羧基磁性微球检测急性心肌梗塞早期标志蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的迅速发展,新型纳米材料被逐渐应用于生物科学领域,为其研究和发展提供了新的技术和手段。免疫磁性微球(Immunomagnetic Microspheres, IMMS)技术,就是将纳米磁性微球作为固相载体应用于免疫分析试验中,由于纳米磁性微球体积小、比表面积大以及分散稳定性好,使得其表面包被的抗原或抗体较多,整个反应体系类似在均相中进行,加大了抗原抗体接触机率,加速了抗原抗体复合物的形成,从而提高了检测的灵敏度。本研究以羧基磁性微球为固相载体,采用双抗体夹心荧光免疫分析方法,对急性心肌梗塞(Acute Myocardial Infarction, AMI)早期标志蛋白——脂肪酸结合蛋白(H-FABP)和肌红蛋白(Myo)进行了半定量检测,从而建立了一种基于羧基磁性微球的新型荧光免疫分析方法。该方法特异性强、灵敏度高、耗时短,为今后疾病标志物检测和临床诊断提供了一种新的模型。本研究的具体内容和结果包括:
     1.首先采用化学共沉淀法制备了油酸钠改性的纳米Fe_3O_4磁性粒子,然后以纳米Fe_3O_4磁性粒子为磁核,以苯乙烯、丙烯酸和二乙烯基苯为聚合单体,采用分散聚合法制备了羧基磁性高分子微球。利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X-射线衍射仪(XRD)、振动样品磁强计(VSM)傅里叶变换红外光谱仪(FITC)、原子吸收分光光度计等对其进行了表征。结果表明纳米Fe_3O_4磁性粒子粒径在8~15 nm,分散性好,具有超顺磁性,饱和磁强度为48 emu/g。羧基磁性高分子微球平均粒径为1.7μm,粒径范围在0.19~3.50μm,具有超顺磁性,比饱和磁化强度为13.0 emu/g,磁含量为17.85%,羧基含量达0.386 mmol/g。
     2.成功地进行了捕获抗体Anti-FABP10E1/Anti-Myo7C3与羧基微球连接,2.5 h后抗体吸附量分别达到最大值42.5和41.7 mg antibody/g;按照FITC试剂盒说明对检测抗体Anti-Myo-4E2/ Anti-FABP-9F3进行荧光标记;最后采用新型双抗体夹心免疫荧光分析法对AMI早期标志蛋白——Myo和H-FABP进行了检测,通过激光共聚焦显微镜对试验结果进行分析,并利用荧光分光光度计测定该方法的特异性。
Nowadays, with the development of nanotechnology, the study of new nano-material offers a new technology for the bioscience research. Immunomagnetic microspheres (Immunomagnetic Microspheres, IMMS) technology, is used the nano-magnetic microspheres as solid-phase in immunoassay. For the magnetic nano-microspheres are with small size, high specific surface area and good dispersion stability, their surfaces can coated more antigen or antibody, and the whole reaction system carried out in homogeneous solution, thereby increasing the contact probability of the antibody with the antigen, accelerating the formation of antigen-antibody complex, improving the detection sensitivity. In the present study, carboxylated magnetic microbead was used as solid phase carrier, and a carboxylated superparamagnetic microbead-assisted sandwich fluoroimmunoassay was successfully demonstrated for the semi-quantitative analysis of the early protein markers, myoglobin and human heart-type fatty acidbinding protein (H-FABP), associated with acute myocardial infarction (AMI). This assay approach was specificity, sensitively, rapidly. In addition, the protocol devised here can be used as a model for establishing general methods for other protein marker assays in the fields of clinical diagnostics and molecular biology. The results of each part are listed as follows:
     One) Firstly iron oxide nanoparticles were synthesized via a modified chemical coprecipitation method, and the surface properties were changed from hydrophobic to hydrophilic by coating with sodium oleate. Then carboxylated magnetic polymer microspheres were prepared via a dispersion polymerization method using iron oxide nanoparticles as cores and styrene, acrylic acid and DVB as polymeric monomers. They were characterized using transmission electron microscopy (TEM), scanning electron microscopy(SEM), X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), fourier transform infrared spectrophotometer (FT-IR) and atomic absorption spectrophotometry. The results of iron oxide nanoparticles indicated that their diameters are in the range of 8-15 nm, they have good dispersion stability, superparamagnetism and a saturation magnetization of 48 emu/g. The results of carboxylated magnetic polymer microspheres indicated that their diameters are in the range of 0.19-3.50μm and average diameter is 1.7μm. They have superparamagnetism, a saturation magnetization of 13.0 emu/g and a represented magnetic content of about 17.85%. The content of carboxyl group on the surface of the microsphere was 0.386 mmol/g.
     Two) The capture antibodies (Anti-FABP10E/Anti-Myo7C3) were successfully conjugated onto carboxylated microbeads. The maximum anti-H-FABP 10E1 antibody loading of 42.5 mg antibody/g microbeads and 41.7 mg anti-myoglobin 7C3 antibody/g microbeads were observed after 2.5 h reaction coupling time. The detection antibodies (anti-myoglobin 4E2 and anti-H-FABP 9F3) were labeled with FITC following the instructions for the EZ-Label TM FITC Protein Labeling Kit. Superparamagnetic polymer microsphere-assisted sandwich fluoroimmunoassay was used to detect two early biomarkers of acute myocardial infarction, myoglobin and heart-type fatty acid binding protein (H-FABP). The fluorescent reporter signals of the post-immunoassay microspheres were recorded using a confocal laser-scanning microscope. In addition, spectrofluorophotometer was also used to analyze the specificity of the immunoassay and photostability of the post-immunoassay microspheres.
引文
[1] Olsvik O, Popovic T, Skjerve E, et al. Magnetic separation techniques in diagnostic microbiology[J]. Clinical Microbiology Reviews, 1994, 7(1):43-54.
    [2] Obata K, Segawa O, Yakabe M, et al. Development of a novel method for operating magnetic particles, magtration technology, and its use for automating nucleic acid purification[J]. Journal of Bioscience and Bioengineering, 2001, 91(5):500-503.
    [3] Liu X, Guan Y, Shen R, et al. Immobilization of lipase onto micron-size magnetic beads[J]. Journal of Chromatography B, 2005, 822(1-2):91-97.
    [4]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2002:20.
    [5] Chen Y H, Liu Y Y, Lin R H, et al. Photocatalytic degradation of p-phenylenediamine with tio2-coated magnetic pmma microspheres in an aqueous solution[J]. Journal of Hazardous Materials, 2009, 163:973-981.
    [6] Kawashita M, Tanaka M, Kokubo T, et al. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer[J]. Biomaterials, 2005, 26:2231-2238.
    [7] Torno M D, Kaminski M D, Meyers R E, et al. Improvement of in vitro thrombolysis employing magnetically-guided microspheres[J]. Thrombosis Research, 2008, 121:799-811.
    [8]吴远,叶红军,王家龙.丝裂霉素-聚碳酸酯磁性微球的制备及靶向治疗原发行肝癌的实验研究[J].华夏医学, 2001, 14(1):1-3.
    [9] Pulfer S K, Ciccoto S L, Gallo J M. Distribution of small magnetic particles in brain tumor bearing rats[J]. Journal of Neuro-oncology, 1999, 41(2):99-104.
    [10] Sun S, Murray C B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices[J]. Journal of Applied Physics, 1999, 85:4325-4330.
    [11] Diehl M R, Yu J Y, Heath J R, et a1. Crystalline, shape, and surface anisotropy in two crysml morphologies of superparamagnetic cobalt nanoparticles by ferromagnetic resonance[J]. The Journal of Physical Chemistry B, 2001, 105:7913-7919.
    [12] Wang Z L, Dai Z, Sun S. Polyhedral shapes of cobalt nanocrystals and their effect on ordered nanocrystal assembly[J]. Advanced Materials, 2000, 12:1944.
    [13] Du J H, Liu H R. Preparation of superparamagneticγ-Fe2O3 nanoparticles in nonaqueous medium byγ-irradiation[J]. Journal of Magnetism and Magnetic Materials, 2006, 302:263-266
    [14] Hyeon T, Lee S S, Park J, et al. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals[J]. Journal of the American Chemical Society, 2001, 123:12798-12801.
    [15] Baykal A, K?seoglu Y, Senel M. Low temperature synthesis and characterization of Mn3O4 nanoparticles[J]. Central European Journal of Chemistry, 2007, 5 (1):169-176.
    [16] Comstock R L. Introduction to magnetism and magnetic recording[J]. John Wiley and Sons, Inc., NewYork, 1999.
    [17] McCurrie R A, Ferromagnetic Materials: Structure and Properties[M]. London: Academic Press Limited, 1994.
    [18] Makino A, Masumoto T. Nanocrystalline soft magnetic Fe–M–B (M=Zr, Hf, Nb), Fe–M–O (M = Zr, Hf, rare earth) alloys produced by crystallization of amorphous phase[J]. Nanostructured Materials,1999, 12:825-828.
    [19] You C, Sun X K, Liu W, et a1. Effect of Co and W additions on the structure and magnetic properties of Nd2Fel4B/γ-Fe nanocomposite magnets[J]. Journal of Physics D: Applied Physics, 2000, 33:926-931.
    [20] Aono H, Hirazawa T, Naohara T, et al. Synthesis of Fine Magnetite Powder Using Reverse Coprecipitation Method and its Heating Properties by Applying AC Magnetic Field[J]. Materials Research Bulletin, 2005, 40:1126-1135.
    [21]娄敏毅,王德平,黄文品,等.纳米Fe_3O_4磁性粒子合成过程中分散体系的影响[J].建筑材料学报, 2005, 8(2):169.
    [22]熊隆荣,文玉华,易成,等.聚乙二醇4000包覆Fe_3O_4磁流体的制备及稳定性研究[J].材料导报,2007,12(S1):195-197.
    [23] Wang J, Zhang K, Peng Zh M, et al. Magnetic properties improvement in Fe_3O_4 nanoparticles grown under magnetic fields[J]. Journal of Crystal Growth, 2004, 266(4):500-504.
    [24]邓建国,贺传兰,龙新平,等.磁性Fe_3O_4纳米微球的合成与表征[J].高分子学报, 2003, 3:393-397.
    [25]李发伸,王涛,王颖. H2O2氧化法制备Fe_3O_4纳米颗粒及与共沉淀法制备该样品的比较[J].物理学报, 2005, 54(7):3100-3105.
    [26] Thapa D, Palkar V R, Kurup M B, et al. Properties of magnetite nanoparticles synthesized through a novel chemical route[J]. Materials Letters, 2004, 58:2692-2694.
    [27] Gedanken A. Using sonochemistry for the fabrication of nano-materials[J]. Ultrasonics Sonochemistry, 2004, 11(2):47-55.
    [28] Vijayakumar R, Koltypin Y, Felner Z, et al. Sonochemical synthesis and characterization of pure nanometer-sized Fe_3O_4 particles[J]. Materials Science and Enginering A, 2000, 286:101.
    [29] Zhang K, Chew C H, Kawi S, et al. Synthefis and evaluation of ru-themum-copper oxide/silica catalysts derived from microemulsion processing[J]. Catalysis Lettres, 2000, 64(2):179-184.
    [30] Massimo B, Albrecht W, Piero B. Synthesis and characterization of surfactant and silica-coated cobalt ferrite nanoparticles[J]. Statistical Mechanics and its Applications: Physical A, 2004, 339:1-2.
    [31]李享,杨海滨.纳米Fe_3O_4磁性颗粒的制备进展[J].材料导报, 2006, 20(VI):145-148.
    [32] Zhou Z H, Wang J, Liu X, et al. Synthesis of Fe_3O_4 nanoparticles from emulsions[J]. Journal of Materials Chemistry, 2001, 11(6):1704-1709.
    [33] Fan R, Chen X H, Gui Z, et al. A new simple hydrothermal preparation of nanocrystalline magnetite Fe_3O_4[J]. Materials Research Bulletin, 2001, 36(3):497-502.
    [34]邹大香,王海燕,杨晓辉,等.影响水热合成纳米Fe_3O_4晶粒纯度和平均粒径的因素[J].科学技术与工程, 2003, 3(3):253-256.
    [35] Jiang J S, Yang X L, Gao L, et a1. Synthesis and characterization of nanocrystalline zinc ferrite[J]. Nanostructured Materials, 1999, 12:143-146.
    [36] Goya C F. Handling the particle size and dist ribution of Fe_3O_4 nanoparticles through ball milling[J]. Solid State Communication, 2004, 130(12):783-788.
    [37]英廷照,沈辉,章永化,等.高分散纳米Fe_3O_4颗粒的制备和表征[J].机械科学与技术, 1998, 17(11):147.
    [38]何运兵,邱祖民,佟珂.制备纳米Fe_3O_4的研究进展[J].化工科技, 2004, 12(6):52-57.
    [39] Morais P C, Azevedo R B, Rabelo D, et al. Synthesis of magnetite nanoparticles in mesoporous copolymer template: A model system for mass-loading control[J]. Chemistry of Materials, 2003, 15(13):2485-2487.
    [40] Tang N J, Zhong W, Jiang H Y, et al. Nanost ructured magnetite (Fe_3O_4) thin films prepared by sol-gel method[J]. Journal of Magnetism and Magnetic Materals, 2004, 282:92-95.
    [41] Roullin V G, Deverre J R, Lemaire L, et al. Anti-cancer drug diffusion within living rat brain tissue: An experimental study using [3h](6)-5-fluorouracil-loaded PLGA microspheres[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 53(2):293-299.
    [42] Li Z, Chen H, Bao H, et al. One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals[J]. Chemistry of Materials, 2004, 16 (8):1391-1393.
    [43] Si S, Kotal A, Mandal T K, et al. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes[J]. Chemistry of Materials, 2004, 16 (18):3489-3496.
    [44] Caruntu D, Caruntu G, Chen Y, et al. Synthesis of variable-sized nanocrystals of Fe_3O_4 with high surface reactivity[J]. Chemistry of Materials, 2004, 16 (25):5527-5534.
    [45] Akira I, Masashige S, Hiroyuki H, et al. Construction and Harvest of Multilayered Keratinocyte Sheets Using Magnetite Nanoparticles and Magnetic Force[J]. Tissue Engineering, 2004, 10(5-6):873-880.
    [46] Arica M Y, Yavuz H, Patir S, et al. Invertase immobilized on spacer-arm attached poly(hydroxylethyl methacrylate) membrane: Preparation and properties[J]. Journal of Applied Polymer Science, 2000, 75(14):1685-1692.
    [47] Akg?l S, Kacüar Y, A Denizli, et al. Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres[J]. Food Chemistry, 2001, 74 (3):281-288.
    [48] Chemla Y R, Crossman H L, Poon Y R, et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(26):14268-14272.
    [49] Invernici G, Ponti D, Corsini E, et al. Human microvascular endothelial cells from different fetal organs demonstrate organ-specific cam expression[J]. Experimental Cell Research, 2005, 308:273-282.
    [50] Tartaj P, Serna C J. Synthesis of Monodisperse Superparamagnetic Fe/Silica Nanospherical Composites[J]. Journal of the American Chemical Society, 2003, 125(51):15754-15755.
    [51] Wang X M, Gu H C, Yang Z Q. The heating effect of magnetic fluids in an alternating magnetic field[J]. J Magn Mngn Mater, 2005, 293:334-340.
    [52] Arruebo M, Fernandez-Pacheco R, Ibarra M R,et al. Magnetic nanoparticles for drug delivery[J]. Nano Today, 2007, 2 (3):22-23.
    [53] Annie G. Development of an Immunomagnetic Method for Selective isolation of Actinobac illus Pleuropneumoniae Serotype from Tonsils[J]. Journal of Clinical Microbiol, 1998, 36:251-254.
    [54] Lubbe A S, Bergemann C, Brock J, et al. Physiological aspects in magnetic drug-targeting[J]. Journal of Magnetism and Magnetic Materials, 1999, 194(1-3):149-155.
    [55] Chatterjee J, Haik Y. Sythesis and characterization of heat-stabilized albumin magnetic microspheres[J]. Colloid and Polymer Science, 2001, 1081:279-1079.
    [56]谢钢,张秋禹,李铁虎.磁性高分子微球[J].高分子通报, 2001, 6:22-24.
    [57] Tokuoka K, Senna M, Kuno H. Preparation of inorganic/polymeric composite micropheres by direct suspension polymerization[J].Material Science, 1986, 21:493.
    [58] Rana S, White P, Bradley M. Synthesis of magnetic beads for solid phase synthesis and reaction scavenging[J]. Tetrahedron Letters, 1999, 40:8137-8140.
    [59] Yang C L, Liu H Z. Preparation of magnetic poly(methylmethacrylate-divinylbenzene- glycidylmethacrylate) microspheres by spraying suspension polymerization and their use for protein adsorption[J]. Journal of Magnetism and Magnetic Materials 2005, 293:187-192.
    [60] Solc N H. Colloidal size hydroPhobic Polymers Partieulate having discrete Particles of an inorganic material dispersed therein. US Patent 4421660, 1983.
    [61] Yanase N, Noguehi H, Asakura H, et al. Preparation of magnetie latex partieles by emulsion polymerization of styrenein the presenee of ferrofluid[J]. Journal of Applied Polymer Science, 1993, 50:765.
    [62] Noguehi H, Yanase N, Uehida Y, et al. Preparation and charaeterization by thermal analysis of magnetic latex partieles[J]. Journal of Applied Polymer Science, 1993, 48:1593.
    [63] Khng H P, Cunliffe D, Davies S, et al. The synthesis of sub-micron magnetic partieles and their use for preparative Purifieation of Proteins[J]. Bioteehnol and Bioengineering, 1998, 60(4):419.
    [64] Kondo A, Fukuda H. Preparation of thermo-sensitive magnetic microspheres and their application to bioprocesses[J]. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 1999, 15(3):435-438.
    [65] Elaissari A, Rodrigue M, Meunier F, et al. Hydrophilic magnetic Iatex for nucleic acid extraction, purification and concentration[J]. Journal of Magnetism and Magnetic Materials, 2001, 225:127.
    [66] Sauzedde F, Elaissari A, Piehot C. Thermosensitive magnetic Partieles as solid Phase support in an immunoassay[J]. Maeromolecular Symposia, 2000, 151:617.
    [67] Drescoh P A, Zaitsev V S, Gambino R J. Preparation and properties of magnetite nanoparticles[J]. Langmuir, 1999, 15:1945-1969.
    [68] Zaitsev V S, Filimonov D S, Presnyakov I A. Physicaland chemical properties of magnetite and magnetitepolymer nanoparticles and their colloidaldispersions[J]. Journal of Coloid and Interface Science, 1999, 212:49-61.
    [69] Richard J, Vaslin S. Latex of calibrated monodisperse magnetizable microspheres, process of the said latex in chemistry or in biology[P].USP 5976426, 1999.
    [70]李孝红,丁小斌,孙宗华.含羟基磁性高分子微球的合成及表征[J].功能高分子学报, 1995, 18(1):731.
    [71]丁小斌,孙宗华,万国祥,等.热敏性高分子包裹的磁性微球的性质及表征[J].高分子学报, 1999, 6:674-679.
    [72]刘春丽,周福贵,韩兆让,等.聚(苯乙烯-丙烯酸)磁性高分子微球的制备和表征[J].化学研究, 2007, 18(17):72-75
    [73]张珊,游长江,陶潜,等.磁性高分子微球的制备及其应用[J].广州化学, 2004, 29(2):45-50.
    [74] Wang J S, Matyjaszewski K. Controlled/living radical polymerization atom transfer radical polymerization in the presence of transition-metal complexes[J]. Journal of American Chemical Society, 1995, 117:5614-5615
    [75] Tsarevsky N V, Matyjaszewski K. Atom transfer radical polymerization: from process design topreparation of well-defined environmentally friendly polymeric materials[J]. Chemical Review, 2007, 107:2270-2299.
    [76] Pyun J, Kowalewski T, Matyjaszewski K. Synthesis of polymer brushes using atom transfer radical polymerization[J]. Macromolecuar Rapid Communications, 2003, 24:1043-1059.
    [77] Ejaz M, Yamamoto S, Ohno K, et al. Controlled grafting of a well-defined glycopolymerization[J]. Macromolecules, 2003, 33(8):2870-2874.
    [78] Von Werne T, Patten T E. Preparation of structurally well-defined polymer nanoparticle hybrids with controlled/living polymerizations[J]. Journal of American Chemical Society, 1999, 121:7409-7410.
    [79] Pyun J, Matyjaszewski K, Kowalewski T, et al. Synthesis of well-defined block copolymers tethered to polysilsesquioxane nanoparticles and their nanoscale morphology on surfaces[J]. Journal of American Chemical Society, 2001, 123:9445-9446.
    [80] Mandal T K, Fleming M S, Walt D R. Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature[J]. Nano Letters, 2002, 2:3-7.
    [81] Pyun J, Jia S J, Kowalewski T, et al. Synthesis and characterization of organic/inorganic hybrid nanoparticles:kinetics of surface-initiated atom transfer radicalpolymerization and morphology of hybrid nanoparticle ultrathin films[J]. Macromolecules, 2003, 36(14):5094-5104.
    [82] Li D X, He Q, Cui Y, et al. Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine)[J]. Chemistry Materials, 2007, 19:412-417.
    [83] Bai Y P, Teng B, Chen S H, et al. Preparation of magnetite nanoparti-cles coated with an amphiphilic block copolymer: A potential drug carrier with a core-shell-corona structure for hydrophobic drug de-livery[J]. Macromolecular Rapid Communications, 2006, 27:2107-2112.
    [84] Viala S, Tauer K, Antonietti M, et al. Structural control in radical polymerization with 1,1-diphenylethylene Part 3 Aqueous heterophase polymerization[J]. Polymers, 2005, 46(19):7843-7854.
    [85]张和鹏,张秋禹,王巍,等.可控制自由基聚合DPE法制备P(AA-MMA-ST)/Fe_3O_4磁性复合微球[J].化学学报, 2006, 64(17):1831-1836.
    [86] Bergervoet J H W, Peters J, Beckhoven J RC, et al. Multiplex microsphere immuno-detection of potato virus y, x and PLRV[J]. Journal of Virological Methods, 2008, 149(1):63-68.
    [87] Kondo A, Kawano T, Itoh F, et al. Imunological agglutination kinetics of latex particles with physically adsorbed antigens[J]. Journal of Immunology Methods. 1990, 135:111.
    [88] Mikhaylova M, Kim D K, Berry C C, et al. BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles[J]. Chemistry Materials, 2004, 16:2344-2354.
    [89] Ugelstad J, Berge A, Ellingsen T, et al. Preparation and application of new monosized polymer particles[J]. Progress in Polymer Science, 1992, 17:87-161.
    [90] Abdelmajid S, Malek L, Eric B, et al. Efficiency of Ber-EP4 antibody for isolation circulating epithelial tumor cells before RT-PCR detection[J]. American Journal of Clinical Pathology, 1999, 112:171-178.
    [91] Jhunu C, Yousef H, Chen C J. Modification and characterization of Polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres[J]. Journal of Magnetism and Magnetic Materials, 2001, 225:21.
    [92] Goodwin S, Peterson C, Hoh C, et al. Targeting and retention of magnetic targeted carriers (MTCs)enhancing intra-arterial chemotherapy[J]. Journal of Magnetism and Magnetic Materials, 1999, 194:132-139.
    [93] Csetneki I, Kabaifaix M, Szilagyi A, et al. Preparation of magnetic polystyrene latex via the miniemulsion polymerization technique[J]. Journal of Polymer Science Part A: Polymer Chemistyr, 2004, 42:4802-4808.
    [94] Asmatulu R, Zalich M A, Richard O, et al. Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields[J]. Journal of Magnetism and Magnetic Materials, 2005, 292:108-119.
    [95] Tartaj P, Morales D P M, Verdaguer V S, et al. The preparation of magnetic nanoparticles for applications in biomedicine[J]. Journal of Physics D: Applied Physics. 2003, 36(13):182-197.
    [96] Fu L, Dravid V P, Johnson D L. Self-assembled (SA) bilayer molecular coating on magnetic nanoparticles[J]. Applied Surface Science, 2001, 181 (1-2):173-178.
    [97] Widder K J. Magnetic micorspheres: a vehicle for selective targeting of drugs[J]. Pharmacology Therapeutics, 1983, 20:33-37
    [98] Lubbe A S, Bergemann C, Huhut W, et al. Preclinical experiences with magnetic drug targeting: tolerance and efficacy[J]. Cancer Research, 1996, 56(20):4694-4701.
    [99]袁定重,张秋禹,张和鹏,等.磁性高分子微球研究进展及其在生化分离中的应用[J].材料科学与工程学报, 2006, 24(2):206-277.
    [100] Lei H, Wang W, Chen L L, et al. The preparation and catalytically active characterization of papain immobilized on magnetic composite microspheres[J]. Enzyme and microbial Technology, 2004, 35(1):15-21.
    [101] Gu H W, Xu K M, Xu C J, et al. Biofunctional Magnetic Nanoparticles for Protein Separation and Pathogen Detection" (feature article)[J]. Chemical Communications, 2006:941-949.
    [102] Kondo A, Kamura H, Higashitani K. Development and application of thermosensitive magnetic immunomicrosphere for antibody purifieation[J]. Applied Microbiology and Biotechnology, 1994, 41:99.
    [103]丁小斌,孙宗华,万国祥,等.热敏性磁性高分子微球同蛋白质的相互作用[J].高分子学报, 2000, 1:9.
    [104] Elaissari A, Rodrigue M, Meunier F, et a1. Hydrophilic magnetic latex for nucleic acid extraction, purification and concentration[J]. Journal of Magnetism and Magnetic Materials, 2001, 225:127-133.
    [105] Gabrielsen O S, Homes E, Korsnes L. Magnetic DNA affinity purification of yeast transcription factor T-anew purification principle for the ultra rapid isolation of near homogeneous factor[J]. Nucleic Acids Research, 1989, 17:6253-6267.
    [106] Bose A, Sonti S V. DNA Isolation using avidin-coated magnetic nanoclusters[J]. Colloid Surface B: Biointerfaces, 1997, 8:199-200.
    [107] Bange A, Halsall H B, Heineman W R. Microfluidic immunosensor systems[J]. Biosensors and Bioelectronics, 2005, 20:2488-2503.
    [108] Jiang W Q, Yang H C, Yang S Y, et al. Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible[J]. J Magn Magn Mater, 2004, 283:210-214.
    [109] ZhaoY B, Qiu Z M, Huang J Y. Preparation and analysis of Fe_3O_4 magnetic nanoparticles used as targeted-drug carriers[J]. Chinese Journal of Chemical Engineering, 2008, 16(3):451-455.
    [110] Ozkaya T, Toprak M S, Baykal A, et al. Synthesis of Fe_3O_4 nanoparticles at 100°C and its magnetic characterization[J]. Journal of Alloys and Compounds, 2009, 472(1):18-23.
    [111] Li G Y, Huang K L, Jiang Y R, et al. Preparation and characterization of Saccharomyces cerevisiae alcohol dehydrogenase immobilized on magnetic nanoparticles[J]. International Journal of Biological Macromolecules, 2008, 42:405-412.
    [112] Xuan S H, Chen M W, Hao L Y, et al. Preparation and characterization of microsized FeCO3, Fe_3O_4 and Fe2O3 with ellipsoidal morphology[J]. Journal of Magnetism and Magnetic Materials, 2008, 320:164-170.
    [113] Zhao D L, Zeng X W, Xia Q S, et al. Preparation and coercivity and saturation magnetization dependence of inductive heating property of Fe_3O_4 nanoparticles in an alternating current magnetic field for localized hyperthermia[J]. Journal of Alloys and Compounds, 2009, 469:215-218.
    [114] Iwasaki T, Kosaka K, Mizutani N, et al. Mechanochemical preparation of magnetite nanoparticles by coprecipitation[J]. Materials Letters, 2008, 62:4155-4157.
    [115] Hench L, West J. The sol-gel process[J]. Chemical Reviews, 1990, 90(1):33-72.
    [116] Huang Z-G, Feng Q, Chen Z-G, et al. Surface and size effects of magnetic properties in ferromagnetic nanoparticles[J]. Microelectronic Engineering, 2003, 66(1):128-135.
    [117]中国腐蚀与防护学会等编.金属腐蚀手册[M].上海:科学出版社, 1987:11-13.
    [118]日本化学会编,曹惠民,包文滁,安家驹译,无机化合物合成手册[M].北京:化学工业出版社, 1983:309.
    [119]孙海平.磁性纳米粒子的表面修饰及功能化[D].扬州:扬州大学, 2008.
    [120] Zhao Y B, Qiu Z M, Huang J Y. Preparation and analysis of Fe_3O_4 magnetic nanoparticles used as targeted-drug carriers[J]. Chinese Journal of Chemical Engineering, 2008, 16(3):451-455.
    [121] Zhang Z Z, Zhang L M. Synthesis of novel porous magnetic silica microspheres as adsorbents for isolation of genomic DNA[J]. Biotechnology Progress, 2006, 22:514-518.
    [122] Alberto C, Maria F. Magnetic and structural investigation of highly porous CoFe2O4-SiO2 nanocomposite Aerogels[J]. Journal of Physical Chemstry C, 2007, 111(2):916-922.
    [123] Chang Q, Zhu L-H, Yu C, et al. Synthesis and properties of magnetic and luminescent Fe_3O_4/SiO2/Dye/SiO2 nanoparticles[J]. Journal of Luminescence, 2008, 128:1890-1895.
    [124] Dhage S R, Gaikwad S P, Samuel V, et al. Synthesis of nanocrystalline SnO2 powder at 100°C[J]. Bulletin Materials Science, 2004, 27(3):221-222.
    [125] Chen C T, Chen Y C. Fe_3O_4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted lase desorption/ionization mass spectrometry[J]. Analytical Chemistry, 2005, 77:5912-5919.
    [126] Dhage S R, Choube V, Samuel V, et al. Synthesis of nanocrystalline TiO2 at 100°C[J]. Materials Letters, 2004, 58(17-18):2310-2313.
    [127]崔亚丽,陈超. Fe304/Au纳米复合粒子及其光学性质[J].中国科学(B), 2006, 35(2):89-93.
    [128] Simeonidis K, Mourdikoudis S, Tsiaoussis I, Angelakeris M, Dendrinou-Samara C, Kalogirou O. Structural and magnetic features of heterogeneously nucleated fe-oxide nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2008, 320:1631-1638.
    [129]李学慧,吴业,刘宗明.磁流体的研制[J].化学世界, 1998, 1:15-17.
    [130] Hong J, Hong C K , Shim S E. Synthesis of polystyrene microspheres by dispersion polymerizationusing poly(vinyl alcohol) as a steric stabilizer in aqueous alcohol media[J]. Colloids and Surface A: Physicochemical and Engineering Aspects, 2007, 302(1-3):225-233.
    [131] Lee J, Ha J U, Choe S, et al. Synthesis of highly monodisperse polystyrene microspheres via dispersion polymerization using an amphoteric initiator[J]. Journal of Colloid and Interface Science, 2006, 298:663-671.
    [132]何卫东.高分子化学实验[M ].合肥:中国科学技术大学出版社, 2003:108 - 109.
    [133] Wang C, Zhang Y. A microsphere coupled micropatterning method for cytokine detection[J]. Sensors and Actuators B, 2006, 120:125-129.
    [134] Cao Y-C, Hua X-F, Zhu X-X, et al. Preparation of Au coated polystyrene beads and their application in an immunoassay[J]. Journal of Immunological Methods, 2006, 317(1-2):163-170.
    [135]洪小平,彭图治.功能高分子磁性微球的制备及分析应用[J].分析化学, 2003, 31(7):789-793.
    [136] Condon C, Carthy G. Lifestyle changes following acute myocardial infarction: Patients perspectives[J]. European Journal of Cardiovascular Nursing, 2006, 5(1):37-41.
    [137] Sala J, Rohlfs I, García M M, et al. Effect of reactions to symptom onset on early mortality from myocardial infarction[J]. Revista Espanola de Cardiologia, 2005, 58 (12):1396-1402.
    [138] Ryan T J, Anderson J L, Antman E M, et al. ACC/AHA guidelines for the management of patients with acute myocardial infarction. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines[J]. Journal of American College Cardiology, 1996, 28:1328-1428.
    [139] Yang Z, Zhou D. Cardiac markers and their point-of-care testing for diagnosis of acute myocardial infarction[J]. Clin Biochem, 2006, 39(8):771-780.
    [140] Nakata T, Hashimoto A, Hase M, et al. Human heart-type fatty acid-binding protein as an early diagnostic and prognostic marker in acute coronary syndrome[J]. Cardiology, 2003, 99(2):96-104.
    [141] Erdem A, Yontar O C, Yilmaz M B. Detecting Posterior Wall Acute Myocardial Infarction by Electrocardiogram[J]. The American Journal of Cardiology, 2009, 103(11):1622.
    [142] Spiers C M. Using the 12-lead ecg to diagnose acute myocardial infarction in the presence of left bundle branch block[J]. Accident and Emergency Nursing, 2007, 15(1):56-61.
    [143] Tong K L, Kaul S, Wang X Q, et al. Myocardial contrast echocardiography versus TIMI score in patients presenting to the emergency department with chest pain and a non-diagnostic electrocardiogram[J]. J Am Coll Cardiol, 2005, 46:920-927.
    [144] JAdams J E, Trent R, Rawles J. Earliest electrocardiographic evidence of myocardial infarction: implications for thrombolytic treatment[J]. Br Med J 1993, 307:409-413.
    [145] Ahmar W, Lefkovits J. Acute ST elevation myocardial infarction with angiographically normal coronary arteries: Causes and outcomes[J]. International Journal of Cardiology, 2008, 128(1):131-133
    [146] Wolf M, Juncker D, Michel B, et al. Simultaneous detection of c-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks[J]. Biosensors and Bioelectronics, 2004, 19(10):1193-1202.
    [147] Parodi G, Pace S D, Carrabba N,et al. Incidence, clinical findings, and outcome of women with left ventricular apical ballooning syndrome[J]. The American Journal of Cardiology, 2007, 99(2):182-185.
    [148] Schindler D M, Lux R L, Shusterman V, et al. Karhunen-loève representation distinguishes st-t wave morphology differences in emergency department chest pain patients with non-st-elevation myocardial infarction versus nonacute coronary syndrome[J]. Journal of Electrocardiology, 2007, 40(6):145-149.
    [149] Kannel W. Silent myocardial ischemia and infarction: Insights from the framingham study[J]. Cardiol Clin, 1986, 4(4):583-591.
    [150] Gillum R, Fortmann S, Prineas R, et al. International diagnostic criteria for acute myocardial infarction and acute stroke[J]. American Heart Journal, 1984, 108(1):150-158.
    [151] Brunetti N D, Troccoli R, Correale M, et al. C-reactive protein in patients with acute coronary syndrome: Correlation with diagnosis, myocardial damage, ejection fraction and angiographic findings.[J]. International Journal of Cardiology, 2006, 109(2):248-256.
    [152] Hamm CW, Goldmann BU, Heeschen C, et al. Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponiniort[J]. The New England Journal of Medicine, 1997, 337(23):1648-1653.
    [153] Cheng M L, Chen C M, Gu P W, et al. Elevated levels of myeloperoxidase, white blood cell count and 3-chlorotyrosine in taiwanese patients with acute myocardial infarction[J]. Clinical Biochemistry, 2008, 41(7-8):554-560.
    [154] Matveeva E G, Gryczynski Z, Lakowicz J R. Myoglobin immunoassay based on metal particle-enhanced fluorescence[J]. Journal of Immunological Methods, 2005, 302(1-2):26-35.
    [155] Mair J, Artner Dworzak E, Lechleitner P, et al. Early diagnosis of acute myocardial infarction by newly developed rapid immunoturbidimetric assay for myoglobin[J]. British Heart Journal, 1992, 68(11):462-468.
    [156] O’Regan T M, Pravda M, O’Sullivan C K, et al. Development of a disposable immunosensor for the detection of human heart fatty-acid binding protein in human whole blood using screen-printed carbon electrodes[J]. Talanta, 2002, 57(3):501-510.
    [157] Glatz J F C, Vusse V D, Hermens W T. Fatty acid-binding protein and the early detection of acute myocardial infarction[J]. Journal of Clinical Assay, 2002, 25:167-177.
    [158] Sallach S M, Nowak R, Hudson M P, et al. A change in serum myoglobin to detect acute myocardial infarction in patients with normal troponin i levels[J]. The American Journal of Cardiology, 2004, 94:864-847.
    [159] Diris J, Hackeng C, Kooman J, et al. Impaired renal clearance explains elevated troponint fragments in hemodialysis patients[J]. Circulation, 2004, 103:23-25.
    [160] Nieuwenhoven F A V, Kleine A H, Wodzig W H, et al. Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acid-binding protein[J]. Circulation, 2005, 92(10):2848-2854.
    [161] Wodzig K W H, Kragten J A, Modrzejewski W, et al. Thrombolytic therapy does not change the release ratios of enzymatic and nonenzymatic myocardial marker proteins[J]. Clin. Chim. Acta., 1998, 272(2):209-223.
    [162] Hillis G S, Taggart P, Hillis L, et al. Biochemical and clinical predictors of long-term outcome in patients with nonspecific chest pain and nondiagnostic electrocardiograms[J]. American Heart Journal, 2003, 145(1):88-94.
    [163] Li G Y, Huang K L, Jiang Y R, et al. Preparation and characterization of carboxyl functionalization of chitosan derivative magnetic nanoparticles[J]. Biochemical Engineering Journal, 2008, 40(3):408-414.
    [164] Pelsers M M A L, Hermens W T, Glatz J F C. Fatty acid-binding proteins as plasma markers of tissue injury[J]. Clinica Chimica Acta, 2005, 352:15-35.
    [165] Tanasijevic M J, Cannon C P, Antman E M, et al. Myoglobin creatine-kinase-mb and cardiac troponin-i 60-minute ratios predict infarct-related artery patency after thrombolysis for acute myocardial infarction[J]. Journal of the American College of Cardiology, 1999, 34(3):739-747.
    [166] Haik Y, Cordovez M, Chen C-J,et al. Magnetic immnoassay for rapid assessment of acute myocardial infarction (ami)[J]. European Cells and Materials, 2002, 3:41-44.
    [167] Acrica M Y, Yavuz H, Patir S,et al. Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor[J]. Journal of Molecular Catalysis B: Enzymatic, 2000, 11:127-138.
    [168] Huang S H, Liao M H, Chen D H. Direct binding and characterization of lipase onto magnetic nanoparticles[J]. Biotechnol Prog, 2003, 19:1095-1100.
    [169] Lim CT, Zhang Y. Bead-based microfluidic immunoassays: The next generation[J]. Biosensors and Bioelectronics, 2007, 22(7):1197-1204.
    [170] Dasso J, Lee J, Bach H, et al. A comparison of ELISA and flow microsphere-based assays for quantification of immunoglobulins[J]. Journal of Immunological Methods, 2002, 263:23-33.
    [171] Tiller J C, Rieseler R, Berlin P, et al. Stabilization of activity of oxidoreductases by their immobilization onto special functionalized glass and novel aminocellulose film using different coupling reagents[J]. Biomacromolecules, 2002, 3(5):1021-1029.
    [172] Wang Y, Caruso F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation[J]. Chemistry of Materials, 2005, 17(5):953-961.
    [173] Koutsopoulos S, Oost Jvd, Norde W. Adsorption of an endoglucanase from the hyperthermophilic pyrococcus furiosus on hydrophobic (polystyrene) and hydrophilic (silica) surfaces increases protein heat stability[J]. Langmuir, 2004, 20(15):6401-6406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700