小麦过氧化物酶(WP1)在毕赤酵母中的表达、纯化及活性鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面筋含量是影响面粉加工品质的决定性因素。面筋的三维蛋白网络骨架是由小麦高分子量麦谷蛋白(HMW-GS)、低分子量麦谷蛋白(LMW-GS)和醇溶蛋白(Gliadins)交联形成。2001年Tilley等人提出了面筋蛋白网络形成的酪氨酸交联理论,并证明面粉中存在可催化面筋蛋白酪氨酸交联的酶组分。本研究组已从小麦种子中纯化到一种具有酪氨酸交联活性的过氧化物酶WP1,并克隆到该酶的cDNA。本研究在上述研究的基础上将小麦WP1基因重组到毕赤酵母(P. pastoris)基因组中,并对重组蛋白进行了初步纯化和活性鉴定。
     毕赤酵母(P. pastoris)表达系统是目前较完善的高效异源真核蛋白表达系统,具有高分泌表达、高稳定整合、易于高密度发酵和产物的下游纯化等优点。本研究通过PCR在WP1基因3’-末端添加His-tag编码序列;克隆鉴定后的WP1-His编码序列经双酶切、连接转化等步骤重组到毕赤酵母表达载体pPIC9K中;再将限制性内切酶BglⅡ线性化的载体通过电转化导入毕赤酵母GS115,在组氨酸缺陷的MD平板进行初步筛选鉴定,再用愈创木酚测活法筛选高表达菌株,最终从200个单克隆中筛选出5株有明显过氧化物活性重组克隆。扩大表达后用Ni-NTA亲和柱进行分离纯化,用愈创木酚法测活结果表明,分离到的WP1具有过氧化物酶活性,纯化的洗脱液用SDS-PAGE检测纯化到和预期蛋白条带大小相同的条带,进一步确定了本研究确定了WP1蛋白在毕赤酵母中的高校表达。
     本研究成功地在毕赤酵母中表达了具有活性的小麦WP1,确立了较完善的毕赤酵母表达体系。本研究为WP1与小麦加工品质关系的阐明,以及WP1在食品工业中的潜在应用奠定了基础。
Gluten content determines the process quantity of the flour. HMW-GS, LMW-GS and Gliadins cross link together to make up gluten’s 3-dimension protein network skeleton. Since 2001, Tilley etc. first fingered out the theory of tyrosine cross-linking in the Gluten. This result was supported by lots of research results. The researches find out it is several peroxdiases or enzymes which have oxidase characteristic catalyzed form of dityrosine. We have purified one kind of peroxidase (WP1) which has the activity to catalyze tyrosine crosslinking, and it’s cDNA was cloned. In this study, I tried to express active WP1 protein in Pichia pastoris, the purpose of this research is try to find a potential safe and cheap food additive, and it has very huge practical value for the food industry.
     P. pastoris has many of the advantages of higher eukaryotic expression systems such as high secretion expression, stable integration in the P. pastoris genomic gene, easy high density fermentation and production downstream purification and so on. My research first is to amplify WP1 gene form the clone vector, which been save in our lab. Then through digest, ligation and transformation procedure clone WP1 gene to the P. pastoris expression vector pPIC9K. The next step was linear the plasmid then use high efficiency electroporation to transfer the gene into the P. pastoris . Through homologous recombination linear pPIC9K with WP1 gene was integrated into Pichia genomic gene. Positive recombinant expression bacteria were select by MD plate. Through comparing activity among the positive clones on the MD plate to select high expression recombinant cell by Guaiacol method. WP1 was purified by His-tag Ni-NTA chromatography column and the purification product has peroxidase activity. WP1 purification product was checked by SDS-PAGE, the size of brand is the as expected, this result further affirmed WP1 protein was high yield in P. pastoris
     This research successful expressed active WP1 protein in Pichia pastoris. Lay the foundation for the food industry to fond safe and cheap additives.
引文
[1] Osborne, T. B. 1907. The protein of the wheat kernel[J]. Publication No. 84.Carnegie institute : Washington, DC.
    [2] Payne, P. I., and Corfield, K. G. 1979. Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium[J]. Planta 145:83-88.
    [3] Shewry, P. R.; Halford, N. G.; Tatham, A. S. Highmolecular weight subunits of wheat glutenin. J. Cereal Sci. 1992, 15, 105-120.
    [4] Shewry, P. R.; Halford, N. G.; Tatham, A. S. High molecular weight subunits of wheat glutenin. J. Cereal Sci. 1992, 15, 105-120.
    [5] Payne P I,Corfield K G,Blackman J A.Correlation between the inheritance of certain high molecular weight subunits of glutenin and breadmaking quality in progenies of six crosses of bread wheat[J]. Journal of Science of Food and Agriculture,1981,32:51-60.
    [6] Payne P I,Lawrence G J.Catalogue of alleles for the complex gene loci,Glu A1,Glu B1,and Glu D1 which code for high molecular weight subunits of glutenin in hexaploid wheat[J].Cereal Research Communications,1983,11:29-35.
    [7] Metakovsky, E. V., Novoselskaya, A. Y., and Sozinov, A. A. 1984. Genetic analysis of gliadin components in winter wheat using two-dimensional polyacrylamide gel electrophoresis[J]. Theor. Appl. Genet. 69:31-37.
    [8] Payne, P. I., Nightingale, M. A., Krattiger, A. F., and Holt, L. M. 1987.The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties[J]. J. Sci. Food Agric. 40:51-65.
    [9] Payne, P. I.; Corfield, K. G.; Blackman, J. A. Identification of high-molecular-weight subunit of glutenin whose presence correlates with breadmaking quality in wheats of related pedigree. Theor. Appl. Genet. 1979, 55, 153-159.
    [10] Payne, P. I.; Corfield, K. G.; Holt, L. M.; Blackman, J. A. Correlations between the inheritance of certain highmolecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J. Sci. Food Agric. 1981, 32, 51-60.
    [11] Payne, P. I. Genetics of wheat storage proteins and the effect of allelic variation of bread-making quality. Annu. Rev. Plant Physiol. 1987, 38, 141-153.
    [12] Andersen, S. O. The cross-links in resilin identified as dityrosine and trityrosine. Biochim. Biophys. Acta 1964, 93, 213-215.
    [13] DeVore, D. P.; Gruebel, R. J. Dityrosine in adhesive formed by the sea mussel, Mytilus edulis. Biochem. Biophys. Res. Commun. 1978, 80, 993-999.
    [14] Stewart, K.; Spedding, P. L.; Otterburn, M. S.; Lewis, D. M. Surface layer of wool. II. Dityrosine in wool. J. Appl. Polym. Sci. 1997, 66, 2365-2376.
    [15] Wells-Knecht, M. C.; Huggins, T. G.; Dyer, D. G.; Thorpe, S. R.; Baynes, J. W. Oxidized amino acids in lens protein with age. Measurement of o-tyrosine and dityrosine in the aging human lens. J. Biol. Chem. 1993, 268, 12348-12352.
    [16] Franziska, H., Peter K. Quantitation of dityrosine in wheat flour and dough by liquid chromatography-tandem Mass spectrometry. Agriculture and food chemistry 2005.53,2418-2423
    [17] Heinecke, J. W. Tyrosyl radical production by myeloperoxidase: A phagocyte pathway for lipid peroxidation and dityrosine cross-linking of proteins. Toxicology 2002, 177, 11-22.
    [18] Hensley, K.; Maidt, M. L.; Yu, Z.; Sang, H.; Markesbery, W. R.; Floyd, R. A. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J. Neurosci. 1998, 18, 8126-1832.
    [19] Jacob, J. S.; Cistola, D. P.; Hsu, F.; Muzaffar, S.; Mueller, D.M.; Hazen, S. L.; Heinecke, J. W. Human phagocytes employ the myeloperoxidase-hydrogen peroxide system to synthesize dityrosine, trityrosine, pulcherosine, and isodityrosine by a tyrosyl radical-dependent pathway. J. Biol. Chem. 1996, 271, 19950-19956.
    [20] Leeuwenburgh, C.; Hansen, P. A.; Holloszy, J. O.; Heinecke, J.W. Oxidized amino acids in the urine of aging rats: Potential markers for assessing oxidative stress in ViVo. Am. J. Physiol. 1999, 276, R128-R135.
    [21] Marvin, L. F.; Delatour, T.; Tavazzi, I.; Fay, L. B.; Cupp, C.; Guy, P. A. Quantification of o,o -dityrosine, o-nitrotyrosine, and o-tyrosine in cat urine samples by LC-electrospray ionization-MS/MS using isotope dilution. Anal. Chem. 2003, 75, 261-267.
    [22] Orhan, H.; Vermeulen, N. P. E.; Tump, C.; Zappey, H.;Meerman, J. H. N. Simultaneous determination of tyrosine, phenylalanine, and deoxyguanosine oxidation products by liquid chromatography-tandem mass spectrometry as non-invasive biomarkers for oxidative damage. J. Chromatogr., B: Biomed. Sci. Appl. 2004, 799, 245-254.
    [23] Oestdal, H.; Andersen, H. J.; Nielsen, J. H. Antioxidative activity of urate in bovine milk. J. Agric. Food Chem. 2000, 48, 5588-5592.
    [24] Tilley, K. A.; Benjamin, R. E.; Bagorogoza, K. E.; Okot-Kotber, B. M.; Prakash, O.; Kwen, H. Tyrosine cross-links: Molecular basis of gluten structure and function. J. Agric. Food Chem. 2001, 49, 2627-2632.
    [25] Gross, A. J.; Sizer, I. W. Oxidation of tyramine, tyrosine, and related compounds by peroxidase. J. Biol. Chem. 1959, 234, 1611-1614.
    [26] Shamovsky, I. L.; Riopelle, R. J.; Ross, G. M. Ab initio studies on the mechanism of tyrosine coupling. J. Phys. Chem. A 2001, 105, 1061-1070.
    [27] McCormick, M. L.; Gaut, J. P.; Lin, T.-S.; Britigan, B. E.; Buettner, G. R.; Heinecke, J. W. Electron paramagnetic resonance detection of free tyrosyl radical generated by myeloperoxidase, lactoperoxidase, and horseradish peroxidase. J. Biol. Chem. 1998, 273, 32030-32037.
    [28] Sullivan, B.; Howe, M.; Schmalz, F. D.; Astleford, G. R. The action of oxidizing and reducing agents on flour. Cereal Chem. 1940, 17, 507-528.
    [29] Frater, R.; Hird, J. F. R.; Moss, H. J.; Yates, J. R. A role for thiol and disulphide groups in determining the rheological properties of dough made from wheaten flour. Nature 1960, 186, 451-454.
    [30] Brady, J. D.; Sadler, I. H.; Fry, S. C. Di-isodityrosine, a novel tetrameric derivative of tyrosine in plant cell wall proteins: a new potential cross-link. Biochem. J. 1996, 315, 323-327.
    [31] Wilson, L. G.; Fry, S. C. Extensinsa major cell wall glycoprotein. Plant Cell Environ. 1986, 9,239-260.
    [32] Malencik, D. A.; Sprouse, J. F.; Swanson, C. A.; Anderson, S. Dityrosine: Preparation, isolation and analysis. Anal. Biochem. 1996, 242, 202-213.
    [33] Shewry, P. R.; Halford, N. G.; Tatham, A. S. The high molecular weight subunits of wheat, barley and rye: Genetics, molecular biology, chemistry and role in wheat gluten structure and functionality. Oxford Surv. Plant Mol. Cell Biol. 1989, 6, 163-219.
    [34] Kilborn, R. H.; Tipples, K. H. Factors affecting mechanical dough development. IV. Cereal Chem. 1973, 50, 70-86.
    [35] Kilborn, R. H.; Tipples, K. H. Factors affecting mechanical dough development. IV. Cereal Chem. 1973, 50, 70-86.
    [36] Van Oort, M., van Straaten, F. and Laane, C. Pentosans and pentosanases in breadmaking[J].International Food Ingredients No. 2 (1995) 23~27.
    [37] Van Oort, M. Oxidases in baking. A review on the use of oxidases in breadmaking[J]. International Food Ingredients No. 4(1996) 42~45.
    [38] Durham, R.K. Effect of hydrogen peroxide on relative viscosity measurements of wheat and flour suspensions[J].Cereal Chemistry 2 (1925) 297~305
    [39] Baker, J.C., Parker, H.K. and Mize, M.D. The pentosans of wheat flour[J]. Cereal Chemistry 20 (1943) 267~280.
    [40] Maria Estela da Silva, Telrna Teixeira Franc. Purification of soybean peroxidase (Glycinema) by metal affinity partitioning in aqueous two-phase systems[J]. Journal of Chromatography B 2000,743 : 287-294.
    [41] Halliwell, B.; Gotteridge, J. M. C. In Methods in Enzymology; Parker, L., Glaser, A. N., Eds.; 1990, 186, 1.
    [42] Cross, A. R. In The Molecular Basis of Oxidative Damage by Leukocytes; Jesaitis, A. J., Dratz, E. A., Eds.; CRC Press: Boca Raton, FL, 1992; p 37.
    [43] Alexander, S. Dean, L. Olson, E.P . Williksen. Gregg, A. Then Peroxidase-Oxidase Oscillator and its constituent chemistries. Chem. rev.1997, 97 ,739-756.
    [44] Welinder, K. G. Eur. J. Biochem. 1979, 96, 483.
    [45] Dunford, H. B. In Peroxidases in Chemistry and Biology; Everse,J., Grisham, M. B., Everse, K. E., Eds.; CRC Press: Cleveland,1991; Vol. II.
    [46] Veitch, N. C.; Gilfoyle, D. J.; White, C. G.; Smith, A. T. In Plant Peroxidases: Biochemistry and Physiology; Obinger, C., Burner, U., Ebermann, R., Penel, C., Greppin, H., Eds.; University of Geneva: Geneva, 1996; p 1.
    [47] Schuller, D. J.; Ban, N.; van Huystee, R. B.; McPherson, A.; Poulos, T. L. Structure 1996, 4, 311.
    [48] Shannon, L. M.; Kay, E.; Lew, J. Y. J. Biol. Chem. 1966, 241,2166.
    [49] Aibara, S.; Yamashita, H.; Mori, E.; Kato, M.; Morita, Y. Isolation and characterization of five neutral isoenzymes of horseradish peroxidase. J.Biochem. 1982, 92, 531-539.
    [50] Aibara, S.; Kobayashi, T.; Morita, Y. Isolation and properties of basic isoenzymes of horseradish peroxidase. J. Biochem. 1981, 90, 489-496
    [51] Peters, A.; Palay, S. L.; Webster, H. de F. The Fine Structure of the Nervous System: Neurons and Their Supporting Cells, 3red.; Oxford Univ. Press: New York, 1991.
    [52] Hool, K.; Nieman, T. A. Immoblilized luminol chemiluminescence reacgent system for hydrogen peroxidase determination in flowing streams Anal. Chem. 1988, 60, 834.
    [53] Chance, B. Arch. Biochem. 1949, 22, 224.
    [54] George, P. Biochem. J. 1953, 54, 267.
    [55] Chance, B.; Powers, L.; Ching, Y.; Poulos, T.; Schonbaum, G. R.; Yamazaki, I.; Paul, K. G. Arch. Biochem. Biophys. 1984, 235, 596.
    [56] Yamazaki, I.; Mason, H. S.; Piette, L. J. Biol. Chem. 1960, 235, 2444.
    [57] Shannon, L. M.; Kay, E.; Lew, J. Y. J. Biol. Chem. 1966, 241, 2166.
    [58] Halliwell, B.Lignin synthesis: the generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese(Ⅱ) and phenols. Planta 1978, 140, 81-88.
    [59] Yamazaki, I.; Yokota, K. Oxidation states of peroxidase. Mol. Cell. Biochem. 1973, 2, 39.
    [60]刘稳,李杨,高培基,等.过氧化物酶研究进展明[J].纤维素科学与技术2000,8( 2):50 -64
    [61] van Oort, M. Oxidases in baking. A review on the use of oxidases in breadmaking[J]. International Food Ingredients No. 4(1996) 42~45.
    [62] Durham, R.K. Effect of hydrogen peroxide on relative viscosity measurements of wheat and flour suspensions[J].Cereal Chemistry 2 (1925) 297~305.
    [63] Dunford H B,Stitlman J S.On the Function and Mechanism of Action of Peroxidases[J].Coord Che Revt,l 976, 19 l87
    [64] Yokota, K.; Yamazaki, I. Biochim. Biophys. Acta 1965, 105, 301.
    [65] Yokota, K.; Yamazaki, I. Biochemistry 1977, 16, 1913.
    [66] Halliwell, B.; de Rycker, J. Photochem. Photobiol. 1978, 28, 757.
    [67] Kashem, M. A.; Dunford, H. B. Biochem. Cell Biol. 1986, 64, 323.
    [68] Donrd W ,Jay R.Photoinduced Oxidation of Microperoxidase-8:Generation of Ferryl and Cation-Rad-ica Porphyrins, J Am Chem Soc.1 996,116:11 7.
    [69] Haesun K, Harold E.Etementary Steps in the Formation of Horseradish Peroxidase Compound I.Direct Observation of Compound 0,a New Intermediate with a Hyperporphyrin spectrum. Biochem. 1989.28.5,714
    [70] Wang Jinn shyan , Haesun K . High-valent Intermediates in the Reaction of N-Acetyl Microperoxi-dase-8 with Hydrogen Horseradish Peroxidase.Bioch Biohy Res Commu,1991.179. 1.320
    [71] Halliwell, B. Planta 1978, 140, 81.
    [72] Raven, P. H.; Evert, R. F.; Curtis, H. Biology of Plants, 3rd ed.;Worth: New York, 1981.
    [73] Wallace, R. A.; King, J. L.; Sanders, G. P. Biology: The Science of Life, 2nd ed.; Scott, Foresman, and Co.: Glenview, 1986.
    [74] Mader, M.; Amberg-Fisher, V. Plant Physiol. 1982, 70, 1128.
    [75] Van Huystee, R. B.; Lobarzewski, J. Plant Sci. Lett. 1982, 27,59.
    [76] Harkin, J. M.; Obst, J. R. Science 1973, 180, 296.
    [77] Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris [J]. FEMS Microbiol Rev, 2000, 24: 45-66.
    [78] Hitzeman,R.A.,Hagie,F.E., Levine,H.L., Goeddel,D.V., Ammerer, G. and Hall, B.D. 1981. Expression of human gene for interferon in yeast. Nature 293:717-222.
    [79] Jnuxz.毕赤酵母表达实验手册[J].丁香园电子期刊, 2003, 1:1-15.
    [80] Sue,M.P., Mariana,L.F., Brian,M., Linda,M.H.2005. Heterologous protein production using the pichia pastoris expression system. Yeast.22:249-270
    [81] Koti,S., Robert,G.B., Keith,E.K., Dale,T.B.,Blankenship,J.T., Phil,T., Smith,J.D. 1996 Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast pichiapastoris.190:55-62
    [82] Mike,B. 1995.Advances in the use of Pichia pastoris for high-level expression. Biotechnology. 6:527-533
    [83] Cregg, J,M. and Madden,K.R.1988. Development of methylotrophic yeast, pichia pastoris, as a host system for the production of foreigh protein. Dev.Ind.Microbiol.29:33-41
    [84] Sreekrishna,K.,Nelles,L.Potenz,P.,Cruze,J.Mazzaferro,p.,Fish,W.,Fish, W., Fuke,M., 1989. High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methlotrophic yeast Pichia pastoris. Biochemistry 28:4117-4125
    [85] Cregg,J.M.,Tschopp,J.f.,Stillman,C.,Siegel,R.,Akong,M.,Craig,W.S.,Buckholz,R.G.,Maddern,K.R. 1987 High-level expression and efficient assembl of hepatitis B surface antigen in the methlotrophic yeast Pichia pastoris. Bio/Technology 5:479-485.
    [86] Clare,J.J., Rayment,Fb., Ballantine,s.p., Sreekrishna,K. and Romanos,M.A. 1991. High-level expression of tetanus toxin fragment C in Pichia pastoris stains containing multiple tandem integration of the gene. Biochemistry 9:455-460
    [87] Digan,M.E., Lair,S.V.,Brierlery,R.A., Siegel,R.S.,Williams,M.E., Ellis,S.B., Kelliaris,P.A., 1989. Continuous production of a novel lysozyme via secretion from the yeast, Pichia pastoris.Bio/technology 7:160-164.
    [88] Hirsch,H.H., Rendueles,P.S. and Wolf,D.H. 1989 Yeast(Saccharonycers cerevisiae) proteinases: structure, characteristics and fuction, p. 134-200. in : Molecular and Cell Biology of Yeasts.Walton, E,F. and Yarranton, G.t.Blackie and van Nostrand Reinhold, New York.
    [89] Clare,J.J., Rayment,F.B., Rowedder,J.E., Smith,M.A., Payne,M.M., Sreekrishna,K. and Henwood,C.A. 1991.Production of mouse epidermal growth factor in yeast: High-level expression using Pichia pastoris stains containing multiple gene copies.Gene 105:105-212.
    [90] Wagner, S.L., Siegel,R.S., Vedvick,T.S., Raschke,W.C. and Nostrand.W.e. 1992. High-level expression, purification, and characterization of the Kunitz-type protease inhibitor domain of protease nexin-2/amyloidβ-protein precursor. Biophys. Res.Commun. 186:1138-1145.
    [91] Ellis,S, B., Brust, P.F., Koutz,P.J., Whaters,A.F., Harpold,M.M. and Gingeras,T.R. 1985. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol. Cell. Biol. 5:1111-1121.
    [92] Cregg, J,M., Madden,K.R., Barringer,K.J., Thill,G.P. and Stillman, C.A.1989. Functional characterization of the two alcohol oxidase genes from the yeast pichia pastoris. Mol.Cell.Biol.9:1316-1323.
    [93] Koutz,P., Davis,G.R., Stillman,C., Barringer,K.,Cregg,J. and Thill,G. 1989. Structral compression of the pichia pastoris alcohol oxidase genes. Yeast 5:167-177 Nature: James,M.C., Thomas.S.V.,William.C.R.1993 Recent advances on the expression of foreign genes in pichia pastoris. Narue publish group
    [94] Tschopp,J.F., Brust, P.F., Cregg, J.M., Stillman, C.A. and Gingeras, T.R. 1987. Expression of the lacZ gene from two methanol-regulated promoter in pichia pastoris. Nucleic Acids Res. 15:3859-3876.
    [95]路蓉,安云庆.巴斯德毕赤酵母表达系统及其分泌型蛋白表达的研究进展[J].临床和实验医学杂志, 2004, 3 (1): 44-47.
    [96] Patrick SM, Fazenda ML, McNeil B, et al. Heterologous protein production using the Pichia pastoris expression system [J]. Yeast, 2005, 22 (4): 249–270.
    [97] Brierley RA, XSiegel RA, Bussineau CM, et al. Mixed feed recombinant yeast fermentation [M].International Patent Application, Publication No. WO/1990/003431, 1990.
    [98]赖心田.人胰岛素样生长因子(huIGF-I)在毕赤酵母GS115中的表达[D].海南省儋州市:华南热带农业大学, 2000.
    [99] Cereghino GL, Cereghino JL, Ilgen C, et al. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris [J], Biotech, 2002, 13: 329–332.
    [100] Chauhan AK, Arora D, Khanna N. A novel feeding strategy for enhanced protein production byfed-batch fermentation in recombinant Pichia pastoris [J]. Process Biochemistry, 1999, 34 (2)
    [101] Higgins DR, Cregg JM. Pichia protocols, introduction to Pichia pastoris [M]. USA: Humana Press,ISBN13: 978-0-89603-421-1, 1998.
    [102]分子克隆实验指南,第2版
    [103]汪家政.范明.蛋白质技术手册科学出版社. 2000.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700