小麦叶片胞间隙水分胁迫诱导蛋白的分离、纯化及质谱鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞间隙液(IWF)中存在许多与植物生长发育相关的物质,为研究植物在逆境胁迫下所发生的生理生化反应提供了重要的资料。本文以“小偃6号”为材料,采用真空渗入离心法,通过设定不同的离心力和时间,提取小麦叶片胞间隙液。提取的胞间隙液经过SDS-PAGE电泳后,用兔抗Rubisco抗体进行Western-blotting试验。结果表明,在离心力为3000g,时间为10,15和20min所提的胞间隙液中均检测到Rubisco大亚基的特异条带。说明在此条件下提取的胞间隙液有细胞器或其它胞内物质的污染。因此,结合其产出量,小麦叶片胞间隙液提取的离心条件应选择为1000-2500g,15-20min。
     2周龄小麦幼苗用不同浓度PEG-6000模拟干旱处理,1000g,20min提取小麦叶片胞间隙液。测定胁迫2,4,6,8d和复水2d的小麦叶片及胞间隙液中POD、PPO、PAL及几丁质酶的活性,结果表明:随着胁迫强度的增加和处理时间的延长,POD、PPO、PAL(胞间隙除外)、几丁质酶活性均表现上升的趋势,复水2d后下降,但各项指标均没有恢复到对照水平。通过比较胞内、外酶活性大小发现,POD,PAL和PPO活性(处理第2-4d)胞内酶活大于胞间隙,几丁质酶和PPO(第6-8d)则相反。
     对27.5%PEG处理后的小麦叶片胞间隙液进行SDS-PAGE电泳分析,结果表明,和对照相比,27.5%PEG处理第4,6,8d小麦叶片胞间隙出现分子量约为50kD,36kD和21kD的三种差异蛋白,在处理第4d开始表达,且复水2d后消失,推测这三种蛋白是水分诱导产生的与小麦干旱抗性相关。
     用电洗脱的方法对50kD蛋白进行纯化,通过MALDI-TOF-MS(基质辅助激光解析电离飞行时间质谱)分析,将所得的PMF(肽指纹图谱)在NCBInr蛋白质数据库中比对,发现的50kD蛋白是一种未知蛋白,有待进一步研究和分析。
The intercellular washing fluids (IWF) contain many components concerned with the growth and development of plants, which provide some valuable materials for further study of plant physiological and biochemical responses to adverse circumstances. In this study, primary leaves of wheat were detached, vacuum infiltrated with distilled water and centrifuged on various centrifugal force and time to extract IWF, whose purity was then analyzed by SDS-PAGE and Western-blotting with rabbit-anti-Rubisco antibody. The result indicated that the large subunit of Rubisco was detected when the centrifugal force was 3000g, lasting for 10-20minutes. This showed that the extracted IWF were not pure on this or higher than this centrifugation condition. Therefore, combined with its extraction volumes, the centrifugal condition of IWF from wheat leaves should be between 1000-2500g, 15-20min.
     In this experiment, Wheat xiaoyan6 was used as sample, whose seedlings were treated with different concentrations of PEG-6000 solution, then the IWF of wheat leaves were extracted at 1000g, 20min. Activities of POD, PPO, PAL and chitinase were determined 2, 4, 6 and 8 days after treatment and 2 days after rewatering. The results showed that as the increase of stress intensity and the prolongation of treatment time, except the activities PAL of IWF, the activities of POD, PPO, PAL and chitinase of leaves and IWF showed a tendency of being increased at first, then decreased after rehydration, however, none index recovered to the level of CK. After comparation of the activities of these indexes in cells and IWF, we found that the activities of POD, PAL and PPO(2-4 days after treatment) were higher in cells than in IWF, while the activities of chitinase and PPO(4-8 days after treatment ) led to the opposite results.
     The proteins of IWF were extracted and then separated by SDS-PAGE, the results showed that three subunits, whose molecular weight were about 50kD, 36kD and 21kD, were induced 4, 6 and 8 days after treatment with 27.5%PEG, then disappeared 2 days after rewatering. Thus, in conclution, three water stress induced proteins had a correlation with the response of wheat to drought stress.
     The 50kD protein was purified by electro elution protocol and was analyzed by MALDI-TOF-MS. Its peptide mass fingerprinting(PMF)result was searched in protein data bank, which demonstrated no similar proteins reported previously. Therefore, the further identification should be done in the following.
引文
[1] Shinozaki K, Yamaguchi-Shinozaki K, Mizoguchi T, et al. Molecular responses to water stress in Arabidopsis thaliana[J]. J Plant Res,1998,111(3):345-351.
    [2] Dure LⅢ, Chlan CA. Developmental biochemistry of cotton seed embryogenesis and germination: Changing messenger ribonucleic acid as shown by invitro and invivo protein synthesis[J].Biochemistry,1981,20:41-62.
    [3] Caray Arroyo A, Colmenero Flores J M, Caroiarrubio A, et al. Highly hydrophilic proteins in prokaryates and eukaryates are common during conditions of water deficit[J].Biochem, 2000,275(8):5668-5674.
    [4]赖钟雄,张妙霞,李冬梅,等.植物LEA蛋白与LEA基因表达[J].福建农林大学学报(自然科学版),2002,31(4):463-466.
    [5]熊清,王伯初,段传人.植物抗脱水胁迫的分子机制[J].生物化学与生物物理进展,2000,27(3):247-250.
    [6] Kiyosue T, Yamaguchi-shinozaki K, Shinozaki K . Cloning of cDNA for genes that are early-responsive to dehydration stress(ERDs) in Arabiodopsis thaliana L:identification of three ERDs as HSP cognate genes[J]. Plant Mol Bio1,1994,25:79l-798.
    [7]翟大勇,沈黎明.逆境胁迫诱导基因的结构、功能与表达调控[J].生物化学与生物物理进展.1998,25(3):2l6-221.
    [8] Ingraro J, Barlels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physical Plant Mol Biol,l996,47:377-403.
    [9] Baker J, Steele C, Dure LⅢ. Sequence and characterization of 6 LEA Proteins and their genes from cotton[J]. Plant Mol Biol,1988,11:277-281.
    [10]宋松泉,陈玲,傅家瑞.种子脱水耐性与LEA蛋白[J].植物生理学通报,1999,35(5):424-431.
    [11] Kernode AR.Approaches to elucidate the basic of dehydration-tolerance in seeds[J]. Seed Sci Res,1997,7:75-95.
    [12] Ingrano J, Bartela D. The molecular basic of dehydration tolerance in plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 1993,47:377-403.
    [13] Bary EA. Molecular responces to weter deficit[J]. Plant Physiol,1993,103:1035-1040.
    [14] Close T J. Dehydrins: A commonalty in the response of plants to dehydration and low temperature[J]. Physiol Plant,1997,100:291-296.
    [15] Dure LⅢ. A repeating 11-mer amino acid motif and plant desiccation[J]. Plant J, 1993,3:363-369.
    [16] Xu D,Duan X,Wang B. Expression of a late embryogenesis abundant protein gene, HVA1-from barley confecs tolerance to water deficit and salt stress in transgenic rice[J]. Plant Physiol,1996,110:249-257.
    [17] Luchi S, Yamagchi-shinozaki, Urao T et al. Novel drought-inducible genes in the hight drought-tolerant Cowpea: Cloning of cDNA and analysis of the expression of corresponding genes[J]. Plant Cell Physiol,1996,37(8):1073-1082.
    [18] Reid JL, Walker-Simmons MK. Group 3 late embryogenesis abundant protein in desiccation-tolerant of wheat(Triticum aestivu L.) [J]. Plant Physiol,1993,102:125-131.
    [19] Guo W, Ward RE, Thomashow MF. Characterization of a cold-regulated wheat gene related to Arabidopsis Cor47. Plant Physiol,1992,100(2):915-922.
    [20]史玉炜,高述民,王燕凌,等.植物干旱诱导蛋白及相关基因的表达与调控[J].新疆农业科学,2007,44(2):126-131.
    [21] Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[M]. Annual Review of Plant Physiology and Plant Molecular Biology,2004,47:377-403.
    [22]汪敏,郑师章.凤眼莲体内多酚氧化酶的生理生化特性[J].复旦学报(自然科学版),1994,33(2):157-164.
    [23]李天星,陈善娜,叶辉.不同水分状况下云南松抗病性的研究(Ⅱ)[J].云南大学学报(自然科学版),1999,21(5):422-425.
    [24] Kjellbom P,Larsson C,Johansson I,et a1.Aquaporins and water homeostasis in plants[J]. Trends Plant SCi,1999,4:3O8-314.
    [25] Tyerman S D,Bohnert H J,Maurel C,et a1.Plant Aquaporins:their molecular biology, biophysics and significance for plant water relations[J]. J Exp Bot,1999,50:1055-1071.
    [26] Johansson I, Karlsson M, Johanson U,et a1.The role of aquaporins in cellular and whole plant water balance[J]. Biochim Biophys Acta,2000,1465:324-342.
    [27] Santoni V,Gerbeau P,Javot H,et a1.The high diversity of aquaporins reveals novel facets of plant membrane functions[J]. Curr OpinPlant Biol,2000,3:476-481.
    [28] Johanson U,Karlsson M,Johansson I,et a1.The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a frame-work for a new nomenclature for major intrinsic protein in plants[J].Plant Physiol,2001,126:1358-1369.
    [29] Maurel C,Chrispeels M J.Aquaporins:a molecular entry into plant water relations[J].Plant Physiol,2001,125:135-138.
    [30]白登忠,邓西平,黄明丽.水分在植物体内的传输与调控[J].西北植物学报,2003,23(9):1637-1643.
    [31]陈龙,王贤.植物水分胁迫诱导蛋白的特性和功能[J].生物学教学,2003,(11):2-4.
    [32]王伟.植物对水分亏缺的某些生化反应[J].植物生理学通讯,l998,34(5):388-393.
    [33]朱美君,王学臣,陈珈,等.植物水通道蛋白及其活性调节[J].植物学通报,1999,16(1):44-50.
    [34] Bray E.A. Molecular responses to water deficit[J]. Plant Physical,1993,103:1035-1040.
    [35]曹志方,赵南明,刘强.植物膜水通道蛋白[J].生命的化学,2000,20,(1):13-16.
    [36] Biela A, Grote K, Otto B, el a1.The Nicotiana tabacum plasma membrane aquaporin NIAQPI is mercury-insensitive and permeable for glycerol[J].The Plant Journal,1999,18(5):565-570.
    [37] Yamada S, Ham J B. Expression of the PIP aquaporin prouder-MipA from the Common ice plant in tobacco[J].Plant Cell Physical,2000,41(6):719-725.
    [38] Opperman C H, Taylor C G, Conkling M A. Root knot nematode-directed expression of a plant root-specific gene[J].Sconce,1994,263(5144):221-223.
    [39]熊清,王伯初,段传人.植物抗脱水胁迫的分子机制[J].生物化学与生物物理进展,2000,27(3):247-250.
    [40]何宝坤,李德全.植物渗调蛋白的研究进展[J].生物技术通报,2002,2:6-10.
    [41] Bressan RA, NK Singh, AK Handa. Stability of altered genetic expression in cultured plant cells adapted to salt. EEC Symposium on Drought Resistance in Plant[R].1987.
    [42] Singh NK, Bracker CA, Hasegawa PM, et al. Characterization of Osmotin 1A thaunatin-like protein associated with osmotin adaption in plant[J]. Plant Physiol,1987,85:529-536.
    [43] Stahl S, Lee M. Plant low-molecular-weight phospholipase A2s (PLA2s) are structureally related to the animal secretory PLA2s and are present as a family of isoforms in rice[J]. Plant Moleclar Biology,1999,41(4):481-490.
    [44] Liu L, White M J, MacRae T H. Transcription factors and their genes in higher plants functional domains evolution and regulation[J]. Eur J Biochem,1999,262:247-257.
    [45]陈俊,王宗阳.植物MYB类转录因子研究进展[J].植物生理与分子生物学报,2002,28(2):81-88.
    [46] Blackwell T K, Weintraub H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection[J]. Science,1990,250:1104-1110.
    [47]朱作峰,孙传清,付永彩,等.水稻中一个新的MYC基因的克隆及其分析[J].遗传学报,2005,32(4):393-398.
    [48] De Pater S, Pham K, Memelink J, et al. RAP-1 is an Arabidopsis MYC2like R protein homologue that binds to G-box sequence motifs[J]. Plant Mol. Biol.,1997,34:169-174.
    [49] Koes RE, Quattrocchio F, Mol JNM. The flavonoid biosynthetic pathway in plant: function and evolution[J]. BioEssays,1994,16:123-132.
    [50] Abe H, Ura O T, Ito T,et al. Arabidopsis AtMYC2 (bHLH) and AMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell,2003,15(1): 63-78.
    [51] Mizoguehi T, Iehimura K, Shinozaki K. Environmental stress response in Plants: the role of mitogen-activated protein kinases[J]. Trends Biochem,1997,(15):15-19.
    [52] Hardie DG. Plant protein serine threonine kinases:classification and functions[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:97-131.
    [53] Marshall C. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase Curr[J]. OP. Gen.,1994,4:82-89.
    [54] MizoguehiT, Hayashida N, Yajnaguehi-Shinozaki K, et al. ATMPK: a gene family of Plant MAP kinases in Arabidopsis thaliana[J]. FEBS,1993,13457,(3):440-444.
    [55] Mizoguehi T, Irie K, Hirayama T, et al. A gene encoding a mitogen-activated protein kinases and an S6 ribosoma1 protein kinases by touch, cold and water stress in Arabidopsis thaliana[J]. Proc. Natl. Acad. Sci. USA.,1996,(93):765-769.
    [56] Kieger1 S, Cardinale F, Siligan C, et al. SIMKK, a mitogen-activated protein kinase(MAPK)kinase,is a specific aetivator of the salt stress-induced MAPK,SIMK[J]. Plant Cell,2000,(12):2247-2258.
    [57] Yang K Y, Liu Y, Zhang S. Activation of a mitogen-activated protein kinase Pathway is involved in disease resistance in tobacco[J]. Proc. Natl. Acad. Sci. USA., 2001,(98):741-746.
    [58] Zhang S, Klessig D F. MAPK caseades in plant defense signaling[J]. Trends Plant Sci.,2001,(6):520-527.
    [59]杨朝选,焦国利,郑先波.重水胁迫下苹果树茎、叶水势的变化[J].果树学报,2002,19, (2):71-74.
    [60]杨凤云.土壤水分胁迫对梨树生理特性的影响[J].安徽农业学报,2004,6,11.
    [61]王邦锡,黄久常,王辉.不同植物在水分胁迫条件下脯氨酸的累积与抗旱性的关系[J].植物生理学报,1989,15(1):14-51.
    [62]梁丽琼,谭裕模,曾洁清,等.甘蔗叶片生态特征及脯氨酸含量、膜透性与抗旱性关系的研究[J].研究探讨,1995,2(4):14-19.
    [63]周瑞莲,王刚.水分胁迫下豌豆保护酶活力变化及脯氨酸积累在其抗旱中的作用[J].草业学报,1997,6(4):40-43.
    [64]徐莲珍,蔡靖,姜在民,等.水分胁迫对三种苗木叶片渗透调节物质与保护酶活性的影响[J].西北林学院学报,2008,23(2):12-16.
    [65]韦吉,黎军平,罗燕春,等.不同黄秋葵种质对干旱的生理生化反应[J].中国农学通报,2008,24(6):452-455.
    [66]孟庆伟,邹琦,程炳蒿.游离脯氨酸的累积与冬小麦品种的抗旱性[J].山东农业大学学报,1987,18(3):17-22.
    [67]侯建华,吕凤山.玉米苗期抗旱性鉴定研究[J].华北农学通报,1995,10(3):89-93.
    [68]刘娥娥,宗会,郭振飞,等.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报,2000,8(3):235-238.
    [69] Hansion A D, Nelsen C F, Everson E H. Evaluation of free Proline accumulation as an index of drought using to contracting batloy cultivar[J]. Crop Sci,1977,17:720-726.
    [70] Tan B H, Halloran G M. Variation and Correlation of Proline Accumulation in Spring Wheat Cultivars[J]. Crop Sci,1982,22:459-463.
    [71]洪法水,李訪和.自然干旱胁迫下小麦品种游离脯氨酸累积与抗旱性的关系[J].安徽农业科学,1991,4:311-314.
    [72]杜栋,王有年,于继洲,等.水分胁迫下外源甜菜碱对桃树叶片光合作用的影响[J].北京农学院学报,2004,4:14.
    [73]李莹,张利民.植物甜菜碱及甜菜碱合成酶研究进展[J].杂粮作物,2006,26(3):191-193. 74]衣艳君,赵博生.不同抗旱性小麦幼芽中甜菜碱脱氢酶活性和蛋白含量的变化[J].东北林业大学学报,2001,29(4):69-70.
    [75]景蕊莲,昌小平,胡荣海,等.变水处理条件下小麦幼苗的甜菜碱代谢与抗旱性的关系[J].作物学报,1999,25(4):494-498.
    [76]李红,聂泽民.甜菜碱的研究进展[J].湖南农业科学,2005(2):33-34.
    [77]马双艳,姜远茂,彭福田,等.水分胁迫对几种果树甜菜碱含量的影响[J].山东果树,2003(5):3-4.
    [78]赵博生,衣艳君,刘家尧.外源甜菜碱对干旱/盐胁迫下的小麦幼苗生长和光合功能的改善[J].植物学通报,2001,18(3):378-380.
    [79]刘瑞东,王有年,于同泉,等.水分胁迫下外源甜菜碱对仁用杏叶片光合作用的影响[J].北京农学院通报,2004,19(1):10-14.
    [80] Carmen Ine?s Segarra, Claudia Anah?? Casalongue?, Marcela Lilian Pinedo, et al. A germin-like protein of wheat LEAf apoplast inhibits serine proteases[J]. Journal of Experimental Botany,2003,54(386):1335-1341.
    [81] Ana Flor López-Millán, Fermín Morales, Anunciación Abadía, et al. Iron deficiency-associated changes in the composition of the LEAf apoplastic fluid from field-grown pear (Pyrus communis L.) trees[J]. Journal of Experimental Botany,2001,52(360):1489-1498.
    [82] Gertrud Lohausa, Kerstin Pennewissb, Burkhard Sattelmacherb, et al. Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species[J]. Physiologia Plantarum, 2001,111:457-465.
    [83] Veronika Pós, Krisztián Halász1,ákos Mesterházi, et al. Proteomic investigation of wheat intercellular washing Fluid[J]. Proceedings of the 8th Hungarian Congress on Plant Physiology and the 6th Hungarian Conference on Photosynthesis,2005,49(1-2):31-32.
    [84] Soylu S, Soylu E M. Preliminary characterization of race-specic elicitors from Peronospora parasitica and their ability to elicit phenolic accumulation in Arabidopsis[J]. Phytoparasitica,2003,31(4):381-392.
    [85] Reza Zareie, Dara L Melanson, Peter J Murphy. Isolation of fungal cell wall degrading proteins from barley (Hordeum vulgare L.) LEAves infected with Rhynchosporium secalis[J]. Molecular Plant Microbe Interactions,2002,15(10):1031-1039.
    [86]李玉红,陈鹏,程智慧,等.草酸和BTH对黄瓜幼苗霜霉病抗性和胞间隙病程相关蛋白的诱导[J].植物病理学报,2006,36(3):238-243.
    [87] Dalling M J, Nettleton A M. Chloroplast senescence and proteolitic enzymes. In: Plant Proteolytic Enzymes[J]. New York: CRC Press,1986,125-153.
    [88] Ashida H, Danchin A, Yokota A. Was photosynthetic Rubisco recruited by acquisitive evolution from Rubisco like proteins involved in sulfur metabolism[J]? Res Microbiol,2005,156:611-618.
    [89] Ausubel F, Brent R, Kingston R E, et al.精编分子生物学试验指南[M].颜子颖,王海林译.北京:科学出版社,1998,59-360.
    [90]吴冠芳,潘华珍,吴晕.生物化学与分子生物学实验常用数据手册[M].北京:科学出版社,2000,194.
    [91] Hams B D, Rickwood D.蛋白质凝胶电泳实践方法[M].刘毓秀,程桂芳译.北京:科学出版社,1994,46-47.
    [92]潘晓宇,赵晖,胡美浩.一种SDS-PAGE与MALDI-TOF质谱联用的方法[J].生物化学与生物物理研究进展,1999,26(4):393-396.
    [93]赵晓瑜,静天玉,王俊丽.Ro(SS-A)抗原的纯化[J].河北大学学报(自然科学版),1991,11(4):60-63.
    [94]陈鹏,李玉红,程智慧,等.霜霉菌或水分胁迫诱导的黄瓜叶片胞间隙27kD蛋白为几丁质酶[J].植物生理与分子生物学学报,2007,33(6):581-588.
    [95]黄轶,华超,徐江英,等.透析袋电洗脱法在蛋白质回收和纯化中的应用[J].南京军医学院学报,2003,25(1):33-34.
    [96]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,2001,54-156.
    [97] Higgins R C, Dahmus M E. Rapid visualization of proteinbands in preparative SDS-polyacrylamide gels[J]. Anal Biochem,1979,93:257-260.
    [98] Lee C, Levin A, Branton D. Copper staining: a five minute protein stain for sodium dodecyl sulfate polyacylamide gels[J]. Anal Biochem,1987,166:308-312.
    [99]唐彬,童哲.一种有利于蛋白质回收的快速SDS-聚丙烯酰胺凝胶电泳染色-脱色方法[J].生物化学与生物物理进展,2000,27(2):210-211.
    [100]周国权,巫光宏,黄翠颜,等.聚丙烯凝胶电泳的快速脱色方法[J].植物生理学通讯,2006,42(1):95-97.
    [101] Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons[J]. Analytical Chemistry,1988,60,2299.
    [102] Wahl MC., Kiln HS, Wood,TD, et al. Thin gold film-assisted laser desorption/ionization Fourier ion cyclotron resonance mass spectrometry of biomolecules[J]. Analytical Chemistry,1993,65,3669.
    [103] Castro J A, Koster C, Wilkins C. Matrix-assisted laser desorption/ionization of high-mass molecules by Fourier-transform mass spectrometry[J]. Rapid Communications in Mass Spectrometry,1992,6(4),239.
    [104]李维平,李云.生物质谱技术与蛋白质组学[J].生命科学研究,2004,8(4):113-116.
    [105]杨松成.蛋白质组学中的有机质谱[J].现代科学仪器,2000,5:9-15.
    [106]李忠红,王玉,倪坤仪.LC-MSn在药物分析中的应用[J].药物分析志,2004(3):341-344.
    [107]方晓明,张社.液相色谱-质谱/质谱联用技术新进展及应用[J].现代仪器,综述与专论,2002,3:1-4.
    [108] Papac DI, Shahrokh Z. Mass spectrometry innovations in drug discovery and development[J]. Pharm Res,2001,18(2):131-145.
    [109] DetersM, Kirchner G, Resch K, et al. Simultaneous quantification of sirolimus, everolimus, tacrolimus and cyclosporine by liquid chromatography-mass spectrometry[J]. ClinChem LabMed,2002,40(3):285-292.
    [110]冯芳,沈玉兰.人血浆中痕量灯盏乙素SPE-HPLC/MS/MS的建立及药动学研究[J].中国药学杂志,2006,4l(6):457.
    [111]郭瑞臣,魏敏臣,王本杰,等.高效液相色谱-质谱联用测定人体尼索地平血浆浓度及其药动学研究[J].药物分析杂志,2003,23(6):464.
    [112]文红梅,池玉梅,李伟,等.HPLC-MS法测定犬血浆中环维黄杨星D浓度及其药代动力学研究[J].中国天然药物,2004,2(3):162.
    [113]王素军,王广基,李晓天,等.HPLC-MS法测定Beagle犬血浆中氧化苦参碱及其药代动力学[J].中国临床药理学与治疗学,2004,9(7):75l.
    [114]王本杰,郭瑞臣,卜凡龙,等.高效液相色谱-质谱联用测定人血清地红霉素浓度及其药动学研究[J].中国药事,2005,19(3):175.
    [115]郑青敏,李晓明,蒋骥,等.建立液相与串联质谱联用的(LC-MS/MS)测定拉米夫定的方法[J].药物分析杂志,2005,25(1):73-75.
    [116] Leimer A, Zollner P, Lindner W. Determination of the metabolites of nitrofuran antibiotics in animal tissue by high-performance liquid chromatography-tandem mass spectrometry[J]. Chromatography A,2001,939:49.
    [117]沈崇钰,丁涛,陈惠兰.高效液相色谱-电喷雾多级质谱联用测定蜂产品中氯霉素残留[J].检验检疫科学,2003,13(6):26.
    [118]谢文,丁慧瑛,章晓氡,等.高效液相色谱串联质谱测定蜂蜜蜂王浆中氯霉素残留[J].分析化学研究简报,2005,33(12):l767
    [119]王凤池,孙权文,吕红英,等.食品中苏丹红染料的高效液相色谱-离子阱质谱分析[J].理化检验一化学分册,2005,41(12):886
    [120]李传慧,李淑娟,安娟.HPLC-MS/MS法同时测定食品中5种天然甜味剂[J].中国医学指南,2008,6(9):161-163.
    [121]郑天,屠春燕.高效液相色谱法和液相色谱法-质谱联用技术在食品工业上的应用[J].南京工业大学学报,2004,26(2):99-105.
    [122] Dixon RA, Lamb CJ. Molecular communication in interaction between plant and microbe pathogen[J]. Annu Rev Plant Physiol Plant Mol Biol,1990,41:339-367
    [123]王庆梅,王智忻,刘娟,等.感染叶锈菌的小麦细胞间隙液中激发子的定性及初步分离[J].植物生理学报,2000,26(5):427-432.
    [124]马云鹏,陈琰,韩胜芳,等.感染叶锈菌的小麦细胞间隙液对小麦悬浮细胞程序性死亡的诱导[J].河北农业大学学报,2005,28(3):12-16.
    [125] Loreta Brand?o de Freitas, Patrícia Koehler-Santos, Francisco Mauro Salzano. Pathogenesis-related proteins in Brazilian wheat genotypes: protein induction and partial gene sequencing[J]. Ciência Rural,2003,33(3):497-500.
    [126]郑用琏, G. M Bal1anc.小麦与褐斑病菌之间的分子互作,Ⅱ.受病原菌诱导的寄主抗性蛋白的研究[J].华中农业大学学报,1994,13(4):332-338.
    [127]徐建强,侯颖,曹远银,等.小麦秆锈病细胞间隙液的提取及注射技术研究[J].西北农业学报,2006,5(2):66-68.
    [128]孙善君,朱生伟,张进,等.棉花叶片细胞间隙液的提取和鉴定[J].生物技术通讯,2005,16(1):51-52.
    [129]李合生.植物生理生化实验原理和技术[M].北京:高教出版社.2000.
    [130]汤章城.现代植物生理学实验指南[M].北京:科学出版社1999.
    [131] Boller T, Gehri A, Mauch F, et al. Chitinase in LEAves: Induction by ethylene, purification,properties and possible function[J]. Planta,1983,157(1):22-31.
    [132]熊茉君,王新,张红霞.β-葡聚糖含量测定方法的比较[J].华西药学杂志2005,20(5):438-440.
    [133] Smirnoff, N. Plant resistance to environmental stress[J]. Curr. Opin. Biotechnol,1998,9:214-219.
    [134] Chen W P, Li P H, Chen T H. Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays[J]. Plant Cell Environ,2000,23:609-618.
    [135] Hagar H, Ueda N, Shal S V. Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury LLC-PK1 cells[J]. Amer. J. Physiol,1996,271:209-215.
    [136] Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in LEAves of maize seedlings[J]. Plant Cell Physiol,2001,42:1265-1273.
    [137] Agarwal, S., Pandey, V.: Antioxidant enzyme resposes to NaCl stress in Cassia angustifolia[J]. Biol.Plant,2004,48:555-560.
    [138]许丽颖,赫玉苹,王刚,等.水分胁迫对紫叶李叶片色素含量与PAL活性的影响[J].吉林农业大学学报,2007,29(2):168-172.
    [139]阳光察,应初衍.植物苯丙氨酸解氨酶的研究.Ⅵ.水稻、小麦PAL的纯化及基本特性[J].植物生理学报,1985,l1(2):204-214.
    [140]陈鹏,李振岐.BTH诱导小麦对白粉病的抗性与几丁质酶和β-1,3-葡聚糖苷酶活性诱导的关系[J].西北农林科技大学学报,2007,35(7):137-140.
    [141] Yu L X, D jebrouni M., Chamberland H., et al. Chitinase: Differential induction of geneexpression and enzyme activity by drought stress in the wild (Lycopersicon chilense Dun.) and cultivated (L. esculentum Mill.) tomatoes[J]. Plant Physiology,1998,153(5-6):745-753.
    [142] Ri-Dong Chen, Long-Xi Yu, Ann Francine, et al. Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense[J]. Molecular and General Genetics MGG,1994,245(2):195-202.
    [143] Nagy N E,Fossdal C G,Dalen L S,et al.Effects of Rhizoctonia infection and drought on peroxidase and chitinase activity in Norway spruce(Picea abies).Physiol Plant 2004,120(3):465—473.
    [144] Hong J K, Hwang B K. Induced by pathogen, salt and drought of a basic classⅡchitinase mRNA and its in situ localization in pepper (Capsicum annuum)[J]. Physiologia Plantarum,2002,114(4):549-558.
    [145]王西瑶.玉米抗旱性的生理生化机制研究进展[J].四川农业大学学报,1996,14(3):50-54.
    [146]杨万勤,王开运,宋光煜,等.水分胁迫对燥红土和变性土上生长的玉米叶片几种酶活的影响[J].应用与环境生物学报,2003,9(6):588-593.
    [145]韩建民.抗旱性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系[J].河北农业大学学报,1990,13(1):17-21.
    [146]李德全,邹琦.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1992,18(1):37-43.
    [147]李霞,李云荫,曹敏.水分胁迫对抗旱性不同的冬小麦品种叶片蛋白质影响的比较[J].华北农业学报,1993,8(4):20-25.
    [148] Bewley JD. Water-stress-induced changes in the pattern of protein synthesis in maize seedling mesocothyls: a comparison with the effects of heat shock[J]. Exp Bot,1983,34,1126-1133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700