固定化辣根过氧化物酶修饰电极的制备及其在酶生物燃料电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物燃料电池(BFC)分为微生物燃料电池和酶生物燃料电池。由于媒生物燃料电池比微生物燃料电池产电量更高,已作为一类新型能源,成为各国科学家的研究热点。一直以来,功率问题是影响酶生物燃料电池发展的瓶颈。通过阳极修饰促进电子转移,进而提高酶生物燃料电池产电性能,成为当前酶生物燃料电池的研究重点。本论文利用层状金属双氢氧化物(LDH)和多壁碳纳米管(MWNT)在固定化辣根过氧化物酶(HRP)的同时,制备出电极阳极,并测定了对酶生物燃料电池产电性能的影响。主要研究包括:
     1.采用共沉淀法合成镍铝比为3:1的硝酸型镍铝层状双氢氧化物
     (Ni-Al-NO3型LDH),并以其为载体将HRP固定化后修饰玻碳(GC)电极,制得HRP/LDH/GC电极。以该电极为阳极构建单室酶生物燃料电池,对酶中心与阳极表面之间的直接电子传递及电池的输出功率进行了研究。X-射线衍射(XRD)和场发射扫描电镜(FESEM)分析表明HRP成功插层到LDH层间,且HRP/LDH具有有序的、均匀多孔结构。采用傅里叶红外光谱(FTIR)和圆二色光谱(CD)研究了LDH固定化HRP的构象变化,结果显示,HRP保持了原有的活性,α-螺旋含量略有减少,而β-折叠含量增加,结合循环伏安法(CV)、电化学交流阻抗技术(EIS)和极化曲线分析结果表明,正是这种构象变化促进了HRP与电极间的直接电子传递。
     2.采用层层自组装技术(LBL)将功能化MWNT修饰到碳纸(TP)电极表面,并制得HRP/MWNT/TP电极。以该电极作为阳极构建了单室酶生物燃料电池。X射线光电子能谱(XPS)和扫描电镜(SEM)显示MWNT通过层层自组装技术成功修饰了碳纸电极,且HRP吸附在了修饰电极表面。通过傅里叶红外光谱(FTIR)和圆二色光谱(CD)分析,表明与MWNT作用后的HRP仍保持活性,且伴随着α-螺旋含量降低。根据循环伏安法(CV)、电化学交流阻抗技术(EIS)和极化曲线分析结果可知,修饰阳极酶生物燃料电池功率密度高于未修饰的TP电极,进而证明MWNT有利于酶生物燃料电池系统中的直接电子传递。
As a new energy source, biofuel cell (BFC) is classified into two types: microbial fuel cell (MFC) and enzymatic biofuel cell (EFC). EFC has become the investigating hotspot in recent two years because of its higher production. For a long time, small output of EFC is a bottleneck for its development. Modifying anode electrode can prompte electron transfer from enzyme to anode and thus improve the electricity production of EFC. It has become keystone of research in EFC. In this paper, the preparation and application in the enzymatic biofuel cell of horseradish peroxidase (HRP) immobilized on layered double hydroxides (LDH) and multiwall carbon nanotubes (MWNT) were investigated. The main research work is as follows:
     1. Ni-Al-NO3 LDHs with a Ni/Al molar ratio of 3.0 were synthesized by the coprecipitation method and used as carrier for HRP immobilization in order to modify glassy carbon (GC) electrodes. Then the enzymatic biofuel cell was constructed with HRP/LDH/GC electrode as anode for the purpose of studying the power output and direct electron transfer between the redox centers of HRP and the anode surface. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) showed that HRP was successfully intercalated into LDH, and the HRP/LDH film had an ordered structure with a uniform, porous morphology. The conformational changes of HRP when interacting with LDH were investigated utilizing both Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) characterization. The results demonstrated that HRP retained the basic enzymatic activity with the ratio of alpha-helix reduced a little and ratio of beta-sheet increased. This conformational change is highly likely account for the DET between HRP and anode, which is demonstrated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and polarization curve measurement.
     2. Carbon paper (TP) electrode was modified utilizing a layer-by-layer (LBL) assemble technique and the performance of the modified electrode (HRP/MWNT/TP) as an anode in enzymatic biofuel cell was investigated. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) showed that LBL-assembled MWNT composite films has formed on TP surface and also clearly demonstrated the successful immobilization of HRP onto the modified electrode. FTIR and CD characterization revealed that HRP/MWNT retained its basic enzymaticactivity with the ratio of alpha-helix reduced a little. According to CV, EIS and polarization curve measurements, with the modified anode, the enzymatic biofuel cell produced a higher power density comparing to the bare TP anode, which confirmed that MWNT facilitate electron transfer in the enzymatic biofuel cell system.
引文
[1] Kim JR, Min B, Logan BE. Evaluation of procedures to acclimate a microbial fuel cell for electricity production [J]. Applied Microbiology Biotechnology, 2005, 68: 23-30
    [2] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation [J]. Trends Biotechnology, 2005, 23(6): 291–298.
    [3] Catal T, Li K, Bermek H, et al. Electricity production from twelve monosaccharides using microbial fuel cells[J]. Journal of Power Sources, 2008, 175: 196–200.
    [4]刘强,许鑫华,任光雷,等.酶生物燃料电池[J].化学进展,2006,18(11):1530-1537
    [5] McAlister DF. Efect of fungi on the oxidation-reduction potentials of liquid culture media [J]. American Journal of Botany, 1988, 25: 286-295.
    [6]孙卫中.漫谈生物燃料电池[J].化学教学,2007,9:48-50
    [7]韩保祥,毕可万.采用葡萄糖氧化酶的生物燃料电池的研究[J].生物工程学报,1992,8(2):203-206
    [8] Tayhas G, Palmore R, Whitesides GM. Microbial and enzymatic biofuel cells[J]. Am Chem Soc Symp Ser, 1994, 566: 271-290
    [9] Karyakin AA, Morozov SV, karyakina EE, et al. Hydrogen fuel electrode based on bioelectrocatalysis by the enzyme hydrogenase [J]. Electrochem Commun, 2002, 4: 417-420
    [10] Palmore CR, KimHH. Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell [J]. J. Electroanal. Chem,1999, 464: 110-117
    [11] Willner L, Vered HS, Katz E, et al. Integration of a reconstituted denovo synthesized hemoprotein and native metalloproteins withe lectrod supports for bioelectronic and bioelectrocatalytic application[J]. J. Am. Chem. Soc., 1999, 121(27): 6455-6468
    [12] Zayats M, Katz E, Willner I. Electrical contacting of flavoenzymes and NAD (P)+-depedent enzymes by reconstitution and a finity interactions on phenylboronic acid monolayers associated with Au-electrodes [J]. J. Am. Chem. Soc., 2002, 124(49): 14724-14735
    [13] Zayats M, Katz E, Willner I. Electrical contacting of glucose oxidase by surface-reacon stitution of the apo-protein on a relay-boronic acid-FAD cofactorm on olayer [J]. J. Am. Chem. Soc., 2002, 124(10): 2120~2121
    [14] Halliwell CM, Simon E, Toh CS, et a1. A method for the determination of enzyme mass loading on an electrode surface through radioisotope labeling [J]. Biosensors and Bioelectronics, 2002, 17: 965-972
    [15] Ruzgas T, Csoregi E, Emneus J, et al. Peroxidase modified electrodes: Fundamentals and application [J]. Anal. Chem. Acta, 1996, 330: 123
    [16] Pizzariello A, Stredansky M, Miertus S. A glucose/ydrogen peroxide biofuel edl that uses oxidase and peroxidase at catalysts by composite bulkodified bioelectrodes based on a solid binding matrix [J]. Biocleetreehemistry, 2002, 56: 99~105
    [17]李博,张厚超,项男.微生物燃料电池一新能源[J].新希望生物科学,2006,30(2):54-56
    [18] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation [J]. Trends in Biotechnology, 2005, 23: 291-298
    [19]冯雅丽,李浩然,连静,等.利用微生物电池研究微生物在矿物表面电子传递过程[J].北京科技大学学报,2006,28(11) :1009-1013
    [20]宋娟,赵华章,杨亲正,等.微生物燃料电池阳极修饰的研究进展[J].化学与生物工程,2009,26 (7):16-18
    [21] Plotkin EV, Higgins IJ, Hill HO. Methanol dehydrogenase bioelectrochemical cell and alcohol detector [J]. Biotechnol. Lett., 1981, 3: 187
    [22] Persson B, Gorton L, Jahansson G, et al. Biofuel anode based on D-glucose dehydrogenase, nieotinamide adenine dinueleeotide and a modified electrode [J]. Enzyme Mierob. Teehnol., 1985, 7(11): 549-552
    [23]陈陶声,居乃琥,陈石根.固定化酶理论与应用[M].北京:北京轻工业出版社,1987:85-94
    [24] Huang H, Hu NF, Zeng YH, et al. Electrochemistry and E-lectrocatalysis with Heme Proteins in Chitosan Biopolymer Films [J]. Anal. Biochem, 2002, 308(1): 141-151
    [25]杨勇,李彦锋,拜永孝,等.酶固定化技术用载体材料的研究进展[J].化学通报,2007,(4):257-263
    [26]洪伟杰,张朝晖,芦国营.辣根过氧化物酶固定化新进展[J].现代食品科技,2006,22(1):177-180
    [27] Sun DM, Cai CX, Xing W, et al. Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon [J]. Journal of Electroanalytical Chemistry, 2004, 566: 415-421
    [28]张娟,徐静娟,陈洪渊.基于SiO2纳米粒子固定辣根过氧化物酶的生物传感器[J].高等学校化学学报,2004,25(4):614~617
    [29]严芳,刘宝红,邓家祺.二氧化硅固定辣根过氧化物酶过氧化氢生物传感器[J].分析化学,1997,25(11):1363
    [30] Maria AA, Victoriano B, Cesar J, et al. Synthesis and characterization of a novel Mg/In hydortalcite-like compound [J]. Materials Letters, 2000, 43(3): 118-121
    [31]杨一青,刘从华,张莉,等.水滑石及类水滑石材料的合成及催化应用新进展[J].炼油与化工,2008,19(1):9-11
    [32] Maxwell RS, Kukkadapu RK, Amonette JE, et al. 2H Solid-State NMR Investigation of Terephthalate Dynamics and Orientation in Mixed-Anion Hydrotalcite-like Compounds [J]. J. Phys. Chem. B, 1999, 103(25): 5197-5203
    [33]徐芳,王军涛,费锡明.水滑石的合成及修饰电极的电化学行为[J].合成化学, 2006,14(2):175-177
    [34] Chen X, Fu CL, Wang Y, et al. Direct electrochemistry and electrocatalysis based on a film of horseradish peroxidase intercalated into Ni–Al layered double hydroxide nanosheets [J]. Biosensors and Bioelectronics, 2008, 24: 356-361
    [35] Endo M, Takeuchi K, Kobori K, et al. Pyrolytic carbon nanotubes from vapor-grown carbon fibers [J]. Carbon, 1995, 33(7): 873
    [36] Davis JJ, Coles RJ, Allen H, et al. Protein electrochemistry at carbon nanotube electrodes [J]. Journal of Electroanalytical Chemistry, 1997, 40: 279 -282
    [37] Davis JJ, Green ML, Allen H, et al. The immobilization of proteins in carbon nanotubes [J]. Inorganica Chimica Acta, 1998, 272: 261-266
    [38] Yu X, Chattopadhyay D, Galeska I, et al. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes [J]. Electrochemistry Communications, 2003, 5: 408-411
    [39]蔡称心,陈静.碳纳米管促进氧化还原蛋白质和酶的直接电子转移电化学[J].电化学,2004,10(2):159-167
    [40] Cai CX, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J]. Analytical Biochemistry, 2004, 332: 75-83Li J, Wang YB, Qiu JD, et al. Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor [J]. Anal Bioanal Chem, 2005, 383: 918-922
    [41] Sun JJ, Zhao HZ, Yang QZ, et al. A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell [J]. Electrochimica Acta, 2010, 55: 3041-3047
    [42]梁鹏,范明志,曹效鑫,等.碳纳米管阳极微生物燃料电池产电特性的研究[J].环境科学,2008,29(8):2356-2360
    [43] Ai HH, Huang XT, Zhu ZH, et al. Effect of hydrothermal treatment on properties of Ni–Al layered double hydroxides and related mixed oxides [J]. Journal of Solid State Chemistry, 2009, 182: 27-36
    [44] Kovanda F, Rojka T, Bezdick P. Effect of hydrothermal treatment on properties of Ni–Al layered double hydroxides and related mixed oxides [J]. Journal of Solid State Chemistry, 2009, 182: 27-36
    [45]刘红霞,段雪,马润宇.层状材料水滑石固定青霉素酞化酶的研究[J].北京化工大学学报,2002,29(3):13-16.
    [46]籍宏,王艳辉,马润宇.水滑石固定化木瓜蛋白酶制备的研究[J].北京化工大学学报,2004;31(1):26-29.
    [47]籍宏.层状材料—水滑石固定化木瓜蛋白酶的研究[D].北京:北京化工大学,2004
    [48] Narita E, Yamagishi T, Kazuhara T, et al. Uptake behavior of chelating agents by magnesium-aluminium oxide precursor with reconstruction of hydrotalcite-like layer structure [J]. Clay Sci, 1995, 9: 187
    [49] Kooli F, Chisem IC, Vucelic M, et al. Synthesis and properties of terephthalate and benzoate intercalates of Mg-Al Layered double hydroxides possessing varying layer charge [J]. Chem Mater, 1996, 8: 1969
    [50] Wang LR, Lu Z, Li F, et al. Study on the Mechanism and Kinetics of the Thermal Decomposition of Ni/Al Layered Double Hydroxide Nitrate [J]. Ind. Eng. Chem. Res. 2008, 47: 7211-7218
    [51] Haouz A, Twist C, Zentz C, et al. Dynamic and structural properties of glucose oxidase enzyme [J]. European Biophysics Journal with Biophysics Letters, 1998, 27(1): 19-25
    [52] Palestino G, Legros R, Agarwal V, et al. Functionalization of nanostructured porous silicon microcavities for glucose oxidase detection [J]. Sensors and Actuators B-Chemical, 2008, 135(1): 27-34
    [53] Herec M, Gagos M, Kulma M, et al. Secondary structure and orientation of the pore-forming toxin lysenin in a sphingomyelin-containing membrane [J].Biochimica Et Biophysica Acta-Biomembranes, 2008, 1778(4): 872-879
    [54] Bonnier F, Rubin S, Debelle L, et al. FTIR protein secondary structure analysis of human ascending aortic tissues [J]. Journal of Biophotonics, 2008, 1(3): 204-214
    [55] Hugonin L, Barth A, Graslund A, et al. Secondary structure transitions and aggregation induced in dynorphin neuropeptides by the detergent sodium dodecyl sulfate [J]. Biochimica Et Biophysica Acta-Biomembranes, 2008, 1778, (11), 2580-2587
    [56] Jackson M, Mantsch HH. The use and misuse of FTIR spectroscopy in the determination of protein-structure [J]. Critical Reviews in Biochemistry and Molecular Biology, 1995, 30 (2): 95-120
    [57] Norde W. Adsorption of proteins from solution at the solid- liquid interface[J]. Advances in Colloid and Interface Science, 1986, 25(4): 267 - 340
    [58] Kurrat R, Prenosil JE, Ramsden J. Kinetics of human and bovine serumalbumin adsorption at silica - titania surfaces [J]. Journal of Colloid and Interface Science, 1997, 185: 1-8
    [59]沈琼,黄滨,邵嘉亮,等.运用圆二色谱研究酶与化合物相互作用的机理[J].中山大学学报(自然科学版),2006,45(4):62-64
    [60] Kevin EH, Paul D. Hydration and preferential molecular adsorption on titaniumin vitro [J]. Biomaterials, 1992, 13(8): 553-560
    [61] Chen YH, Yang JT, Martinez HM. Determination of secondary structures of proteins by circular-dichroism and optical rotatory dispersion [J]. Biochemistry, 1972, 11(22): 4120-4127
    [62] Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. J. Electroanal. Chem., 1979, 101: 19-28
    [63] Logan BE. Microbial Fuel Cells [M]. Hoboken Inc.: John Wiley & Sons, 2008: 62-68
    [64]姜灵彦,刘蕾,罗旭,等.碳纳米管修饰电极及其在环境分析中的应用[J].化工时刊,2007,21(4):64-67
    [65]钮金芬,姚秉华.多壁碳纳米管修饰电极的制备及其应用[J].化学分析计量,2006,15(4) :24-26
    [66] Qiao Y, Li CM, Bao SJ, et al. Carbon nanotubePpolyaniline composite as anode material for microbial fuel cells [J]. Journal of Power Sources, 2007, 170: 79-84
    [67] Morozan A, Stamatin L, Nastase F, et al. The biocompatibilitymicroorganisms-carbon nanostructures for applications in microbial fuel cells [J]. Physica Status Solidi (A), 2007, 204 (6): 1797-1803
    [68] Lijima S. Helical microtubules of graphitic carbon [J]. Nature, 199l, 354: 56-58
    [69] Tsang SC, Chen YK, Harris PJF, et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature, 1994, 372: 159-163
    [70] Liu J, Rinzler AG, Smalley RE, et al. Fullerene pipes [J]. Science, 1998, 280: 1253-1256
    [71] Wong SS, Woolley AT, Joselevich E, et al. Covalently-functonalized single-walled carbon nanotube probe tips for chemical force microscopy [J]. J. Am. Chem. Soc., 1998, 120: 8557-8558
    [72] Chen J, Rao AM, Lyuksyutov S, et al. Dissolution of fuller-length single-walled carbon nanotubes [J]. J Phys Chem B, 2001, 105: 2525-2528
    [73] Chen J, Hamm MA, Hu H, et al. Solution properties of single-walled carbon nanotubes [J]. Science, 1998, 282: 95-98
    [74] Stevens JL, Huang AY, Peng H, et al. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines [J]. NanoLett., 2003, 3(3): 331-336
    [75]胡乃非,曾泳淮.蛋白质与纳米粒子的层层自组装薄膜—电化学与驱动力研究[J].广西师范大学学报(自然科学版),2003,21(4):11-12
    [76] Wang SG, Zhang Q, Wang RL, et al. novel multiwalled carbon nanotube-based biosensor for glucose detection [J]. Biochemical and Biophysical Research Communications, 2003, 311: 572-576
    [77] Zhao W, Xu JJ, Chen HY. Electrochemical biosensors based on layer-by-layer assemblies [J]. Electroanalysis, 2006, 18: 1737-1748
    [78] Ivnitski D, Artyushkova K, Rincon RA, et al. Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: Glucose oxidase-catalyzed direct electron transfer [J]. Small 2008, 4 (3): 357-364
    [79] Wang SQ, Humphreys ES, Chung SY, et al. Peptides with selective affinity for carbon nanotubes [J]. Nature Materials, 2003, 2(3): 196-200
    [80] Shen JW, Wu T, Wang Q, et al. Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces [J]. Biomaterials, 2008, 29(28): 3847-3855
    [81]魏子栋,曾少华.质子交换膜燃料电池电极制备新方法[P].中国专利:CN1472834, 2004-02-04
    [82] He Z, Mansfeld F. Exploring the use of electrochemical impedance spectroscopy in microbial fuel cell studies [J]. Energy Environmental Science, 2009, 2: 215-219
    [83] Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications [M]. New York Inc.: John Wiley & Sons, 2001: 29-34
    [84] Xiao F, Liu LQ, Li J, et al. Electrocatalytic Oxidation and Voltammetric Determination of Nitrite on Hydrophobic Ionic Liquid-Carbon Nanotube Gel-Chitosan Composite Modified Electrodes [J]. Electroanalysis, 2008,20: 2047-2054
    [85] Manohar AK, Bretschger O, Nealson KH, et al. The polarization behavior of the anode in a microbial fuel cell [J]. Electrochim. Acta, 2008, 53: 3508-3513
    [86] Rabaey K, Verstraete W. Microbial fuel cells: sustainable core technology [J]. Trends Biotechnol, 2005, 23: 291-298
    [87]王广建,柳荣展,常俊石.新型催化剂-碳化钼和碳化钨的现状和展望[J].青岛大学学报,2001,16(3):51-53
    [88]朱龙章,陈宇飞,张庆元.(Ni- Co)-WC复合电极的析氢催化性能[J].应用化学,1999,16(4):52-54
    [89] Prasad D, Arun S, Murugesan M, et al. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell [J]. Biosensors and Bioelectronics, 2007, 22: 2604-2610
    [90] Heijne AT, Hubertus VM, Hamelersa, et al. Performance of non-porous graphite and titanium-based anods in microbial fuel cells [J]. Electrochimica Acta, 2008, 53: 5697-5703

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700