电负性与半导体材料带隙研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能材料设计已经成为新材料领域的重要研究课题之一。材料设计的基础就是深刻认识晶体微观结构并建立物理性质与微观结构之间的定量关系。经过70多年的发展,电负性如今已经成为材料性质研究的基本参数之一,它表示分子中原子将电子吸引向自身的能力,所以由成键原子吸引电子能力决定的性质都与电负性存在一定的关系。带隙是决定半导体应用价值的主要特性参数之一,它表示电子从价带顶跃迁到导带底所需要的能量,它与成键原子对价电子的吸引力有关。实现对此参数的预测,可为新型半导体材料的开发提供指导。因此本论文从电负性观点出发来研究半导体材料的带隙。
     我们从材料的微观结构出发,研究带隙的本质决定因素。研究得出半导体带隙取决于两个因素:1)成键原子对电子的吸引能力;2)化学键上价电子的离域程度。从这两个角度出发,对ANB8-N型二元化合物半导体建立了电负性与带隙之间的定量关系。然后,将模型拓展到ABC2三元黄铜矿半导体带隙的计算。计算结果与实验符合的很好。
     半导体掺杂是带隙工程的一个重要技术手段,但是目前在掺杂合金半导体带隙的计算方面仍缺乏一种简单有效的方法。我们将模型推广到用于预测AχB1-χC和ABχC1-χ阴阳离子掺杂合金半导体的带隙。在计算过程中我们假定杂质离子进入主体化合物以后都是均匀分布并根据AC和BC的配位结构是否相同,将三元合金分为两类分别进行研究。计算值与实验值非常吻合。这说明电负性可以有效地用于材料带隙的预测。该模型表明可以通过分析材料的化学组成及晶体结构定量计算一些化合物和掺杂半导体材料的带隙,为材料带隙的预测以及半导体掺杂提供了有益的指导。
Functional material design has already been one of the most important research objects. This bases on a sophisticated knowledge of crystal microscopic structure and the quantitative relationship between the structure and the physical properties of crystals. For more than 70 years, electronegativity has been a fundamental parameter for the study of material properties, which is defined as an attractive ability of the atom in molecule to the electrons. Therefore, the property determined by such ability should correlate with the electronegativity. Band gap is an important parameter in determining the practical application of semiconductor materials, which denotes the required energy for an electron to jump from the valence band maximum to the conduction band minimum relating to the attractive power of bonding atoms to their valence electrons. Realizing the prediction of the parameter can provide a clue for the exploitation of new-type semiconductor materials. In this work, we investigate the band gap of semiconductor material from the viewpoint of electronegativity.
     In the framework of microscopic structure of materials, we analyze the origin of the band gap. Then, we propose that the band gap is determined by two factors:ⅰ) the attractive power of two bonded atoms to their valence electrons;ⅱ) the delocalization degree of the valence electrons between the two bonded atoms. From these two viewpoints, we establish a quantitative relation between electronegativity and the band gap for ANB8-N ternary compound semiconductors. Then, we extend this model to calculate the band gap of ABC2 ternary chalcopyrite compounds. The calculated band gap values of these two type compounds are in agreement with those experimental data.
     Doping of semiconductor is a key technology for band gap engineering, whereas a simple and effective method is imminently needed in evaluating the band gap of alloyed semiconductors. Hence, we employ our model to predict the band gaps of AxB1-xC and ABxC1-xisovalent substituted semiconductor alloys. Herein, we assume that the doped ions uniformly distribute in the host crystal. Additionally, according to whether AC and BC have the same structure, we divide these alloyed compounds into two categories. The calculated band gap results of these semiconductor alloys agree well with those available experimental data, indicating that this method gives a good description of the band gap and the covalent electronegativity can be effectively used to estimate the band gaps of semiconducting materials. This work provides us an effective method to predict the band gaps of semiconductor materials and gives guidance for the design of new alloyed semiconductors and the determination of macroscopic properties from microscopic structures.
引文
[1]周永溶.半导体材料[M].北京:北京理工大学出版社,1992.
    [2]邓志杰,郑安生.半导体材料[M].北京:化学工业出版社,2004.
    [3]王季陶,刘明登.半导体材料[M].北京:高等教育出版社,1990.
    [4]马如章,蒋民华,徐祖雄.功能材料学概论[M].北京:冶金工业出版社,1999.
    [5]VURGAFTMANA I, MEYER J R, RAM-MOHAN L R. Band parameters for III-V compound semiconductors and their alloys [J]. Journal of Applied Physics,2001,89(11):5815-5875.
    [6]MOKKAPATI S, JAGADISH C. III-V compound SC for optoelectronic devices [J]. Materials Today,2009,12(4):22-32.
    [7]STECKEL J S, SNEE P, COE-SULLIVAN S, et al. Color-saturated green-emitting QD-LEDs [J]. Angewandte Chemie International Edition,2006,45(35):5796-5799.
    [8]SUN Q, ANDREW WANG Y, LI L S, et al. Bright, multicoloured light-emitting diodes based on quantum dots [J]. Nature Photonics,2007,1(12):717-722.
    [9]XIE R, KOLB U, LI J, et al. Synthesis and characterization of highly luminescent cdse-core CdS/Zn0.5Cdo.5S/ZnS multishell nanocrystals [J]. Journal of American Chemical Society,2005, 127(20):7480-7488.
    [10]王玉霞,何海平,汤洪高.宽带隙半导体材料SiC研究进展及其应用[J].硅酸盐学报,2002,30(3):372-381.
    [11]AKHTAR J, AFZAAL M, BANSKI M, et al. Controlled synthesis of tuned bandgap nanodimensional alloys of PbSxSe1-x [J]. Journal of American Chemical Society,2011,133(14): 5602-5609.
    [12]杨频.性能-结构-化学键[M].北京:高等教育出版社,1987.
    [13]XIAO K, LIN Y, QI T, et al. A highly 6-stacked organic semiconductor for field-effect transistors based on linearly condensed pentathienoacene [J]. Journal of American Chemical Society,2005, 127(38):13281-13286.
    [14]SUN Y, ROHDE D, LIU Y, et al. A novel air-stable n-type organic semiconductor: 4,4'-bis[(6,6'-diphenyl)-2,2-difluoro-1,3,2-dioxaborine] and its application in organic ambipolar field-effect transistors [J]. Journal of Materials Chemistry,2006,16(46):4499-4503.
    [15]SCHOLES G D, RUMBLES G. Excitons in nanoscale systems [J]. Nature Materials,2006,5(9): 683-696.
    [16]FUJISHIMA A. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972,238(5358):37-38.
    [17]GAI Y, LI J, LI S S, et al. Design of narrow-gap TiO2:A passivated codoping approach for enhanced photoelectrochemical activity [J]. Physical Review Letters,2009,102(3):036402.
    [18]JANG J S, HONG S J, KIM J Y, et al. Heterojunction photocatalyst TiO2/AgGaS2 for hydrogen production from water under visible light [J]. Chemical Physics Letters,2009,475(1-3):78-81.
    [19]Pauling L. The nature of the chemical bond [M]. New York:Cornell University Pr.,1960.
    [20]MULLIKEN S R. A new electroaffinity scale:Together with data on valence states and on valence ionization potentials and electron affinities [J]. Journal of Chemical Physics,1934,2(11): 782-793.
    [21]SANDERSON T R. Electronegativities in inorganic chemistry [J]. Journal of Chemical Education, 1952,29(11):264-268.
    [22]ALLRED A L, ROCHOW E G. A scale of electronegativity based on electrostatic force [J]. Journal of Inorganic and Nuclear Chemistry,1958,5(4):264-268.
    [23]PARR R G, PEARSON R G. Electronegativity:The density functional viewpoint [J]. Journal of Chemical Physics,1978,68(8):3801-3807.
    [24]ALLEN L C. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms [J]. Journal of American Chemical Society,1989,111(25): 9003-9014.
    [25]袁汉杰.电负性研究:I.原子电负性.化学学报[J],1964,30(3):341-347.
    [26]LUO Y R, PACEY P D. Theoretical support for a new electronegativity scale [J]. Journal of American Chemical Society,1991,113(4):1465-1466.
    [27]LEYSSENS T, GEERLINGS P, PEETERS D. A group electronegativity equalization scheme including extemal potential effects [J]. Journal of Physical Chemistry A,2006,110(28): 8872-8879.
    [28]SANDERSON R T. Electronegativities in inorganic chemistry [J]. Journal of Chemical Education, 1954,31(1):2-7.
    [29]ZHANG Y H. Electronegativities of elements in valence states and their applications.1. Electronegativities of elements in valence states [J]. Inorgnic Chemstry,1982,21(11): 3886-3889.
    [30]XUE D, ZUO S, RTTAJCZAK H. Electronegativity and structural characteristics of lanthanides [J]. Physica B,2004,352(1-4):99-104.
    [31]LI K Y, XUE D F. Estimation of electronegativity values of elements in different valence states [J]. Journal of Physical Chemistry A,2006,110(29):11332-11337.
    [32]LI K Y, XUE D F. A new set of electronegativity scale for trivalent lanthanides [J]. Physica Status Solidi(b),2007,244(6):1982-1987.
    [33]LI K, XUE D. New development of concept of electronegativity [J]. Chinese Science Bulletin, 2009,54(2):328-334.
    [34]LI K Y, WANG X T, XUE D F. Electronegativity of elements in covalent crystals [J]. Journal of Physical Chemistry A,2008,112(34):7894-7897.
    [35]HINZE J, WHITEHEAD M A, JAFFE H H. Electronegativity, II. Bond and orbital electronegativities [J]. Journal of American Chemical Society,1963,85(2):148-154.
    [36]YANG Z Z, WANG S C. Atom-bond electronegativity equalization method.1. Calculation of the charge distribution in large molecules [J]. Journal of Physical Chemistry A,1997,101(35): 6315-6321.
    [37]崔宝秋,赵东霞,杨忠志.应用原子-键电负性均衡方法预测超氧化物歧化酶催化反应的活性部位.化学学报[J],2007,65(23):2687-2692.
    [38]LI K Y, WANG X T, ZHANG F F, et al. Electronegativity identification of novel superhard materials [J]. Physical Review Letters,2008,100(23):235504.
    [39]SANDERSON R T. An interpretation of bond lengths and a classification of bonds [J]. Science, 1951,114(2973):670-672.
    [40]LUO Q G, WANG R Y. Electronegativity and superconductivity [J]. Journal of Physics and Chemistry of Solids,1987,48(5):425-430.
    [41]ASOKAMANIR, MANJULA R. Correlation between electronegativity and superconductivity [J]. Physical Review B,1989,39(7):4217-4221.
    [42]ICHIKAWA S. High-Tc superconductors and weighted harmonic mean electronegativities [J]. Journal of Physical Chemistry,1989,93(21):7302-7304.
    [43]ICHIKAWA S. Superconductivity and optimum electronegativity [J]. Journal of Physics and Chemistry of Solids,1989,50(9):931-934.
    [44]JAYAPRAKASH R, SHANKER J. Correlation between electronegativity and high temperature superconductivity [J]. Journal of Physics and Chemistry of Solids,1993,54(3):365-369.
    [45]BUZEA C, YAMASHITA T. Correlation between electronegativity and superconductivity [J]. Physica B:Condensed Matter,2000,281-282:951-952.
    [46]LI K Y, XUE D F. Electronegativity estimation of electronic polarizabilities of semiconductors [J]. Materials Research Bulletin,2010,45(3):288-290.
    [47]LI K, XUE D. Empirical calculations of elastic moduli of crystal materials [J]. Physica Scripta, 2010, T139:014072.
    [48]LI K, DING Z, XUE D. Electronegativity-related bulk moduli of crystal materials [J]. Physica Status Solidi (b),2011,248(5):1227-1236.
    [49]ZAANEN J, SAWATAKY G A, ALLEN J W. Band gaps and electronic structure of transition-metal compounds [J]. Physical Review Letters,1985,55(4):418-421.
    [50]TORRANCE J B, LACORRE P, ASAVAROENGCHAI C, et al. Why are some oxides metallic, while most are insulating? [J]. Physica C,1991,182(4-6):351-364.
    [51]杨频.分子结构参量及其与物性关联规律[M].北京:科学出版社,2007.
    [52]MANCA P. A relation between the binding energy and the band-gap energy in semiconductors of diamond or zinc-blende structure [J]. Journal of Physics and Chemistry of Solids,1961,20(3-4): 268-273.
    [53]PHILLIPS J C. Ionicity of the chemical bond in crystals [J]. Reviews of Modern Physics,1970, 42(3):317-356.
    [54]MAKINO Y. Interpretation of band gap, heat of formation and structural mapping for sp-bonded binary compounds on the basis of bond orbital model and orbital electronegativity [J]. Intermetallics,1994,2(1):55-66.
    [55]DI QUARTO F, SUNSERI C, PIAZZA S, et al. Semiempirical correlation between optical band gap values of oxides and the difference of electronegativity of the elements. Its importance for a quantitative use of photocurrent spectroscopy in corrosion studies [J]. Journal of Physical Chemistry B,1997,101(14):2519-2525.
    [56]DUFFY J A. Trends in energy gaps of binary compounds:An approach based upon electron transfer parameters from optical spectroscopy [J]. Journal of Physics C:Solid State Physics, 1980,13(16):2979-2989.
    [57]COLVIN V L, SCHLAMP M C, ALLVLSATOS A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature,1994,370(6488): 354-357.
    [58]MARSHALL A R J, TAN C H, STEER M J, et al. Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes [J]. Applied Physics Letters,2008,93(11): 111107.
    [59]LIPPERT E, RUSTAD, ARISHOLM G, et al. High power and efficient long wave IR ZnGeP2 parametric oscillator [J]. Optics Express,2008,16(18):13878-13884.
    [60]BATSANOV S S. A new method for calculating the width of the forbidden zone [J]. Journal of Structural Chemistry,1964,5(6):862-864.
    [61]JANOTTI A, SEGEV D, VAN DE WALLE C G. Effects of cation d states on the structural and electronic properties of Ⅲ-nitride and Ⅱ-oxide wide-band-gap semiconductors [J]. Physical Review B,2006,74(4):045202.
    [62]JAFFE J E, ZUNGER A. Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors [J]. Physical Review B,1984,29(4):1882-1906.
    [63]CONTINENZA A, MASSIDDA S, FREEMAN A J. Structural and electronic properties of narrow-gap ABC2 chalcopyrite semiconductors [J]. Physical Review B,1992,46(16): 10070-10077.
    [64]BATSANOV S S. Quantitative characteristics of bond metallicity in crystals [J]. Russian Journal of Inorganic Chemistry,1971,12(5):883-888.
    [65]SCHLEIFE A, FUCHS F, FURTHMULLER J, et al. First-principles study of ground-and excited-state properties of MgO, ZnO, and CdO polymorphs [J]. Physical Review B,2006, 73(24):245212.
    [66]WEI S H, ZUNGER A. Role of metal d states in Ⅱ-Ⅵ semiconductors [J]. Physical Review B, 1988,37(15):8958-8981.
    [67]CARRIER P, WEI S H. Theoretical study of the band-gap anomaly of InN [J]. Journal of Applied Physics,2005,97(3):033707.
    [68]BATSANOV S S. Energy of the band gap in inorganic compounds of type AB [J]. Russion Journal of Inorganic Chemistry,1979,24(2):282-286.
    [69]HECIRI D, BELDI L, DRABLIA S, et al. First-principles elastic constants and electronic structure of beryllium chalcogenides BeS, BeSe and BeTe [J]. Computational Materials Science, 2007,38(4):609-617.
    [70]AL-TABBAKH A A, MORE M A, JOAG D S. Energy analysis of field emitted electrons from a ZnO tetrapod [J]. Applied Physics Letters,2007,90(16):162102.
    [71]XU Y, SCHOONEN MAA. The absolute energy positions of conduction and valence bands of selected semiconducting minerals [J]. American Mineralogist,2000,85(3-4):543-556.
    [72]BIERING S, HERMANN A, FURTHMULLER J, et al. The unusual solid-state structure of mercury oxide:Relativistic density functional calculations for the group Ⅱ oxides ZnO, CdO, and HgO [J]. Journal of Physical Chemistry A,2009,113(45):12427-12432.
    [73]CHEN L J, LIAO J D, CHUANG Y J, et al. Synthesis and characterization of Cu(InxB1-x)Se2 nanocrystals for low-cost thin film photovoltaics [J]. Journal of American Chemical Society, 2011,133(11):3704-3707.
    [74]Sze S M. Physics of semiconductor devices [M]. New York:Wiley-Interscience,1981.
    [75]KUYKENDALL T, ULRICH P, ALONI S, et al. Complete composition tunability of InGaN nanowires using a combinatorial approach [J]. Nature Materials,2007,6(12):951-956.
    [76]ZHU Y Z, CHEN G D, YE H G. Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys [J]. Physical Review B,2008,77(24):245209.
    [77]MOURAD D, CZYCHOLL G. Band gap bowing of binary alloys:Experimental results compared to theoretical tight-binding supercell calculations for CdxZn1-xSe [J]. Physical Review B,2010, 82(16):165204.
    [78]GORCZYCA I, SUSKI T, CHRISTENSEN N E, et al. Size effects in band gap bowing in nitride semiconducting alloys [J]. Physical Review B,2011,83(15):153301.
    [79]ILIOPOULOS E, ADIKIMENAKIS A, GIESEN C, et al. Energy bandgap bowing of InAIN alloys studied by spectroscopic ellipsometry [J]. Applied Physics Letters,2008,92(19):191907.
    [80]MARTINS J L, ZUNGER A. Bond lengths around isovalent impurities and in semiconductor solid solutions [J]. Physical Review B,1984,30(10):6217-6220.
    [81]HENG K L, CHUA S J, WU P. Prediction of semiconductor material properties by the properties of their constituent chemical elements [J]. Chemistry of Materials,2000,12(6):1648-1653.
    [82]RAVIPRAKASH Y, BANGERA K V, SHIVAKUMAR G K. Growth, structural and optical properties of CdxZn1-xS thin films deposited using spray pyrolysis technique [J]. Current Applied Physics,2010,10(1):193-198.
    [83]FRITSCH D, SCHMIDT H, GRUNDMANN M. Pseudopotential band structures of rocksalt MgO, ZnO, and Mg1-xZnxO[J]. Applied Physics Letters,2006,88(13):134104.
    [84]CHOOPUN S, VISPUTE R D, YANG W, et al. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films [J]. Applied Physics Letters,2002,80(9): 1529-1531.
    [85]LIU C Y, LIU Y C. Photoluminescence of CdxZn1-xO films grown on sapphire substrate by PLD technique [J]. Journal of Alloys and Compounds,2009,482(1-2):393-395.
    [86]ILICAN S, CAGLARA Y, CAGLAR M, et al. Photovoltaic solar cell properties of CdxZn1-xO films prepared by sol-gel method [J]. International Journal of Hydrogen Energy,2009,34(12): 5201-5207.
    [87]KAUSHAL A, KAUR D. Effect of Mg content on structural, electrical and optical properties of ZnxMg1-xO nanocomposite thin films [J]. Solar Energy Materials & Solar Cells,2009,93(2): 193-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700