌均有一定的促进作用。研究ALP的酶学性质,对于深入探讨珍珠形成的机理,为寻找适宜的酶激活剂提高珍珠的产量和质量具有重要的指导意义。
     6.钴配合物对珍珠层质结构的影响
     钴配合物及钴离子通过藻—贝—珠途径传递后培育的珍珠,和钴配合物体外处理,及未经处理的珍珠的光泽度及电镜扫描结构图对比分析,结果发现钴配合物对珍珠的光泽度具有良好的优化和修饰效果。由此可知,珍珠光泽度与其表面结构的好坏有直接关系,即珍珠表面的层状结构越明显,文石晶体形状越规则,结构越致密,表面缺陷越少,则珍珠光泽就越好。
Pearl has always been regarded as treasure of the treasure, it is a symbol of purity, perfection, dignity and authority, both with jade. High quality, grade pearl jewelry has been in short supply in the domestic and international high-end market. Therefore, it is paid attention to improve pearl quality pearl at home-and-abroad research field. Although cultivation methods and processing technology has improved to some extent, and improved the quality of pearls, but have different degrees of defects or limitations, failing to achieve high-quality pearls in the stabilization and efficient training. In this paper, the methods of cultivating high-quality pearls were studyed, as research object of Pinctada martensii. With the use of the new synthetic human intervention material, 2 - propyl 4,5 - imidazo acid cobalt(Ⅱ)/[Co(C_8H_8N_2O_4)_2(H_2O)_2]·2C_3H_7NO, new methods of cultivating high-quality pearls were explored through algae, oyster pearl and pearl pathways. It will provide new ideas for the research and development of high-quality pearl in China.
     Main studies and conclusion summarized as follows:
     1.Analysis of the chemical composition in Pinctada martensii
     (1)Seventeen amino acids in meat of Pinctada martensii were detected by high performance liquid chromatography(HPLC), essential amino acids (Lys, Thr, Phe, Val, Leu, Ile, Met) accounting for 32.0% of the total amino acids and flavor amino acids (Arg, Ala, Gly, Asp, Glu) accounting for 56.2% of the total aminl acids. Nine amino acids were detected in shell, essential amino acids accounting for 52.0% of the total amino acids and flavor amino acids accounted for 41.8% of the total amino acids.
     (2)Eghiteen Maillard reaction products of hydrolyzate amino acid in the meat of Pinctada martensii were analyzed by gas chromatography-mass spectrometer(GC-MS). Four flavors, including ethyl acetate, t-butyl hydroquinone, diethylene glycol ether acetate and cedar, accounted for 46.57% of the total content.
     (3)Fat-soluble components in the meat and shell of Pinctada martensii were analyzed by gas chromatography - mass spectrometer (GC-MS), identificated alkane compounds in major components. Six fat-soluble ingredients in shell and meat are the same, namely, diethyl-decanoic oxygen borane, 20 alkyl, 3,8 - dimethyl undecane, 3,7 - dimethyl-nonyl alkanes, 21 alkane, methyl isobutyl phthalate.
     (4) By inductively coupled plasma atomic emission spectrometry (ICP-AES) minerals were analyzed in the meat and shell of Pinctada martensii. The contents of Zn, Mg, Fe minerals were higher in the shell and meat. Mg in the flesh and shells were the highest, amounting to 95.80mg/Kg in the meat and up to 514.00mg/Kg in the shell.
     2. Synthesis and characterization of Cobalt complex. A novel cobalt complex [Co(C_8H_8N_2O_4)_2(H_2O)_2]·2C_3H_7NO was synthesized with 2 - propyl 4, 5 - dicarboxylate imidazole and Co (NO3)2, and its structure was characterized. In the symmetric unit, it consists of anti-divalent cobalt ion in the center, two deprotonated 2-propyl 4,5- imidazole -2-carboxylic acids, two coordinated waters and two free of N, N- dimethylformamide compositions. The central ion of divalent cobalt ion with two N, O bidentate ligand and two coordinated water molecules form a coordination number of six of the distorted octahedral structure.
     3. Study on toxicity of cobalt complex to Platymonas subcordiformis. A standard method of algal bioassay for evaluatingthe toxicity of toxic chemicalwas applied in the experiments. The lowest no observable effect concentrations (LNOEC) of cobalt complex and cobalt ion on the growth of Platymonas subcordiformis were found to be 5.0mg/L and 1.25mg/L, and 96h-EC50s were obversed to be 31.92mg/L and 7.16mg/L, respectively. According to both LNOEC and 96h-EC50 calculated, the toxicities of these compounds on inhibitingthe growth of Platymonas subcordiformis increased in the order cobalt ion>cobalt complex.
     4. Tracing study on the tranfer process of cobalt complex in algae,oyster pearl and pearl pathway. The tansfer effect of cobalt complex and cobalt ion were studyed based on algae - oyster shell - pearl pathway. 15N and cobalt elements were analyzed with stable isotope mass spectrometry and inductively coupled plasma atomic emission spectrometry, to explore the enrichment effect on Platymonas subcordiformis to cobalt complex and transfer effect of cobalt complex and cobalt ion in the pearl layer, mantle and pearl sac. The results show that the enrichment effect on Platymonas subcordiformis to cobalt complex is the line gradually increased to stable, up to maximum adsorption in the third day. Platymonas subcordiformis enriched cobalt complex and cobalt ion were used to feed Pinctada martensii, and the results are 15N and cobalt elements can be increased with feeding time in the mantle and pearl sac, finally which can be passed to pearl layer.
     5. Effects of cobalt complex on the activity of akaline phosphatase in oyster pearl. Cobalt complex and cobalt ion on the activity of ALP were determined by nitrophenyl phosphate disodium method. It was found both can active ALP on the mantle of Pinctada martensii, and cobalt ion is more active than cobalt complex. Besides, Cobalt complex and cobalt ion can promote the secretion of nacre. It has important guidance that find a suitable enzyme activator to improve the yield and quality of peals through studying the enzymatic properties of ALP and the depth of the formation mechanisms of pearl.
     6. Effects of Cobalt complex on the structure of pearl nacre. Pearl cultivated based on cobalt complexe and cobalt ion in algae - oyster pearl - pearl passway, pearl in vitro cobalt complexe and untreated pearl were respectively scanned by electron microscope, and results showed that cobalt complexe have good optimization and modification effect to pearl gloss. The relationshipin between pearl gloss and surface structure of pearl is that the layer structure of pearl surface is more obvious, aragonite crystal shape more regularly arranged, structure more compact, surface defects less, and the better is pearl gloss.
引文
[1]邓陈茂,童银洪.南珠养殖与加工技术[M].北京:中国农业出版社,2005:1-4.
    [2]和田浩尔.珍珠的科学[M].东京:珍珠新闻社,1999.
    [3]闫振广.合浦珠母贝贝壳珍珠层形成机理的研究[D].清华大学,2008,5.
    [4]宋慧春.关于淡水无核珍珠的形成机理和生化特性[J].生物学通报,1999,34(10):12-14.
    [5]小林新二郎,渡部哲光.珍珠的研究[M].熊大仁译.北京:农业出版社,1966.
    [6]Simkiss, K. and Wilber, K. M. Biomineralization: Cell biology and mineral deposition[M]. San Diego: Academic Press, 1989
    [7]Zhang Y., Meng Q., Jiang T., et al. A novel ferritin subunit involved in shell formation from the pearl oyster(Pinctada fucata)[J]. Comp Biochem Physiol B, 2003, 135: 43-54.
    [8]Zhang Y.,Xie L., Meng Q., et al. A novel matrix protein participating in the nacre framework formation of pearl oyster, Pinctada fucata[J]. CompBiochem Physiol B, 2003, 135: 565-573.
    [9]Takeuchi T. and Endo K.. Biphasic and dually coordinated expression of the genes encoding major shell matrix proteins in the pearl oyster Pinctada fucata[J]. Mar Biotechnol(NY), 2006, 8: 52-61.
    [10]Miyamoto H., Miyoshi F. and Kohno J.. The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata[J]. Zool Sci, 2005, 22: 311-315.
    [11]Nair P.S. and Robinson W.E. Calcium speciation and exchange between blood and extrapallial fluid of the quahog Mercenaria mercenaria(L.)[J]. Biol Bull, 1998, 195: 43-51.
    [12]Allam B., Paillard C. and Auffret M. Alterations in hemolymph and extrapallial fluid parameters in the manila clam, Ruditapes philippinarum, challenged with the pathogen Vibrio tapetis[J]. J Invertebr Pathol, 2000, 76: 63-69.
    [13]Moura G., Vilarinho L., Santos A.C., et al. Organic compounds in the extrapalial fluid and haemolymph of Anodonta cygnea(L.)with emphasis on the seasonal biomineralization process[J]. Comp Biochem Physiol B, 2000, 125: 293-306.
    [14]Hattan S.J., Laue T.M. and Chasteen N.D.. Purification and characterization of a novel calcium-binding protein from the extrapallial fluid of the mollusc, Mytilus edulis[J]. J Biol Chem, 2001, 276: 4461-4468.
    [15]Sarikaya M. and Aksay I.A. Nacre of abalone shell: a natural multifunctional nanolaminated ceramic-polymer composite material[J]. Results Probl Cell Differ, 1992, 19: 1-26.
    [16]Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry[J]. Nature, 1993, 365: 499-505.
    [17]Stupp S.I. and Braun P.V. Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors[J]. Science, 1997, 277: 1242-1248.
    [18]Alivisatos A.P. Biomineralization. Naturally aligned nanocrystals[J]. Science, 2000, 289: 736-737.
    [19]Xu G., Aksay I.A.and Groves J.T.Continuous crystalline carbonate apatite thin films.A biomimetic approach[J]. J Am Chem Soc, 2001, 123: 2196-2203.
    [20]Nassif N., Pinna N., Gehrke N., et al. Amorphous layer around aragonite platelets in nacre[J]. Proc Natl Acad Sci USA, 2005, 102: 12653-12655.
    [21]Veis, A. Materials science. A window on biomineralization[J]. Science, 2005, 307: 1419-1420.
    [22]Wilt, F. H. Developmental biology meets materials science: morphogenesis of biomineralized structures[J]. Dev Biol, 2005, 280: 15-25.
    [23]Clydel. Mackenzie, Jr., Luis Troccoli, et al. History of the Atlantic Pearl-Oyster, Pinctata imbricata, Industry in Venezuela and Colombia, with Biological and Ecological Observations[J]. Marine fisheries Review, 2003, 65(1): 15.
    [24]曹莉嘉,郭守国,史凌云.珍珠的光泽与其表面结构关系的研究[J].宝石和宝石学杂志,2005,7(3):23-25.
    [25]张蕴韬.卟啉及金属卟啉对对珠核颜色的贡献及致色机理研究[D].北京:中国地质大学,2006,5.
    [26]谢玉坎,闵志勇.我国的珍珠研究进展[J].莆田学院学报,2003,10(3):34-38.
    [27]Wada K T. Breeding study of the pearl oyster Pinctada fucata[J]. Bull Natl Res Inst Aquac, 1984, 6: 79-157.
    [28]Wada K T. Genetic selection for shell traits in the Japanese pearl oyster, Pinctada fucata martensii[J]. Aquaculture, 1986, 57: 171-176.
    [29]Wada K T. Color and weight of shells in the selected population of the Japanese pearl oyster Pinctada fucata martensii[J]. Bull Natl Res Inst Aquac, 1986, 9: 1-6.
    [30]Wada K T, Komaru A. Effect of selection for shell coloration on growth rate and mortality in the Japanese pearl oyster, Pinctada fucata martensii[J]. Aquaculture, 1994, 125: 59-65.
    [31]Wada K T, Komaru A. Color and weight of pearls produced by grafting themantle tissue from a selected population for white shell color of the Japanese pearl oyster Pinctada fucata martensii(Dunker) [J]. Aquaculture, 1996, 142: 25-32.
    [32]何毛贤,史兼华,林岳光,等.马氏珠母贝生长性状的相关分析[J].海洋科学,2006,30(11):1-4.
    [33]何毛贤,管云雁,林岳光,等.马氏珠母贝家系的生长比较[J].热带海洋学报,2007,26(1):39-43.
    [34]姜因萍,何毛贤,林岳光.马氏珠母贝群体内遗传多样性的ISSR分析[J].海洋通报,2007,26(5):62-66.
    [35]何毛贤,史兼华,林岳光,等.马氏珠母贝选育子一代生长特性研究[J].热带海洋学报,2006,25(1):19-22.
    [36]何毛贤,林岳光,袁涛.马氏珠母贝养殖群体的生长特性研究[J].热带海洋学报,2006,25(4):56-60.
    [37]石耀华,周志刚.马氏珠母贝不同地理种群内自繁和种群间杂交子一代形态性状参数及相关性分析[J].海洋水产研究,2004,25(3):39-45.
    [38]王爱民,阎冰,叶力,等.马氏珠母贝不同地理种群内自繁和种群间杂交一代感染多毛类寄生病的分析[J].海洋水产研究,2003,24(3):38-44.
    [39]Narita T, Kawamoto T, Isowa K, et al. Fertility of cryopreserved spermatozoa of the Japanese pearl oyster, Pinctada fucata martensii[J]. Aquaculture, 2008, 275(1-4): 178-181.
    [40]Narita T, Kawamoto T, Isowa K, et al. Effects of cryopreservation on sperm structure in Japanese pearl oyster Pinctada fucata martensii, Fisheries Science, 2008, 74(5): 1069-1074.
    [41]Aoki H, Komaru A, Narita T, et al. Large-scale cryopreservation of Japanese pearl oyster Pinctada fucata martensii sperm, Nippon Suisan Gakkaishi, 2007, 73(6): 1049-1056.
    [42]谢玉坎,林碧萍,许志坚.珍珠贝文集[M].中国科学院南海海洋研究所编.北京:科学出版社,1984:87-90.
    [43]蒙钊美,李有宁,邢孔武.珍珠养殖理论与技术[M].北京:科学出版社,1996:140-149.
    [44]Martin D., Britayev T.A.. Symbiotic polychaetes: Review of known species[J].Oceanogr. Mar. Biol. Ann. Rev., 1998, 36: 217-340.
    [45]谢玉坎,姜卫国,司徒竞.合浦珠母贝多毛虫寄生病继发性脓疡(俗称“黑心肝病”)的研究Ⅰ.病情和病因的调查〔A〕.见:珍珠贝文集[M].北京:科学出版社,1984,69-74.
    [46]姜卫国,谢玉坎,司徒竞.合浦珠母贝多毛虫寄生病继发性脓疡(俗称“黑心肝病”)的研究Ⅱ.饱和盐水的杀虫防治.见:珍珠贝文集[M].中国科学院南海海洋研究所编.北京:科学出版社,75-80.
    [47]Nel R., Coetzee P S., Niekerk G V.. The evaluation of two treatments to reduce mud worm(Polydora hopluraClaparede) infestation in commer-cially reared oysters(Crassostrea gigasThunberg)[J].Aquaculture, 1996, 141:31-39.
    [48]Nagai K, Go J, Segawa S, et al. A measure to prevent relapse of reddening adductor disease in pearl oysters (Pinctada fucata martensii) by low-water-temperature culture management in wintering fisheries[J]. Aquaculture, 2007, 262(2-4): 192-201.
    [49]Nagai K, Okada M, Go J. Disease damage reduction strategy for pearl oyster (Pinctada fucala martensii) using low water temperature culture areas[J]. Nippon Suisan Gakkaishi, 2004, 70(5): 674-677.
    [50]Inoue S, Oshima Y, Nagai K, et al. Effect of maternal exposure to tributyltin on reproduction of the pearl oyster (Pinctada fucata martensii)[J]. Environmental Toxicology and Chemistry, 2004, 23(5): 1276-1291.
    [51]刘志刚,黄海立,周银环.马氏珠母贝幼虫假胞菌病的初步研究[J],湛江海洋大学学报,1998,18(3):25-28.
    [52]Tomaru Y, Kawabata Z, Nakano S I. Mass mortality of the Japanese pearl oyster Pinctada fucata martensiiin relation to water temperature, chlorophyll a and phytoplankton composition[J]. Dis Aquat Org, 2001,44(1):61-68.
    [53]松山幸彦.有害涡鞭毛藻圆磷异囊藻导致贝类毙死[J].鱼病研究,1999,34(4 ):225-226.
    [54]Nagai K, Matsuyama Y, Uchida T, et al. Effect of a natural population of the harmful dinoflagellate Heterocapsa circularisquamaon the survival of the pearl oyster Pinctada fucata[J]. Fish Science, 2000,66(5):995-997.
    [54]林碧萍.两种珠母贝和两种产地母贝交换外套膜小片及正反面移植对珍珠质量的影响[A].中国科学院南海海洋研究所.珍珠贝文集[C].北京:科学出版社,1984.64-67.
    [55]王爱民,苏琼,阎冰等.马氏珠母贝外套膜组织培养的条件和方法初探[J].广西科学院学报,1995,11(3):19-22.
    [56]王爱民,苏琼,阎冰等.马氏珠母贝外套膜培养细胞的电镜观察[J].海洋科学,2002,26(10):4-8.
    [57]王爱民,苏琼,阎冰等.马氏珠母贝外套膜组织培养[J].广西科学,2000,7(2):135-139.
    [58]A.Geoffrey Skillman, Jack R. Collins and Gilda H.Leow. Magnesium Porphyrin Radical Cations, A Theoretical Study of Substituent Effects on the Ground State[J]. J. Am. Chem. SOCI. 992(114):9538-9544.
    [59]王林,宋仲容,李忠彬.卟啉化合物的研究.西南师范大学学报(自然科学版),2002,27(5):22-23.
    [60]段彩虹,丁玉龙,牟宗刚,等.卟啉类显色剂的研究与应用[J].济南大学学报(自然科学版),2005,19(1):32-37.
    [61]潘炳炎,黄文贵,文仲芬.珍珠实用新技术[M].北京:中国农业科技出版社,1997. 228.
    [62]潘炳炎,文仲芬.珍珠的优化处理(二)[J].珠宝科技,1996,8(2):46-48.
    [63]史凌云,郭守国,杨明月.珍珠染色技术的研究[J].珠宝科技,2003,15(1):58-60.
    [64]吴广州.高性能化学染色珍珠的制备及其纳米改性研究[D].浙江大学硕士学位论文,2006.
    [65]史凌云,郭守国,杨明月.珍珠染色技术的研究.珍宝科技,2003,l(l5):58-60.
    [66]吴广州,王慧,翁文剑,等.淡水养殖珍珠的化学染色及其对珍珠表面形貌的影响[J].宝石与宝石学,2004,8(2),9-13.
    [67]王慧,醌亚胺中间体黑色染色珍珠的制备及化学染色珍珠抗外界侵蚀的研究[D].浙江大学硕士学位论文,2007.
    [68]Mario M. Recent developments in pearl oyster culture and pearl production at Bahia de la Paz.Mexico.Pearl Oyster[J]. Information Bulletin, 1997, 10: 22~23.
    [69]毛勇,梁飞龙,符韶等.企鹅珍珠贝彩虹珠的研究初报[J].动物学杂志,2004,39(1):100-102.
    [70]陆东农.海水养殖珍珠新品种—海水养殖彩色珍珠[J].珠宝科技,2004,16(58):55-57.
    [71]刁石强,李来好,陈培基等.马氏珍珠贝肉营养成分分析及评价[J].浙江海洋学院学报(自然科学版),2000,19(1):42-46.
    [72]章超桦,吴红棉,洪鹏志等.马氏珠母贝肉的营养成分及其游离氨基酸组成[J].水产学报,2000,24(2):180-184.
    [73]陈亚保,黄甫,余光忠.马氏珠母贝珍珠层粉微量有机化学成分的GC/MS分析[J].食品科技,2007(9):149-151.
    [74]黄甫,邓陈茂,宋文东等.马氏珠母贝各部位及其插核珍珠层微量元素的含量及分布[J].广东微量元素科学,2005,12(10):38-41.
    [75]PellettP L, YoungV R. Nutritional evaluation of protein foods[M]. Japan: The United NationalUniversity Press, 1980
    [76]从浦珠.质谱学在天然有机化学中的应用[M].北京:科学出版社,1978,31
    [77]Masada Y. Analysis of essential oils by gas chromatography and mass spectrometry. New York: John Wiley and Sons Inc. 1976, 48.
    [78]刘书成,李德涛,等.近江牡蛎等3种贝类的脂类成分分析[J].水产学报,2009,33(4):668-671.
    [79]胡立红.棕榈酸基葡萄糖酸苷的合成及性能研究[D].北京:中国林业科学研究院,2006.
    [80]乔德堂.锌营养作用的研究进展[J].山东畜牧兽医,2007,28(5):52.
    [81]冯望宝,王丽,王安.微量元素锌在动物营养上的研究进展[J].饲料博览(技术版),2007,3:51.
    [82]Kenneth W Walker and Hiran F Gilbert. Effect of environment on the in vitro and in vivo folding of RTEM-1 B-lactamase and E.coli akaline phosphatase[J]. J. Biol. Chem., 1994, 269: 28487-28493.
    [83]Hwang C, Sinskey A J, Lodish H F, Mutationally altered rate constants in the mechanism of alkaline phosphatase[J]. Scinece, 1992, 257: 1496-1502.
    [84]Beedham G E, Observation on the mantle of the lamellibranchia, ouart[J]. J. Micr. Sci. 1958, 99:188-197.
    [85]Shigeru Akamatsu. Research on pigment produced by pearl oysters[C].Proceedings of the International Gemological Symposium, 1991: 77.
    [86]颜思旭等.文昌鱼碱性磷酸酶的热力学特征的初步研究[J].厦门大学学报(自然科学版),1980,19(3):64-71.
    [87]Applebury ML, Coleman TE. E.eoli alkaline phosphatase metal binding, Protein conformation and quaternary structure[J]. J. Biol. Chem. 1969, 244: 308-318.
    [88]郝之奎,王嫣,顾志峰,等.珍珠颜色的研究进展[J].安徽农业科学,2007,35(11):3260-3261.
    [89] Guillard,R.R.and Ryther,J.H.Studies of marine planktonic diatoms.I.Cyclotella nana Hustedt and Detonula confervacea(Cleve) Gran.Can.J.Microbio1.1962, 8:229-239.
    [90]周永欣.水生生物毒性实验方法[M].北京:农业出版社.1989,170-190.
    [91]南京农业大学.田间实验和统计方法[M].北京:农业出版社.1990,91-100.
    [92]Sunda, W.G., Guillard, R.R.L.. The relationship between cupric ion activity and the toxicity of copper to phytoplankton[J]. J. Mar. Res. 1976, 34:511–529.
    [93]Morel, F.M.M.. Principles of Aquatic Chemistry. Wiley–Interscience, New York, NY, USA.
    [94]Di Toro, D.M., Allen, H.E., et al. Biotic ligand model of the acute toxicity of metals. 1.Technical basis[J]. Environ. Toxicol. Chem. 2001, 20:2383–2396.
    [95]Slaveykova, V.I., Wilkinson, K.J.. Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model[J]. Environ. Chem. 2005, 2: 9–24.
    [96]李昊翔.螺旋藻对重金属的耐受性和吸附研究[D].浙江大学,2005,5.
    [97]浩云涛,李建宏,潘欣,等.椭圆小球藻对4种重金属的耐受性及富集[J].湖泊科学,2001,13(2):158-162.
    [98]古滨河.生态系统生态学研究中的稳定同位素标记技术.现代生态学讲座(三):学科进展与热点论题, 2006.
    [99]陈世苹,白永飞,韩兴国.稳定性碳同位素技术在生态学研究中的应用[J].植物生态学报,2002,26:549-560.
    [100]林光辉,黄建辉,陈世苹.生态学中的稳定同位素技术,生态学家面临的挑战-问题与途径[M].北京:高等教育出版社,2005:103-144.
    [101]韦莉莉,张小全,侯振宏,等.全球气候变化研究的新技术-稳定碳同位素分析的应用[J].世界林业研究,2005,18:16-19.
    [102]沈其荣,殷士学,杨超光,等.13C标记技术在土壤和植物营养研究中的应用[J].植物营养与肥料学报,2000,6:98-105.
    [103]Deléens, E. J..Use of 13C and 15N plant label near natural abundance for monitoring carbon and nitrogen partitioning[J]. Australian Journal of Plant Physiology, 1994, 21:133-146.
    [104]Avice J.C., A. Ourry G. Lemaire and J. Boucaud. Nitrogen and carbon flows estimated by 15N and 13C pulse-chase labeling during regrowth of alfalfa[J]. Plant Physiology. 1996, 112: 281-290.
    [105]Stewart D.P.C. and A. K. Metherell. Carbon (13C) uptake and allocation in pasture plants following field pulse-labeling[JJ]. Plant and Soil, 1999, 210: 61-73.
    [106]]DeRito C. M.,G. M. Pumphrey and E. L. Madsen. Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community[J]. Applied and Environmental Microbiology, 2005, 71: 7858-7865.
    [107]宋慧春.关于淡水无核珍珠的形成机理和生化特性[J].生物学通报,1999,389:912-915.
    [108]Addadi L, Weiner S. A pavement of pearl[J]. Nature, 1997, 389: 912-915.
    [109]谢忠明.人工育珠技术[M].北京:金盾出版社,2004,6.
    [110]Beedh G E. observation on the mantle of the 1amellibranehia ouart[J]. J. Micr Sci, 1958, 99:188-197.
    [111]石安静,吴宗文.3种淡水育珠河蚌外套膜酶的组织化学研究[J].四川大学学报(自然科学版),1994,99:29-35.
    [112]施志仪,李勇,谢先中.三角帆蚌外套膜碱性磷酸酶与钙代谢的关系[J].上海水产大学学报,2008,17(3):291-296.
    [113]谢莉萍,林静瑜,肖锐等.合浦珠母贝碱性磷酸酶的分离纯化与性质研究[J].海洋科学,2000,24(10):37-39.
    [114]Livingstone D. R. Responses of microsomal NADPH-cytochrome creductase activity and cytochrome P-450 in digestive glands of Mytlius edulis and Littorina littorea to environmental and experimental exposure to pollutants[J]. Marine Ecology Progress Series, 1988, 46: 37-43.
    [115]张龙翔,吴国利.高级生物化学实验选编[M〕.北京:高等教育出版社,1989.69-76.
    [116]李兴暖,韩雅莉,肖湘,等.长牡蛎碱性磷酸酶的分离纯化及部分性质研究[J].台湾海峡,2003,22(4):482-486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700