低蛋白酶A啤酒酵母菌株构建的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白酶A(EC3.4.23.6)是一种天冬氨酸族蛋白酶,由PEP4基因编码,可通过酵母的自溶或胁迫条件下的分泌而残存于成品啤酒中,从而分解纯生啤酒的泡沫蛋白而降低泡沫的稳定性。本文从检测啤酒泡沫蛋白的组成、探讨蛋白酶A对纯生啤酒泡沫的影响、跟踪生产中蛋白酶A的变化规律、构建蛋白酶A低水平或缺失的酵母突变菌株、筛选低蛋白酶A的酵母改良菌株及探讨其发酵性能等方面进行了系统的研究,旨在得到具有大生产应用潜力的纯生啤酒生产菌株,提高纯生啤酒的泡沫稳定性。
     啤酒中的蛋白质组成和含量是影响啤酒泡沫稳定性的主要因素之一,目前人们对泡沫蛋白组成的认识尚不统一。以往对啤酒泡沫蛋白的检测,大多局限于单向电泳、色谱、氨基酸分析等传统方法,但这些方法可能掩盖了性质相近蛋白的存在。本研究为探明啤酒泡沫蛋白的组成,除采用了传统的单向电泳和氨基酸分析技术外,还使用了双向电泳、MAIDI-TOF MS、LC/MS/MS等先进的检测技术对啤酒泡沫蛋白组成进行探讨。由组成氨基酸的分布规律和SDS-PAGE电泳检测可知啤酒泡沫不止含蛋白质Z和LTP1组成。双向电泳的检测,进一步了揭示啤酒泡沫蛋白组成的复杂性,发现纯生啤酒与其泡沫2蛋白分布相似,但含量和分布特点不同。利用MALDI-TOF MS对啤酒泡沫蛋白进行检测,虽然未得到期望的结果,但从中检测到糖基化LTP1的存在。利用LC/MS/MS,在啤酒泡沫中共检测到23种蛋白,除蛋白质Z和LTP1外,其它蛋白均未被报道。
     通过对比纯生啤酒与熟啤酒的泡沫变化规律,肯定了蛋白酶A是造成纯生啤酒泡沫不稳定的直接原因。青岛纯生啤酒生产菌株S.carlsbergensis 04-1和B在染色体水平上存在细微差异,二者使用代数对发酵液中蛋白酶A活力的影响趋势一致。第0代和1代的发酵液中蛋白酶A活力较低,2-4代酵母的蛋白酶A活力明显升高。
     将编码蛋白酶A的PEP4敲除是构建蛋白酶A低水平菌株或缺失菌株、解决纯生啤酒泡沫稳定性问题的有效途径。Lager啤酒酿造所用的S.carlsbergensis为四倍体,其编码蛋白酶A的基因序列和拷贝数不确定,需采用基因多重中断技术,才能得到蛋白酶A完全缺失菌株。本文构建了抗Zeocin的质粒pSH-Zeo,并以含抗G418基因的pUG6质粒为模板进行PCR介导的基因敲除,实现了工业菌株S.carlsbergensis转化子的显性筛选。进而将Cre-LoxP重组系统和PCR介导的基因中断技术结合,成功地敲除S.carlsbergensis的一个PEP4等位基因,然后将报告基因KanMX剔除,使突变菌株中不含任何外源基因,获得了基因安全性高的突变株pep4∷LoxP/PEP4。
     为避免相同PCR产物重复转化多倍体时引起的回复突变,提出采用缩进式敲除多个序列相同的等位基因、实现多重基因中断的观点。通过这种方式,成功地敲除了S.carlsbergensis的第二个PEP4等位基因,但由于S.carlsbergensis特殊的表达和调控机制,酵母在被敲掉第二个PEP4基因后不能生存。由此确定,青岛啤酒使用的S.carlsbergensis菌株中含有两个与S.cerevisiae的序列相同的编码蛋白酶A的PEP4等位基因、且对S.carlsbergensis的生存起关键作用。
     对得到的突变株pep4∷LoxP/PEP4进行筛选,主要参考发酵度和蛋白酶A活力指标,筛选出低蛋白酶A的改良菌株S.carlsbergensis 04-1-M和B-M。通过稳定性传代试验,证实pep4∷LoxP基因具有良好的遗传稳定性,从而保证了菌株的低蛋白酶A表达水平的遗传稳定性。改良菌株的特性与出发菌株相近,凝聚性较对应的原出发菌株略强。S.carlsbergensis 04-1-M的致死温度为51℃,而S.carlsbergensis 04-1、B、B-M的致死温度为52℃,蛋白酶A改良菌株和野生菌株有着相近的发酵性能和生理特性。
     在100 L中试应用试验中,改良菌株的低蛋白酶A特性被证实,具有工业化应用的潜力。发酵过程中,其在氨基酸和可发酵糖的利用、悬浮酵母数的变化、酵母形态方面与出发菌株表现相近,而其降糖速度略慢、发酵液中麦芽三糖的残留量略高、总氨基酸利用率略高。改良菌株终了发酵液的双乙酰、戊二酮、乙偶姻、乙醛含量均略高于对应的出发菌株,而醇酯比、发酵度、蛋白酶A活力均低于对应的出发菌株。改良菌株酿造出的啤酒柔和、协调、清爽、无异味。尽管如此,改良菌株在大生产应用之前尚还需做更多的实验验证。
Protease A[EC3.4.23.6], an aspartic proteolytic enzyme, is encoded by PEP4 gene in S. cerevisiae. It can be excreted under stress conditions or leaked by autolysis into fermented wort during Lager beer brewing process using S. carlsbergensis, Lager beer yeast, which detriments foam stability of final draft beer. With an aim to improve foam stability of draft beer by managing to get a commercial strain with low-protease A level, following efforts were taken in this study: identify proteins profile of the draft beer foam, find out the difference of foam stability between draft beer and pasteurized beer, trace the change of protease A in larger scale production, construct low or non protease A strain by gene knock-out, select out low protease A upgraded strain within resultant transformants, and investigate fermentation performance of upgraded strains by 100L pilot trial.
     Composition and concentrations of foam proteins play a key role in foam stability of draft beer, while no unequivocal view on key foam proteins profile has been achieved by far. Traditional measurements such as SDS PAGE, chromatography, amino acids analysis, were employed to clarify foam proteins profile in previous investigations, which possibly hid the truth of it. To better understand foam proteins, advanced modern measurements were adopted including two dimensional electrophoresis、MALDI-TOF MS、LC/MS/MS in this study, besides the traditional SDS PAGE and amino acids analysis. Results of SDS PAGE and amino acids analysis suggested primarily that proteins were complex, not only confined to protein Z and LTP1. Results of two dimensional electrophoresis further clarified the complexity of foam proteins and uncovered the similar distributions of proteins between foam and beer with different content and characterizations. Glycosylatin forms of LTP1 were detected by MALDI -TOF MS in beer foam though no other valuable information was gained. Totally, there were 23 proteins detected in draft beer foam by LC/MS/MS, most of them were not reported by other before, which enlarges and updates the list of proteins related to foam.
     Foam stability of draft beer and pasteurized beer were compared which indicated that protease A is direct negative factor of foam stability of draft beer. Karyotypes of S. carlsbergensis 04-1 and B, used by different breweries in Tsingtao Brewery Group, were similar with a little difference. The relation between cropped generations and protease A activity of them was parallel. The protease A activity of drafted beer brewed with 1&2 cropped generation S. carlsbergensis 04-1 and B was low, while higher brewed with higher generation yeast. The mimic PU treatment was adopted to verify the effect of pasteurization units on protease A and invertase activity. There was no activity of protease A in beer treated with PU 7, while invertase activity still could be detected. The foam stability increased relatively as the treated PU value increased in the range of 0-7.
     It is effective and direct means to increase foam stability of draft beer by constructing low or no protease A activity brewing strain through encoding gene PEP4 deletion. S. carlsbergensis is a tetraploid whose detailed copy number and detailed sequence of PEP4 are uncertain. To achieve a PEP4 absent strain in tetraploid, multiple gene disruptions should be taken. In this study, dominant selective marker Sh ble and KanMX were applied by construction plasmid pSH-Zeo and PCR with pUG6 as template. Combined Cre-LoxP and PCR meditated gene disruption, mutants with pep4::LoxP/PEP4 were gained. As KanMX was deleted ultimately from transformant pep4::KanMX/PEP4 in this study, gene security of modified strain was improved without heterogenous gene remained.
     To avoid reverse mutation caused by repeated deleting allelic genes in allopliod with same PCR product, retractive primer design strategy was suggested and applied in this study. By this means, a pep4::LoxP/pep4::KanMX strain was gained. But it did not survive by its special expressive and regulative regime after second PEP4 deletion. It is indicated that there are only two PEP4 allelic genes with the same sequence to S. cerevisiae in S. carlsbergensis used by Tsingtao Brewery Group, which play a key role in S. carlsbergensis metabolism and survival.
     The low protease A upgraded strain, S. carlsbergensis 04-1-M and B-M, was gained by successive selection within pep4::LoxP/PEP4 transformants, mainly taking fermentation degree and protease A activity of fermented wort of laboratory brewing trials in account. PCR verified that the mutant gene pep4::LoxP remained stable in offspring strains which ensured the inheritance of corresponding low protease A characteristic of the upgraded strain. The fermentation degrees of upgraded strains were lower than their wild strains, while flocculation values are higher. Lethal temperature of S. carlsbergensis 04-1-M was 51℃, which was different from all the others.
     In 100 L pilot brewing trail, all the two upgraded strains perform similar to their counterparts, such as assimilation of amino acids & fermentable saccharides, propagation of yeast, ect. Relatively slow attenuation rate of upgraded strains resulted in a little more maltotriose left in theirs final fermented worts. The concentration of diacetyl, pentanedion, acetoin in final fermented worts brewed by upgraded strains were higher, while ratio of higher alcohol to ester, fermentation degree, protease A activity were lower, than those of their counterparts. The flavor and taste of final fermented worts brewed by upgraded ones were evaluated by experienced taste panel of Tsingtao Brewery Group, no defect were detected by them. More trails are suggested for industrial application though its promising prospective is implied by our 100 L pilot brew.
引文
[1]中华人民共和国国家标准GB/T17204-1998.饮料酒分类[S].1999,北京:中国标准出版社..
    [2]中华人民共和国国家标准GB4927-2001.啤酒[S].2002,北京:中国标准出版社.
    [3]肖德润.中国啤酒工业进入稳定增长期[J].中国酒业,2004,36(8):22-23.
    [4]顾国贤,涂俊铭,李永仙.啤酒无菌酿造[J].酿酒,2000,138(3):49-53.
    [5]Bishop L R.Haze- and foam-forming substances in beer[J].J Inst Brew,1975,81(6):444-449.
    [6]Bamforth C W.Bringing matters to a head:the status of research on beer foam[C].In:Proc 27~(th) Congr Eur Brew Conv, Oxford: IRL Press, UK, 1999: 10-23.
    [7] Evans D E. Don't be fobbed off: the substance of beer foam -a review[J]. J Am Soc Brew Chem, 2002, 60(2): 45-57.
    
    [8] Hughes P S. Characterizing beer foam quality[J]. Brew Guard, 1997, 126: 33-36.
    [9] Sharpe F R. Collaborative determination of beer foam stability by Rudin and NIBEM[J]. J Inst Brew, 1997, 103(5): 277-278.
    
    [10] Jackson G, Bamforth C W. The measurement of foam lacing[J]. J Inst Brew, 1982, 88(6): 378-381.
    [11] Honno E, Furukubo S, Kondo H, et al. Improvement of Foam Lacing of Beer[J]. Tech Q Master Brew Assoc Am, 1997, 34(1): 299-301.
    [12] Ronteltap A, Hollemans M, Bisperink, et al. Beer foam physics[J]. Tech Q Master Brew Assoc Am, 1991, 28: 25-32.
    [13] Fisher S, Hauser G, Sommer K. Influence of dissolved gases on foam quality[C]. In: Proc 27~(th) Congr Eur Brew Conv, Oxford: IRL Press, UK, 1999: 37-46.
    [14] Prins A, van Marie J T. Foam formation in beer: some physics behind it[C]. In: Proc 27th Congr Eur Brew Conv, Oxford: I RL Press, UK, 1999: 26-36.
    [15] Asano K, Hashimoto N. Isolation and characterization of foaming proteins of beer[J]. J Am Soc Brew Chem, 1980, 38(4): 129-137.
    [16] Bech L M, Vaag P, Heinemann B, et al. Throughout the brewing process barley lipid transfer protein 1(LTP1) is transformed into a more foam promoting form[C]. In: Proc 25~(th) Congr Eur Brew Conv, Oxford: IRL Press, UK, 1995: 561-568.
    [17] Onishi A, Proudlove M O. Isolation of beer foam polypeptides by hydrophobic interaction chromatography and their partial characterization[J]. J Sci Food Agric, 1994, 65: 233-240.
    [18] Slack P T, Bamforth C W. The fractionation of polypeptides from barley and beer by hydrophobic interaction chromatography: the influence of their hydrophobicity on foam stability [J]. J Inst Brew, 1983, 89(6): 397-401.
    [19] Yokoi Y, S Maeda, Xiao K, et al. Characterization of beer proteins responsible for the foam of beer [C]. In: Proc 22~(th) Congr Eur Brew Conv, Oxford: IRL Press, UK, 1989: 593-600.
    [20] Douma A C, Mocking-Bode H C M, Kooijman M, et al. Identification of foam stabilizing proteins under conditions of normal beer dispense and their biochemical and physico-chemical properties[C]. In: Proc 26~(th) Congr Eur Brew Conv, Oxford: IRL Press, UK, 1997: 671-679.
    [21] Hejgaard J. Origin of a dominant beer protein immunochemical identity with β -amylase- associated protein from barley[J]. J Inst Brew, 1977, 83: 94-96.
    [22] Hejgaard J. 'Free' and 'bound'-amylases during malting of barley characterization by two dimensional immunoelectrophoresis[J]. J Inst Brew, 1978, 84(1): 43-46.
    [23] Hejgaard J, Bj(?)rn S E. Four major basic proteins of barley grain: purification and partial characterization[J]. Physol Plant, 1985, 64: 301-307.
    [24] Evans D E, Hejgaard J. The impact of malt derived proteins on beer foam quality. Part I. the effect of gemination and kilning on the level of protein Z4, protein Z7, LTP1[J]. J Inst Brew, 1999, 105(3): 159-169.
    [25] Hollemans M, Tonies A R J M. The role of specific proteins in beer foam[C]. In:Proc 26~(th) Congr Eur Brew Conv, Oxford: IRL Press, UK, 1997: 561-568.
    [26] Evans D E, Sheehan M C, Robinson L, et al. The influence of protein composition on beer haze and foam stability[C]. In: Proc 10th Aust Barley Tech Symp, Canberra: ACT press, Australia, 2001: 261-266.
    [27] Vaag P, Molskov B, Cameron-Mils V, et al. Characterization of a beer foam protein originating from barley[C]. In: Proc 27~(th) Congr Eur Brew Conv, Oxford: IRL Press, UK, 1999: 157-166.
    [28] Lusk L T. Independent role of beer proteins, melanoidins and polysaccharides in foam formation[J]. J Am Soc Brew Chem, 1995, 53(3): 93-103.
    [29] Onishi A, Canterranne E, Clarke D J. Barley Lipid binding proteins: their role in beer stabilization[C]. In: Proc 25~(th) Congr Eur Brew Conv, Oxford: IRL Press, UK, 1995: 554-560.
    [30] Mohan S Y. Assessment of beer foam stability by high performance liquid immunoaffinity chromatography[J]. J Inst Brew, 1993,99: 231-236.
    [31] Ishibashi Y, Terano Y, Fukui N, et al. Development of a new method for determining beer foam and haze proteins by using the immunochemical method ELISA[J]. J Am Soc Brew Chem, 1996, 54: 177-182.
    [32] Ishibashi Y, Kakui T, Terano Y, et al. Application of ELISA to quantitative evaluation of foam-active protein in the malting and brewing processes[J]. J Am Soc Brew Chem, 1997, 55: 20-23.
    [33] Kakui T, Ishibashi Y, Kunishige Y, et al. Application of enzyme-linked immunosorbent assay to quantitative evaluation of foam active protein in wheat beer[J]. J Am Soc Brew Chem, 1999, 57(4): 151-154.
    [34] Bamforth C W, Canterranne E, Chandley P, et al. The molecular interactions of beer foam[C], In: Proc 24~(th) Congr Eur Brew Conv, Oxford: IRL Press, UK, 1993: 331-341.
    [35] Yokoi S, Yamashita K, Kunitake N, et al. Hydrophobic beer proteins and their function in beer foam [J]. J Am Soc Brew Chem, 1994, 52: 123-126.
    [36] Hughes P S, Simpson W J. New techniques for the evaluation of interactions in beer foams[C]. In: Proc 26~(th) Congr Eur Brew Conv, Oxford: IRL Press, UK, 1997: 525-534.
    [37] Hughes P S, Simpson W J. Interactions between hop bitter acids and metal cations assessed by ultra-violet spectrophotometry[J]. Cerevisia Biotechnol, 1995, 20: 35-39.
    [38] Goldstein H, Ting P Post. Kettle bittering compounds: analysis, taste, foam and light stability[C]. In: Eur Brew Conv, symposium on hops, Nurnberg: Fachverlag Hans Carl Press, 1994: 141-164.
    [39] Simpson W J, Hughes P S. Stabilization of foams by hop-derived bitter acids: Chemical interactions in beer foam[J]. Cerevis Biotechnol, 1994,19(3): 39-44.
    [40] Lusk L T, Duncombe G R, Kay S B. Barley β-glucan and beer foam stability[J]. J Am Soc Brew Chem, 2001, 59(4): 183-186.
    [41] Brierley E R, Wilde P J, Ohnishi A, et al. The influences of ethanol on the foaming properties of beer protein fractions: A comparison of Rudin and micro conductivity methods of foam assessment[J]. J Sci Food Agric, 1996, 70: 531-537.
    [42] Lewis M J, Lewis A S. Correlation of beer foam with other beer properties[J]. Tech Q Master Brew AssocAm, 2003, 40(2): 114-124.
    [43] Furukubo S, Shoboyashi M, Fuku N, et al. A new factor which affects foam adhesion of beer[J]. Tech Q Master Brew Assoc Am, 1993, 30: 155-158.
    [44] Achsetter T, Wolf D H. Proteases, proteolysis and biological control in the yeast Saccharomyces cerevisiae[J]. Yeast, 1985,1: 139-149.
    [45] Jones E W. Three proteolytic systems in the yeast Saccharomyces cerevisiae[3]. J Biol Chem, 1991, 266(13): 963-7966.
    [46] Hata T, Hayashi R, Doi E. Purification of yeast proteases. Part I. Fractionation and some properties of proteases[J]. Agric Biol Chem, 1967, 31(2): 150-159.
    [47] Doi E, Hayashi R, Hata T. Purification of yeast proteases. Part II. Isolation and some properties of yeast protease C[J]. Agric Biol Chem, 1967, 31(2): 160-169.
    [48] Dreyer T, Biedermann K, Ottesen M. Yeast protease in beer[J]. Carlsberg Res Commun, 1983, 48: 249-253.
    [49] Ormrod L H L, Lalor E F, Sharpe E R. Yeast proteolytic enzyme activity during fermentation[C]. In: Proc 23~(th) Congr Eur Brew Conv, Oxford: IRL Press, UK, 1991: 457-464.
    [50] Muldbjerg M, Meldal M, Breddam K, et al. Protease activity in beer and correlation of foam[C]. In: Proc 24~(th) Congr Eur Brew Conv, Oxford: IRL Press, UK, 1993: 357-364.
    [51] Brey S E, de Costa S, Rogers P J, et al. The effect of protease A on foam-active polypeptides during high and low gravity fermentation[J]. J Inst Brew, 2003, 109(3): 194-202.
    [52] He G Q, Wang Z Y, Liu Z S, et al. Relationship of protease activity, foam proteins and head retention in unpasteurized beer[J]. J Am Soc Brew Chem, 2006, 64(1): 33-38.
    [53] Ammerer G, Hunter C P, Rothman J H. PEP4 gene of Saccharomyces cerevisiae[3]. Mol Cell Biol, 1986, 6(7): 2490-2499.
    [54] Tang Jordan, Wong Ricky N S. Evolution in the structure and function of aspartic protease[J]. J Cell Biochem, 1987, 33(1): 53-63.
    [55] Woolford C A, Daniels L B, Park F J, et al. The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases[J]. Mol Cell Biol, 1986, 6(7): 2500-2510.
    [56] Klionsky D J, Banta L M, Emr S D. Intracellular sorting and processing of a yeast vacuolar hydrolase: protease A propeptide contains vacuolar targeting information[J]. Mol Cell Biol, 1988, 8(5): 2105-2116.
    [57]Mecheler B,MUller M,MUller H,et al.In vivo biosynthesis of the vacuolar protease A and B in the yeast Saccharomyces cerevisiae[J].J Biol Chem,1982,257(19):11203-11206.
    [58]Meussdoerffer F,Tortora P,Holzer H.Purification and properties of protease A from yeast[J].J Biol Chem,1980,255(24):12087-12093.
    [59]Van den Hazel H B,Kielland-Brandt M C,Winther J R.Autoactivation of protease A initiates activation of yeast vacuolar zymogens[J].Eur J Biochem,1992,207(11):277-283.
    [60]Van den Hazel H B,Wolff A M,Kielland-Brandt M C.Mechanism and ion-dependence of in vitro autoactivation of yeast protease A:Possible implications for compartmentalized activation in vivo[J].J Biochem,1997,326(2):339-344.
    [61]Wolff A M,Din N,Petersen J G.Vacuolar and extracellular maturation of Saccharomyces cerevisiae protease A[J].Yeast,1996,12(9):823-832.
    [62]Westphal V,Marcusson E,Winther G,et al.Multiple pathways for the vacuolar sorting of yeast protease A[J].J Biol Chem,1996,271(20):11865-11870.
    [63]MaddoxI S,Hough J S.Proteolytic enzymes of Saccharomyces cerevisiae[J].J Biochem,1970,117:843-852.
    [64]Kondo H,Shibano Y,Fukui S.Development of a novel and sensitive method for measurement of protease A in beer[C].In:Proc 25~(th) Congr Eur Brew Conv,Oxford:IRL Press,UK,1995:669-676.
    [65]Dreyer T,Halkier B,Svendsen I,et al.Primary structure of the aspartic protease A from Saccharomyces cerevisiae[J].Carlsberg Res Commun,1986,51:27-41.
    [66]Gustchina A,Li M,Phylip L H.An unusual orientation for Tyr75 in the active site of the aspartic protease from Saccharomyces cerevisiae[J].Biochem Biophys Res Comm,2002,295(4):1020-1026.
    [67]Aguilar C F,Cronin N B,Badasso M,et al.The three-dimensional structure at 2.4 angstrom resolution of glycosylated protease A from the lysosome-like vacuole of Saccharomyces cerevisiae [J].J Mol Biol,1997,267(4):899-915.
    [68]Teichert U,Mechler B,Muller H,et al.Lysosomal(vacuolar) proteases of yeast are essential catalysts for protein degradation,differentiation,and cell survival[J].J Biol Chem,1989,264(27):16037-16045.
    [69]Jones E W.Protease mutants of Saccharomyces cerevisiae[J].Genetics,1977,85(1):23-33.
    [70]Harris S D,Cotter D A.Vavuolar(lysosomal) trehalase of Saccharomyces cerevisiae[J].Curr Microbiol,1987,15(5):247-249.
    [71]Jones E W,Zubenko G S,Parker R R.PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae[J].Genetics,1982,102(4):665-677.
    [72]Van den Hazel H B,Kielland-Brandt M C.Random substitution of large parts of the pre-peptide of yeast protease A[J].J Biol Chem,1995,270(15):8602-8609.
    [90]Badasso M O,Read J A,Dhanaraj V J,et al.Purification,co-crystallization and preliminary X-ray analysis of the natural aspartic protease inhibitor I(A)3 complexed with saccharopepsin from Saccharomyces cerevisiae[J].Acta Crystallogr D Biol Crystallogr,2000,56:915-917
    [91]Omrod I H L,Lalor E F,Sharpe F R.The release of yeast proteolytic enzymes into beer[J].J Inst Brew,1991,97:441-443.
    [92]Slaughter J C,Nomura T.Activity of the vacuolar proteases of yeast and the significance of the cytosolic protease inhibitors during the post-fermentation decline phase[J].J Inst Brew,1992,98(4):335-338.
    [93]Shimizu C,Yokoi S,Koshino S.The mechanism controlling the decrease in beer foam stability using protease A[C].In:Proc 25~(th) Congr Eur Brew Conv,Oxford:IRL Press,UK,1995:569-576.
    [94]Keogh R S,Seoighe C,Wolfe K H.Evolution of gene order and chromosome number in Saccharomyces,Kluyveromyces and related fungi[J].Yeast,1998,14:443-457.
    [95]Barnett J A.The taxonomy of the genus Saccharomyces Meyen ex Rees:a short review for non -taxonomist[J].Yeast,1992,8:1-23.
    [96]Kurtzman C P,Robnett C J.Phylogenetic relationship among species of Saccharomyces,Schizosaccharomyces,Debaryomyces and Schwanniomyces determined from partial ribosomal RNA sequences[J].Yeast,1991,7:61-72.
    [97]Piskur J,Smole S,Groth C,et al.Structure and genetic stability of the.mitochondrial genomes vary among yeasts of the genus Saccharomyces[J].Int J Syst Bacteriol,1998,48:1015-1024.
    [98]Yarrow D.Saccharomyces Meyen ex Reese.In:Kreger-van Rij NJW,eds.The Yeast-A Taxonomic study,3rd ed[M].Amsterdam,Netherlands:Elsevier Science Publishers,1984:379-395.
    [99]Vaughan-Martini A,Martini A.Three newly delimited species of Saccharomyces sensu stricto[J].Antonie van Leewenhoek,1987,53:77-84.
    [100]Borsting C,Hummel R,Schultz E R,et al.Saccharomyces carlsbergensis contains two functional genes encoding the acyl-CoA binding protein,one similar to the ACB1 gene from S.cerevisiae and one identical to the ACB1 gene from S.monacensis[J].Yeast,1997,13:1409-1421.
    [101]Hansen J,Kielland-Brandt M C.Saccharomyces carlsbergensis contains two functional MET2 alleles similar to homologues from S.cerevisiae and S.monacensis[J].Gene,1994,140:33-40.
    [102]Hansen J,Cherest H,Kielland-Brandt M C.Two divergent MET10 genes,one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis,encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH[J].J Bacteriol,1994,176:6050-6058.
    [103]Kodama Y,Omura F,Ashikari T.Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease[J].Appl Env Microbiol,2001,67:3455-3462.
    [104]Yang C,Theis J F,Newlon C S.Conservation of ARS elements and chromosomal DNA replication origins on chromosomes Ⅲ of Saccharomyces cerevisiae and S.carlsbergensis[J].Genetics,1999, 152:933-941.
    [105] Yamagishi H, Ogata T. Chromosomal structures of bottom fermenting yeasts[J]. Syst Appl Microbiol, 1999,22:341-353.
    [106] Tamai Y, Momma T, Yoshimoto H, et al. Co-existence of two types of chromosome in the bottom fermenting yeast, Saccharomyces pastorianus [J]. Yeast, 1998, 14: 923-933.
    [107] Fujii T, Yoshimoto H, Nagasawa N, et al. Nucleotide sequences of alcohol acetyltransferase genes from lager brewing yeast, Saccharomyces carlsbergensis Conservation of ARS Elements and Chromosomal DNA Replication Origins on Chromosomes[J]. Yeast, 1996, 12: 593-598.
    [108] Tamai Y, Tanaka K, Umemoto N, et al. Diversity of the HO gene encoding an endonuclease for mating-type conversionin the bottom fermenting yeast Saccharomyces pastorianus[J]. Yeast, 2000, 16:1335-1343.
    [109] Gjermansen C, Sigsgaard P. Construction of a hybrid brewing strain of Saccharomyces carrlsbergensis by mating of meiotic segregants[J]. Carlsberg Res Commun, 1981, 46: 1-11.
    [110] Bilinski C A, Russell I, Stewart G G. Analysis of sporulation in brewer's yeast: induction of tetrad formation[J]. J Inst Brew, 1986, 92: 594-598.
    [111] Bilinski C A, Russell I, Stewart G G. Physiological requirements for induction of sporulation in lager yeast[J]. J Inst Brew, 1987, 93: 216-219.
    [112] Nilsson-Tillgren T, Petersen J G L, Holmberg S, et al. Transfer of chromosome III during kar mediated cytoduction in yeast[J]. Carlsberg Res Commun, 1980, 45: 113-117.
    [113] Conde J, Fink G R. A mutant of Saccharomyces cerevisiae defective for nuclear fusion[J]. Proc Natl Acad Sci USA, 1976, 73: 3651-3655.
    [114]Dutcher S K. Internuclear transfer of genetic information in karl-1/KARl heterokaryons in Saccharomyces cerevisiae[J]. Mol Cell Biol, 1981, 1(3): 245-253.
    [115] Nilsson-Tillgren T, Gjermansen C, Kielland-Brandt M C, et al. Genetic differences between saccharomyces carlsbergensis and saccharomyces cerevisiae. Analysis of chromosome III by single chromosome transfer[J]. Carlsberg Res Commun, 1981, 46: 65-76.
    [116] Casey G P. Molecular and genetic analysis of chromosomes X in Saccharomyces carlsbergensis[J]. Carlsberg Res Commun, 1986, 51: 343-362.
    [117] Nilsson-Tillgren T, Gjermansen C, Holmberg S, et al. Analysis of chromosome V and the ILV1 gene from Saccharomyces carlsbergensis[J]. Carlsberg Res Commun, 1986, 51: 309-326.
    [118] Petersen J G L, Nilsson-Tillgren T, Kielland-Brandt M C, et al. Structural heterozygosis at genes ILV2 and ILV5 in Saccharomyces carlsbergensis[i]. Curr Genet, 1987, 12: 167-174.
    [119] Mortimer R K, Schild D. Genetic map of Saccharomyces cerevisiae[J]. Microbiol Sci, 1984, 1: 145-146.
    [120] Pedersen M B. DNA sequence polymorphisms in the genus Saccharomyces II. Analysis of the genes RDN1, HIS4, LEU2 and Ty transposable elements in Carlsberg, Tuborg and 22 Bavarian brewing strains[J].Carlsberg Res Commun,1985,50:263-272.
    [121]Holmerg S.Genetic differences between Saccharomyces carlsbergensis and S.cerevisiae Ⅱ.Restriction endonuclease analysis of genes in chromosome Ⅲ[J].Carlsberg Res Commun,1982,47:233-244.
    [122]Kielland-Brandt M,Nilsson-Tillgren T,Gjermansen C,et al.Genetics of brewing yeasts[C].In:Wheals A E,Rose A H,Harrison J H,eds.The Yeasts,London,England:Academic Press,1995,6:223-254.
    [123]Polaina J.Brewer's yeast:genetics and biotechnology[C].In:Khachatourians G G,Arora D K(eds).Appl Microbiol Biotechnol,Amsterdam,Holanda:Elsevier Science,2002,2:1-17.
    [124]Rothstein R J.One-step gene disruption in yeast[J].Meth Enzymol,1983,101:202-211.
    [125]Baudin A,Ozier-Kalogeropoulos O,Denouel A,et al.A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae[J].Nucleic Acids Res,1993,21(14):3329-3330.
    [126]Wach A.PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S.cerevisiae[J].Yeast,1996,12(3):25-265.
    [127]Alani E,Cao L,Kleckner N.A method for gene disruption that allows repeated use of URA3selection in the construction of multiply disrupted yeast strains[J].Genetics,1987,116(4):541-545.
    [128]Langle-Rouault F,Jacobs E.A method for performing precise alterations in the yeast genome using a recycable selectable marker[J].Nucl Acids Res,1995,23(15):3079-3081.
    [129]Cregg J M,Madden K R.Use of site-specific recombination to regenerate selectable markers[J].Mol Gen Genet,1989,219(1-2):320-323.
    [130]Sauer B.Recycling selectable markers in yeast[J].Bio Techniques,1994,16(6):1086-1088.
    [131]Storici F,Coglievina M,Bruschi C V.A 22μm DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae[J].Yeast,1999,15(4):271-283.
    [132]Falrhead C,Llorente B,Denis F,et al.New vectors for combinatorial deletions in yeast chromosomes and for gap repair cloning using 'split-marker' recombination[J].Yeast,1996,12(14):1439-1457.
    [133]贾凤超.纯生啤酒泡沫稳定性的研究[J].食品与发酵工业,2001,27(5):39-41.
    [134]刘伟成,贾士儒,冯景章等.纯生啤酒质量影响因素初探[J].食品与发酵工业,2003,29(6):63-66.
    [135]董建军,郝俊光,贾士儒.利用高效液相系统分析啤酒泡沫中的蛋白质的分布[J].食品与发酵工业,2004,30(3):102-105.
    [136]何国庆,王肇悦,刘中山.啤酒泡沫阳性蛋白的电泳分离及其与酵母蛋白酶A的关系[J].农业生物技术学报,2005,13(5):686-687.
    [137]张峻炎,陆健,顾国贤.啤酒泡沫稳定性与蛋白酶的关系[J].食品与发酵工业,2002,28(9):51-56.
    [138]张峻炎,田亚平,顾国贤.啤酒泡沫蛋白质的初步分离及测定[J].酿酒,2002,29(5):67-68.
    [139]叶俊华,顾国贤,陆健.啤酒及其泡沫中蛋白质组分的比较分析[J].无锡轻工大学学报,2003,22(6):46-49.
    [140]杨毅,田亚平,顾国贤.纯生啤酒啤酒蛋白酶A抑制剂的应用研究[J].啤酒科技,2004,11:14-16.
    [1]Bamforth C W.The foaming properties of beer[J].J Inst Brew,1985,91:370-383.
    [2]Bamforth C W.Foam:method,myth,or magic[J].Brewer,1995,81:396-399.
    [3]叶俊华,顾国贤,陆健.啤酒及其泡沫中蛋白质组分的比较分析[J].无锡轻工大学学报,2003,22(6):46-49.
    [4]董建军,郝俊光,贾士儒.利用高效液相系统分析啤酒泡沫中的蛋白质的分布[J].食品与发酵工业,2004,30(3):102-105.
    [5]Asano K,Hashimoto N.Isolation and characterization of foaming proteins of beer[J].J Am Soc Brew Chem,1980,38:129-137.
    [6]Douma A C,Mocking-Bode H C M,Kooijman M,et al.Identification of foam stabilizing proteins under conditions of normal beer dispense and their biochemical and physico-chemical properties[C].In:Proc 26~(th) Congr Eur Brew Conv,Oxford,UK:IRL Press,1997:671-679.
    [7]S(?)rrensen S B,Bech L M,Muldbjerg M,et al.Barley lipid transfer protein 1 is involved in beer foam formation[J].Tech Q Master Brew Asso Am,1993,30:136-145.
    [8]Yokoi Y,Maeda S,Xiao K,et al.Characterization of beer proteins responsible for the foam of beer[C].In:Proc 22~(th) Congr Eur Brew Conv,1989:593-600.
    [9]Lusk L T,Cronan C L,Chicoye E,et al.A surface-active fraction isolated from beer[J].J Am Soc Brew Chem,1987,45:91-95.
    [10]Vancraenenbroeck R,Devreux A.Considerations on foam-active complexes in beer[C].In:Proc 19~(th)Congr Eur Brew Conv,Oxford,UK:IRL Press,1983:323-330.
    [11]Roberts R T.Glycoproteins and beer foam[C].In:Proc 15~(th) Congr Eur Brew Conv,Oxford,UK:IRL Press,1975:453-464.
    [12]Wenn R V.Isoelectrophoretic separation of complex nitrogenous substances of beer and brewing materials[J].J Inst Brew,1972,78:377-383.
    [13]Onishi A,Proudlove M O.Isolation of beer foam polypeptides by hydrophobic interaction chromatography and their partial characterization[J].J Sci Food Agric,1994,65:233-240.
    [14]Slack P T,Bamforth C W.The fractionation of polypeptides from barley and beer by hydrophobic interaction chromatography:the influence of their hydrophobicity on foam stability[J].J Inst Brew,1983,89(6):397-401.
    [15]Yokoi,S Maeda,Xiao K,et al.Characterization of beer proteins responsible for the foam of beer[C].In:Proc 22~(th) Congr Eur Brew Conv,Oxford,UK:IRL Press,1989:593-600.
    [16]Hejgaard J.Origin of a dominant beer protein immunochemical identity with β -amylase-associated protein from barley[J].J Inst Brew,1977,83:94-96.
    [17]Hejgaard J.'Free' and 'bound'-amylases during malting of barley characterization by two dimensional immunoelectrophoresis[J].J Inst Brew,1978,84(1):43-46.
    [18]Hejgaard J,Bj(?)rn S E.Four major basic proteins of barley grain:purification and partial characterization[J].Physol Plant,1985,64:301-307.
    [19]Evans D E,Hejgaard J.The impact of malt derived proteins on beer foam quality.Part Ⅰ.the effect of germination and kilning on the level of protein Z4,protein Z7,LTP1[J].J Inst Brew,1999,105(3):159-169.
    [20]Bech L M,Vaag P,Heinemann B,et al.Throughout the brewing process barley lipid transfer protein I(LTP1) is transformed into a more foam promoting form[C].In:Proc 25~(th) Congr Eur Brew Conv,Oxford,UK:IRL Press,1995:561-568.
    [21]Kalla R,Shimanoto K,Potter R,et al.The promoter of the barley aleurone -specific gene encoding a putative 7kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice[J].Plant J,1994,6:849-860.
    [22]Svensson B,Asano K,Jonassen I,et al.A 10kD barley seed protein homologous with an α-amylase inhibitor from Indian finger millet[J].Carlsberg Res Commun,1986,51:493-500.
    [23]Heinemann BV,Andersen KV,Reinholt-Nielsen PR,et al.Structure in solution of a four-helix lipid binding protein[J].Protein Sci,1996,5:13-23.
    [24]Jegou S,Douliez J P,Molle D,et al.Evidence of the glycation and denaturation of LTP 1 polypeptides during malting and mashing[J].J Agric and Food Chem,2001,49:4942-4949.
    [25]Jones B L.Barley LTP1(PAPI) and LTP2:inhibitor of green malt cysteine endoproteinases[J].J Am Soc Brew Chem,1995,53:194-195.
    [26](?)stergaard O,Finnie C,Laugesen S,et al.Proteome analysis of barley seeds:identification of major proteins from two-dimensional gels(pI4-7)[J].Proteomics,2004,4:2437-2447.
    [27]Bak-Jensen K S,Laugesen S,Roepstorff P,et al.Two dimensional gel electrophoresis pattern(pH 6-11) and identification of water soluble barley seed and malt proteins by mass spectrometry[J].Proteomics,2004,4:728-742.
    [28]Evans D E.Don't be fobbed off:the substance of beer foam -a review[J].J Am Soc Brew Chem,2002,60(2):45-57.
    [29]Marchylo B A,Kruger J E.Identification of Canadian barley cultivars by reversed-phase high-performance liquid chromatography[J].Cereal Chem,1984,61:295-301.
    [30]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,2003:123-156.
    [31]Shevchenko K,Wilm M,Vorm O,et al.Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels[J].Anal Chem,1996,68:850-858.
    [32]Dale C J.Amino acid analysis of beer polypeptides[J].J Inst Brew,1989,95:89-97.
    [33]Leiper K A,Stewart G G,McKeown I P.Beer polypeptides and silica gel:Part Ⅱ.Polypeptides involved in foam formation[J].J Inst Brew,2003,109(1):73 -79.
    [34]Evans D E,Robinson L H,Sheehan M C,et al.Application of immunological methods to differentiate between foam positive and haze active proteins originating from malt[J],J Am Soc Brew Chem,2003,61(2):55-62.
    [35]Shewry P R,Tatham A S.The prolamin storage proteins of cereal seeds:structure and evolution[J].J Biochem,1990,267:1-12.
    [36]Vaag P,Molskov B,Cameron-Mils V,et al.Characterization of a beer foam protein originating from barley[C].In:Proc 27~(th) Congr Eur Brew Conv,Oxford,UK:IRL Press,1999:157-166.
    [37]Vaag P.17kDa foam protein[P],Int Pat Coop Treaty Appl,PCT/IB99/01597.
    [38]Finnie C.Feasibility study of a tissue specific approach to barley proteome analysis:aleurone layer,endosperm and single seeds[J].J Cereal Sci,2003,38:217-227.
    [39]Nacka F,Chobert J M,Burova T,et al.Induction of new physicochemical and functional properties by the glycosylation of whey proteins[J].J Protein Chem,1998,17:495-503.
    [40]Jegou S,Douliez J P,Molle D,et al.Purification and structural characterization of LTP1 polypeptides from beer[J],J Agric Food Chem,2000,48:5023-5029.
    [41]Coghe Stefan,Adriaenssens S,Leonard B,et al.Fraction of colored Maillard reaction products from dark specialty malts[J].J Am Soc Brew Chem,2004,62(2):79-86.
    [42]钱小红.蛋白质组学:从序列到功能[M].北京:科学出版社,2003:38-52.
    [43]Hejgaard J,Kaersgaard P.Purification and properties of the major antigenic beer protein of barley origin[J].J Inst Brew,1983,89:402-410.
    [44]Kaersgaard P,Hejgaard J.Antigenic beer macromolecules.An experimental survey of purification methods[J].J Inst Brew,1979,85:103-111.
    [45]Yokoi S,Tsugita A.Characterization of major proteins and peptides in beer[J].J Am Soc Brew Chem,1988,46(4):99-103.
    [1]Ammerer G,Hunter C P,Rothman J H.PEP4 gene of Saccharomyces cerevisiae[J].Mol Cell Biol,1986,6(7):2490-2499.
    [2]Tang Jordan,Wong R N S.Evolution in the structure and function of aspartic protease[J],J Cell Biochem,1987,33(1):53-63.
    [3]Teichert U,Mechler B,MUller H,et al.Lysosomal(vacuolar) proteases of yeast are essential catalysts for protein degradation,differentiation,and cell survival[J].J Biol Chem,1989,264(27):16037-16045.
    [4]MaddoxI S,Hough J S.Proteolytic enzymes of Saccharomyces cerevisiae[J].J Biochem,1970,117:843-852.
    [5]Dreyer T,Biedermann K,Ottesen M.Yeast protease in beer[J].Carlsberg Res Commun,1983,48:249-253.
    [6]Kondo H,Yomo H,Furukubo S,et al.Advanced method for measuring protease A in beer and application to brewing[J].J Inst Brew,1999,105(5):293-300.
    [7]Brey S E,de Costa S,Rogers P J,et al.The effect of protease A on foam-active polypeptides during high and low gravity fermentation[J].J Inst Brew,2003,109(3):194-202.
    [8]Omrod I H,Lalor E F,Sharpe F R.The release of yeast proteolytic enzymes into beer[J].J Inst Brew,1991,97:441-443.
    [9]贾凤超.纯生啤酒泡沫稳定性的研究[J].食品与发酵工业,2001,27(5):39-41.
    [10]张峻炎,陆健,顾国贤等.啤酒泡沫稳定性与蛋白酶A的关系[J].食品与发酵工业,2002,28(9):51-56.
    [11]刘伟成,贾士儒,冯景章.纯生啤酒质量影响因素初探[J].食品与发酵工业,2003,29(6):63-66.
    [12]Cooper D J,Stewart G G,Bryce J H.Yeast proteolytic activity during high and low gravity wort fermentations and its effect on head[J].J Inst Brew,2000,106(4):197-201.
    [13]Ormrod L H L,Lalor E F,Sharpe E R.Yeast proteolytic enzyme activity during fermentation[C].In:Proc 23~(th) Congr Eur Brew Conv,Oxford,UK:IRL Press,1991:457-464.
    [14]Muldbjerg M,Meldal M,Breddam K,et al.Protease activity in beer and correlation of foam[C].In:Proc 24~(th) Congr Eur Brew Conv,Oxford,UK:IRL Press,1993:357-364.
    [15]Leisegang R,Stahl U.Degradation of a foam-promoting barley protein by a protease from brewing yeast[J].J Inst Brew,2005,111(2):112-117.
    [16]He G Q,Wang Z Y,Liu Z S,et al.Relationship of Proteinase Activity,Foam Proteins,and Head Retention in Unpasteurized Beer[J].J Am Soc Brew Chem,2006,64(1):33-38.
    [17]顾国贤,李崎.中国啤酒工业的发展[J].工业微生物,1999,29(3):44-46.
    [18]顾国贤.新世纪中国啤酒工业发展展望[J].酿酒科技,2002,112(4):28-30.
    [19]Smart K A,Chambers K M,Lambert I,et al.Use of Methylene Violet staining Procedures to Determine Yeast Viability and Vitality[J].J Am Soc Brew Chem,1999,57(1):18-23.
    [20]Rodrigues P G,Barros A A,Roddgues J A,et al.Vitaltitration:A New Method for Assessment of Yeast Vitality[J].Tech Q Master Brew Assoc Am,2004,41(3):277-281.
    [1]Bamforth C W.Bringing matters to a head:the status of research on beer foam[C].In:Proc 27~(th)Congr Eur Brew Conv,Oxford,UK:IRL Press,1999:10-23.
    [2]Dreyer T,Biedermann K,Ottesen M.Yeast proteinase in beer[J].Carlsberg Res Commun,1983,48:249-253.
    [3]Ormrod L H L,Lalor E F,Sharpe E R.Yeast proteolytic enzyme activity during fermentation[C].In:Proc 23~(th) Congr Eur Brew Conv,Oxford:IRL Press,UK,1991:457-464.
    [4]Muldbjerg M,Meldal M,Breddam K,et al.Protease activity in beer and correlation of foam[C].In:Proc 24~(th) Congr Eur Brew Conv,Oxford,UK:IRL Press,1993:357-364.
    [5]Brey S E,de Costa S,Rogers P J,et al.The effect of proteinase A on foam-active polypeptides during high and low gravity fermentation[J].J Inst Brew,2003,109(3):194-202.
    [6]Sedivy J M,Joyner A L.Gene targeting,in gene targeting[M].Oxford,UK:Oxford University Press,1992:77-122.
    [7]Kuwayama H,Obara S,Morio T,et al.PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors[J].Nucl Acids Res,2002,30(2):14-18.
    [8]Lee J,Lee H J,Shin M K,et al.Versatile PCR-mediated insertion or deletion mutagenesis[J].Biotechniques,2004,36(3):398-400.
    [9]Lorenz M C,Muir R S,Lim E,et al.Gene disruption with PCR products in Saccharomyces cerevisiae[J].Gene,1995,158(1):113-117.
    [10]Puig O,Rutz B,Luukkonen B G,et al.New constructs and strategies for efficient PCR- based gene manipulations in yeast[J].Yeast,1998,14:1139-1146.
    [11]Walker M,Vystavelova A,Pedler S,et al.PCR-based gene disruption and recombinatory marker excision to produce modified industrial Saccharomyces cerevisiae without added sequences[J].J Microbiol Methods,2005,63(2):193-204.
    [12]Sauer B N.Functional Expression of the cre-lox Site-Specific Recombination System in the Yeast Saccharomyces cerevisiae[J].Mol Cell Biol,1987,7:2087-2096.
    [13]Shaikh A C,Sadowski P D.The Cre recombinase cleaves the lox site in trans[J].J Biol Chem,1997,272:5695-5702.
    [14]Guldener U,Heck S,Fielder T,et al.A new efficient gene disruption cassette for repeated use in budding yeast[J].Nucl Acids Res,1996,24(13):2519-24.
    [15]Zubenko G S,Jones E W.Protein degradation,meiosis and sporulation in proteinase deficient mutants of Saccharomyces cerevisiae[J].Genetics,1981,97(1):45-64.
    [16]Mechler B,Wolf D H.Analysis of proteinase A function in yeast[J].Eur J Biochem,1981,121:62-66.
    [17]刘子铎.酵母遗传学方法实验指南[M].北京:中国科学出版社,45-49.
    [18]Tamai Y,Momma T,Yoshimoto H,et al.Co-existence of two types of chromosome in the bottom fermenting yeast,Saccharomyces pastorianus[J].Yeast,1998,14:923-933.
    [19]Yamagishi H,Ogata T.Chromosomal structures of bottom fermenting yeasts[J].Syst Appl Microbiol,1999,22:341-353.
    [20]Nakao Y,Kodama Y,Nakamura N,et al.Whole genome sequence of a lager brewing yeast[C].In:Proc 29~(th) Congr Eur Brew Conv,Oxford:IRL Press,UK,2003:524-530.
    [21]Polaina J.Brewer's yeast:genetics and biotechnology[C].In:Khachatourians G G,Arora D K J Hill,K A Donald,et al(eds).Appl Microbiol Biotechnol,Amsterdam,Holanda:Elsevier Science.2002,2:1-17.
    [22]Kodama Y,Kielland-Brandt M C,Hansen J.Lager brewing yeast[C].In:Sunnerhagen P and Piskur J(eds.) Comparative genomies.Using fungi as a model,Verlag,Heidelberg:Springer,2006,15:145-164.
    [23]Bond U,Neal C,Donnelly D,et al.Aneuploidy and copy number breakpoints in.the genome of lager yeasts mapped by microarray hybridization[J].Curr Genet,2004,45(6):360-370.
    [24]Burke D,Dawson D,Stearns T.Methods in yeast genetics[M].New York:Cold spring barber press,2000:109-111.
    [25]Smveook J,Fritsch E F,Maniatis T.Molecular Cloning:A Laboratory Manual,2nd ed[M].New York:Cold Spring Harbor Laboratory press,1989:125-150.
    [26]Gietz R D,Jean S A,Woods R A,et al.Improved method for high efficiency transformation of intact yeast cells[J]. Nucl Acids Res, 1992, 20(6): 14-25.
    [27] Hill J, Donald K A, Griffiths D E, et al. DMSO-enhanced whole cell yeast transformation[J]. Nucl Acids Res, 1991, 19(20): 5791.
    [28] Ammerer G, Hunter C P, Rothman J H, et al. PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors [J]. Mol Cell Biol, 1986, 6 (7): 2490-2499.
    [29] Woolford C A, Daniels L B, Park F J, et al. The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases[J]. Mol Cell Biol, 1986, 6(7): 2500-2510.
    [30] Zubenko G S, Park F J, Jones E W. Genetic Properties of Mutations at the PEP4 Locus in Saccharomyces cerevisiae[J]. Genetics, 1982, 102(4): 679-690.
    
    [31] Jones E W. Proteinase mutants of Saccharomyces cerevisiae[J]. Genetics, 1977, 85(1): 23-33.
    [32] Teichert U, Mechler B, Muller H, et al. Lysosomal (vacuolar) proteinase of yeast are essential catalysts for protein degradation, differentiation, and cell survival[J]. J Biol Chem, 1989, 264(27): 16037-16045.
    [33] Storchova Z, Breneman A, Cande J, et al. Genome-wide genetic analysis of polyploidy in yeast[J]. Nature, 2006, 443(5): 541-547.
    [34] Takeshige K, Baba M, Tsuboi S, et al. Autophagy in yeast demonstrated with protease- deficient mutants and conditions for its induction[J]. J Cell Biol, 1992, 119(2): 301-311.
    [1]Tamai Y,Momma T,Yoshimoto H,et al.Co-existence of two types of chromosome in the bottom fermenting yeast,Saccharomyces pastorianus[J].Yeast,1998,14:923-933.
    [2]Yamagishi H,Ogata T.Chromosomal structures of bottom fermenting yeasts[J].Syst Appl Microbiol,1999,22:341-353.
    [3]Nakao Y,Kodama Y,Nakamura N,et al.Whole genome sequence of a lager brewing yeast[C].In:Proc 29th Congr Eur Brew Conv,Oxford,UK:IRL Press,2003:524-530.
    [4]Polaina J.Brewer's yeast:genetics and biotechnology[C].In:Khachatourians G G,Arora D K(eds).Appl Microbiol Biotechnol,Amsterdam,Holanda:Elsevier Science,2002,2:1-17.
    [5]Kodama Y,Kielland-Brandt M C,Hansen J.Lager brewing yeast[C].In:Sunnerhagen P and Piskur J(eds.) Comparative genomies.Using fungi as a model,Verlag,Heidelberg:Springer,2006,15:145-164.
    [6]Bond U,Neal C,Donnelly D,et al.Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridization[J].Cnrr Genet,2004,45(6):360-370.
    [7]Woolford C A,Daniels L B,Park F J,et al.The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases[J].Mol Cell Biol,1986,6(7):2500-2510.
    [8]Van den Hazel H B,Kielland-Brandt M C,Winther J R.Autoactivation of proteinase A initiates activation of yeast vacuolar zymogens[J].Eur J Biochem,1992,207(11):277-283.
    [9]Jones E W,Zubenko G S,Parker R R.PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae[J].Genetics,1982,102(4):665 -677.
    [10]Rupp S,Hirsch H H,Wolf D H.Biogenesis of the yeast vacuole(lysosome).Active site mutation in the vacuolar aspartate proteinase yscA blocks maturation of vacuolar proteinases[J].Eur J Biochem,1991,293(1-2):62-66.
    [11]Mechler B,Wolf D H.Analysis of proteinase A function in yeast[J].Eur J Biochem,1981,121:62-66.
    [12]Kondo H,Yomo H,Furukubo S,et al.Advanced method for measuring proteinase A in beer and application to brewing[J].J Inst Brew,1999,105(5):293-300.
    [13]顾国贤.酿造工艺学(第二版)[M].北京:中国轻工业出版社,1996:179-187.
    [14]杜绿君,袁惠明.啤酒酵母选育:啤酒酵母和微生物管理[M].北京:中国轻工业出版社,1990:85-117.
    [15]Bendiak D S.Quantification of the Helm's flocculation test[J].J Am Soc Brew Chem,1994,52(3):120-122.
    [1]Woolford C A,Daniels L B,Park F J,et al.The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases[J].Mol Cell Biol,1986,6(7):2500-2510.
    [2]Van den Hazel H B,Kielland-Brandt M C,Winther J R.Autoactivation of proteinase A initiates activation of yeast vacuolar zymogens[J].Eur J Biochem,1992,207(11):277-283.
    [3]Jones E W,Zubenko G S,Parker R R.PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae[J].Genetics,1982,102(4):665 -677.
    [4]Rupp S,Hirsch H H,Wolf D H.Biogenesis of the yeast vacuole(lysosome).Active site mutation in the vacuolar aspartate proteinase yscA blocks maturation of vacuolar proteinases[J].Eur J Biochem,1991,293(1-2):62-66.
    [5]Mechler B,Wolf D H.Analysis of proteinase A function in yeast[J].Eur J Biochem,1981,121:62-66.
    [6]Teichert U,Mechler B,Muller H,et al.Lysosomal(vacuolar) proteases of yeast are essential catalysts for protein degradation,differentiation,and cell survival[J].J Biol Chem,1989,264(27):16037-16045.
    [7]Alexandre H,Heintz D,Chassagne D,et al.Protease A activity and nitrogen fractions released during alcoholic fermentation and autolysis in enological conditions[J].J Ind Microbiol Biotechnol,2001,26:235-240.
    [8]Leroy M J,Charpentier M,Duteurtre,et al.Yeast autolysis during champagne aging[J].Am J Enol Vitic,1990,41:21-28.
    [9]Lurton L,Segain J P,Feuillat M.Etude de la proteolyse au cours de 1'autolyse de levures en milieu acide[J].Sci Aliment,1989,9:111-124.
    [10]顾国贤.酿造工艺学(第二版)[M].北京:中国轻工业出版社,1996:194-197.
    [11]管敦仪.啤酒工业手册(修订版)[M].北京:中国轻工业出版社,1998:364-366.
    [12]Jone M,Pierce J S.Absorption of amino acids from wort by yeasts[J].J Inst Brew,1964,70:308-315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700