miR-145对卵巢癌SKOV3细胞侵袭功能的影响及作用机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨microRNA-145对卵巢癌SKOV3细胞侵袭转移功能的影响及可能的作用机制,为临床卵巢癌的治疗提供新的有效靶点。
     方法:
     采用qRT-PCR方法,验证包括miR-145在内的7种microRNA在卵巢癌组织及卵巢良性肿瘤组织中的表达情况;针对miR-145做进一步研究,利用miR-145mimic转染SKOV3细胞,通过transwell侵袭及迁移实验、划痕实验等方法研究miR-145对卵巢癌SKOV3细胞侵袭迁移等细胞功能的影响;构建双荧光素酶报告载体验证miR-145与靶基因MUC1的互补作用机制,包装病毒载体,使SKOV3细胞稳定表达miR-145,最后利用western blot、PCR等方法,探讨miR-145对MUC1以及EMT关键蛋白E-cad的作用从而影响卵巢癌细胞侵袭转移作用机制。
     结果:
     PCR结果显示,与良性卵巢瘤组织相比,miR-200a,miR-93,miR-18,miR-146a在卵巢癌组织中的表达明显增高,miR-143,miR-145,miR-29在卵巢癌组织中表达明显下降;根据生物信息学软件预测,miR-145序列与MUC13’UTR端序列互补,是其预测靶基因;western blot检测显示,MUC1蛋白在卵巢癌组织中表达明显增高;将miR-145-5p mimic转染SKOV3细胞48h后,Transwell侵袭实验表明,穿过matrige膜的细胞数与NC组、MOCK组和Blank组相比较,显著减少。Transwell迁移实验表明,miR-145mimic组迁移出Transwell小室并种植到6孔板的细胞数明显少于NC组、MOCK组和Blank组;划痕实验显示划痕后12h、24h、48h,miR-145-5p mimic(0.074、0.148、0.220)组细胞的迁移率明显低于NC阴性对照组(0.087、0.242、0.276)、mock组(0.125、0.269、0.301)及Blank组(0.152、0.260、0.339),且有统计学意义(P<0.05);DAPI染色测定SKOV3细胞凋亡后,miR-145-5p mimics组细胞的凋亡率与Blank组、mock组及NC阴性对照组无明显差异(P>0.05);以MTT实验检测细胞增殖活性,细胞接种96孔板24h、48h和72h后,转染miR-145-5p mimics组与NC阴性对照组、Mock组、及Blank组比较,OD490值明显下降,增殖活性明显下降;以紫杉醇处理SKOV3细胞,用药72h后,转染miR-145-5p mimic组与NC阴性对照组、Mock组及Blank组比较OD490值明显下降,同时,MUC1mRNA和蛋白的表达明显下调。双荧光素酶报告实验显示,将含MUC13’UTR结合序列的荧光素酶报告载体和miR-145-5p mimic共转染293T细胞后,检测荧光表达显著下降;将突变型载体与miR-145-5p mimic共转染293T细胞后,荧光表达无显著差异。成功构建稳定表达miR-145的卵巢癌细胞系miR-145-CMV-RFP-SKOV3,检测MUC1的蛋白表达量明显减少,而E-cad的表达量增加;与之相反,卵巢癌细胞系miR-145-CMV-RFP-SKOV3转染MUC1表达质粒后,E-cad的表达量减少,SKOV3细胞侵袭转移能力增强;
     结论:
     miR-145是卵巢癌的抑癌基因,miR-145的上调能够抑制卵巢癌细胞的侵袭、转移以及增殖,并能够增强由紫杉醇诱导的细胞抑制效应。MUC1是miR-145的直接靶基因,后者通过与其互补结合抑制其蛋白表达,引起EMT标志性蛋白E-cad表达增强,说明miR-145通过抑制MUC1/E-cad信号通路阻滞了EMT过程导致的SKOV3细胞侵袭转移;而miR-145的这一作用能够被MUC1上调解除,说明MUC1是miR-145作用于EMT的桥梁因子。
Objective:
     To investigate roles of high expression of miR-145in ovarian carcinoma, and toelucidate its possible mechanisms.
     Methods:
     Western blotting and immunochemistry were used to determine the expression oftumor suppressor gene miR-145in ovarian carcinoma; miR-145expression vector,together with transwell method analysis or MTT analysis, was used to study theeffects of miR-145upregulation on ovarian carcinoma cell invasion,metastasis,apoptosis and cell proliferation ability, respectively; MUC1expression vector,together with q-RT PCR and western blotting, was used to investigate the effects ofmiR-145on E-cad induced cell invasion and the related molecular mechanisms.
     Results:
     miR-145expression levels were significantly decreased in ovarian carcinomatissues compared with the non-neoplastic ovarian samples. After transfection withmiR-145mimics, invasion and metastasis induced by MUC1was reducedsignificantly, and cell proliferation ability was reduced, which indicated inhibition ofMUC1led to invasion resistance, and promotion of cell sensitive to Taxon; Aftertreating with miR-145, MUC1preotein expression level was inhibited efficiently inSKOV3cells,E-cad erpression levels in SKOV3cells were promoted; It showed thatpromotion of E-cad signaling induced by miR-145was released by MUC1inhibition.The results of western blotting revealed that E-cad erpression levels were increasedinSKOV3cells with decreased MUC1expression.
     Conclusion:
     miR-145/MUC1signaling pathway was constitutively inactivated in ovariancarcinoma tissues. Increased expression of miR-145in ovarian carcinoma cellsresulted in the inhibition of invasion and metastasis and proliferation, as well as theenhanced sensitive ability to Taxon. Meanwhile, upregulation of miR-145inhibited MUC1expression and the level of E-cad protein was increased, which inhibited theactivity of EMT. All in all, high expression of miR-145inhibits MUC1/E-cadsignaling pathway in ovarian carcinoma, and contributes to inhibition of invasionthrough inhibiting EMT process.
引文
[1] Siegel R, Naishadham D, Jemal A. Cancer Statistics. CA Cancer J Clin.2013;63(1):11-30.
    [2] Michel P Coleman. Cancer survival: global surveillance will stimulate healthpolicy and improve equity. Lancet2013;382:2084-2092.
    [3] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancerstatistics. CA Cancer J Clin2011;61:69-90.
    [4] Valastyan S, Weinberg R A. Tumor metastasis: molecular insights and evolvingparadigms. Cell2011;147:275-292.
    [5] Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitionsin development and disease. Cell2009;139:871-890.
    [6] Robson EJ, Khaled WT, Abell K, Watson CJ. Epithelial-to-mesenchymaltransition confers resistance to apoptosis in three murine mammary epithelial celllines. Differentiation2006;74:254-264.
    [7] Bates RC, Mercurio AM. The epithelial-mesenchymal transition (EMT) andcolorectal cancer progression. Cancer Biol Ther2005;4:365-370.
    [8] Lee TK, Poon RT, Yuen AP, Ling MT, Kwok WK, Wang XH, Wong YC, GuanXY, Man K, Chau KL, Fan ST. Twist overexpression correlates withhepatocellular carcinoma metastasis through induction of epithelial-mesenchymaltransition. Clin Cancer Res2006;12:5369-5376.
    [9] Alonso SR, Tracey L, Ortiz P, Pérez-Gómez B, Palacios J, Pollán M, Linares J,Serrano S, Sáez-Castillo AI, Sánchez L, Pajares R, Sánchez-Aguilera A, ArtigaMJ,Piris MA, Rodríguez-Peralto JL. A high-throughput study in melanomaidentifies epithelial-mesenchymal transition as a major determinant of metastasis.Cancer Res2007;67:3450-3460.
    [10] Murai T, Yamada S, Fuchs BC, Fujii T, Nakayama G, Sugimoto H.Epithelial-to-mesenchymal transition predicts prognosis in clinical gastric cancer.J Surg Oncol2014; doi:10.1002/jso.23564[epub ahead of print].
    [11] Hashiguchi M, Ueno S, Sakoda M, Iino S, Hiwatashi K, Minami K,et al. Clinicalimplication of ZEB-1and E-cadherin expression in hepatocellular carcinoma(HCC). BMC Cancer2013;13:572.
    [12] Seok Joong Yun, Wun-Jae Kim. Role of the Epithelial-Mesenchymal Transition inBladder Cancer: From Prognosis to Therapeutic Target. Korean J Urol2013;54:645-650.
    [13] Ponnusamy MP, Seshacharyulu P, Lakshmanan I, Vaz AP, Chugh S, Batra SK.Emerging role of mucins in epithelial to mesenchymal transition. Curr CancerDrug Targets2013;13(9):945-56.
    [14] Konradi S, Yasmin N, Haslwanter D, Weber M, Gesslbauer B, Sixt M.Langerhans cell maturation is accompanied by induction of N-cadherin and thetranscriptional regulators of epithelial-mesenchymal transition ZEB1/2. Eur JImmunol2014;44(2):553-60.
    [15] Fu J, Qin L, He T, Qin J, Hong J, Wong J, Liao L, Xu J. The TWIST/Mi2/NuRDprotein complex and its essential role in cancer metastasis. Cell Res2011;21:275-289.
    [16] Dong C, Wu Y, Wang Y, Wang C, Kang T, Rychahou PG, Chi YI, Evers BM,Zhou BP. Interaction with Suv39H1is critical for Snail-mediated E-cadherinrepression in breast cancer. Oncogene2012;
    [17] Andre Loboda, Michael V Nebozhyn, James W Watters, Carolyne A Buser, PeterMartin Shaw, Pearl S Huang, et al. EMT is the dominant program in human coloncancer. BMC Medical Genomics2011;4:9.
    [18] Florian A. Siebzehnrubl, Daniel J. Silver, Bugra Tugertimur, Loic P. Deleyrolle,Dorit Siebzehnrubl, Matthew R. Sarkisian, et al. The ZEB1pathway linksglioblastoma initiation, invasion and chemoresistance. EMBO Mol Med2013;5:1196–1212.
    [19] Carolyn M. Klinge, Brandie N. Radde, Yoannis Imbert-Fernandez, Yun Teng,Margarita M. Ivanova, Sabra M. Abner,et al. Targeting the intracellular MUC1C-terminal domain inhibits proliferation and estrogen receptor transcriptionalactivity in lung adenocarcinoma cells. Mol Cancer Ther2011;10(11):2062–2071.
    [20] Williams KA, Terry KL, Tworoger SS, Vitonis AF, Titus LJ, et al. Polymorphismsof MUC16(CA125) and MUC1(CA15.3) in Relation to Ovarian Cancer Riskand Survival. PLoS ONE2014;9(2): e88334.
    [21] Andrea L. Radtke, Alison J. Quayle, Melissa M. Herbst-Kralovetz. MicrobialProducts Alter the Expression of Membrane-Associated Mucin and AntimicrobialPeptides in a Three-Dimensional Human Endocervical Epithelial Cell Model.Biology of Reproduction2012;87(6):132,1–10.
    [22] Vidya Hebbar, Gautam Damera, Goverdhan P Sachdev. Differential expressionof MUC genes in endometrial and cervical tissues and tumors. BMC Cancer2005;5:124.
    [23] Wu H, Xiao Z, Wang K, Liu W, Hao Q. MiR-145is downregulated in humanovarian cancer and modulates cell growth and invasion by targeting p70S6K1andMUC1. Biochem Biophys Res Commun2013;441(4):693-700.
    [24] Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs incancer. Cancer Res2013;73(2):473-7.
    [25] Yukihiro Akao, Fiona Khoo, Minami Kumazaki, Haruka Shinohara, Kohei Mikiand Nami Yamada. Extracellular Disposal of Tumor-Suppressor miRs-145and-34a via Microvesicles and5-FU Resistance of Human Colon Cancer Cells. Int. J.Mol. Sci2014;15:1392-1401.
    [26] Chunyang Zhao, Yan Xu, Yongqiang Zhang, Weiwei Tan, Jianxin Xue, ZongzeYang et al. Downregulation of miR-145contributes to lung adenocarcinoma cellgrowth to form brain metastases. Oncology reports2013;30:2027-2034.
    [27] Maria Carmela Speranza, Véronique Frattini, Federica Pisati, Dimos Kapetis,Paola Porrati, Marica Eoli,et al. NEDD9, a novel target of miR-145, increases theinvasiveness of glioblastoma. Oncotarget2013;3(7):723-734.
    [28] Hu J, Guo H, Li H, Liu Y, Liu J, et al. MiR-145Regulates Epithelial toMesenchymal Transition of Breast Cancer Cells by Targeting Oct4. PLoS ONE2012;7(9): e45965.
    [29] Wang L, Guo ZY, Zhang R, Xin B, Chen R, Zhao J, Wang T, Wen WH, Jia LT,Yao LB, Yang AG. Pseudogene OCT4-pg4functions as a natural micro RNAsponge to regulate OCT4expression by competing for miR-145in hepatocellularcarcinoma. Carcinogenesis2013;34(8):1773-81.
    [30] Xu N, Papagiannakopoulos T, Pan G, Thomson J.A, Kosik KS. MicroRNA-145regulates OCT4, SOX2, and KLF4and represses pluripotency in humanembryonic stem cells. Cell2009;137(4):647-658.
    [31] Zhou W, Lv R, Qi W, Wu D, Xu Y, Liu W. Snail contributes to the maintenanceof stem cell-like phenotype cells in human pancreatic cancer. PLoS One2014;9(1):e87409.
    [32] Gnemmi V, Bouillez A, Gaudelot K, Hémon B, Ringot B, Pottier N. MUC1drives epithelial-mesenchymal transition in renal carcinoma throughWnt/β-catenin pathway and interaction with SNAIL promoter. Cancer Lett2013;Dec: doi:10.1016.
    [33] Rebecca Siegel, Deepa Naishadham, Ahmedin Jemal. Cancer Statistics. CACancer J Clin2013;63:11-30.
    [34] Kikkawa F., Nawa A., Ino K., Shibata K., Kajiyama H., Nomura S.. Advances intreatment of epithelial ovarian cancer. Nagoya J Med.2006;68(1-2):19-26.
    [35] Kochanek KD., Xu J., Murphy SL., Minino AM., Kung HC.. Deaths: final datafor2009. Natl Vital Stat Rep.2011;60:1-117.
    [36] Farazi TA, Spitzer JI, Morozov P, Tuschl T. MiRNAs in human cancer. J Pathol.2011;223(2):102–115.
    [37] Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation andstability by microRNAs. Annu Rev Biochem.2010;79:351–379.
    [38] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell.2009;136(2):215-233.
    [39] Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev MolCell Biol.2009;10:126-139.
    [40] Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAspredominantly act to decrease target mRNA levels. Nature.2010;466(7308):835–840.
    [41] Hendrickson DG, Hogan DJ, McCullough HL, Lyers JW, Herschlag D, Ferrell JE,Brown PO. Concordant regulation of translation and mRNA abundance forhundreds of targets of a human microRNA. PLoS Biol.2009;7(11):e1000238.
    [42] Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs incancer. Cancer Res.2013;73(2):473-477.
    [43] Olafur Andri Stefansson, Manel Esteller.BRCA1as a tumor suppressor linked tothe regulation of epigenetic states: keeping oncomiRs under control. BreastCancer Research.2012;14:304.
    [44] Bill Andreopoulos, Dimitris Anastassiou. Integrated analysis revealshsa-miR-142as a representative of a lymphocyte-specific gene expression andmethylation signature. Cancer Informatics.2012;11:61–75.
    [45] Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumorsuppressors. Dev Biol.2007;302:1–12.
    [46] van Jaarsveld MT, Helleman J, Berns EM, Wiemer EA. MicroRNAs in ovariancancer biology and therapy resistance. Int J Biochem Cell Biol.2010;42(8):1282-1290.
    [47] Creighton C, Fountain M, Yu Z, Nagaraja A, Zhu H, et al. Molecular profilinguncovers a p53-associated role for microRNA-31in inhibiting the proliferation ofserous ovarian carcinomas and other cancers. Cancer Res.2010;70:1906–1915.
    [48] Delfino KR, Rodriguez-Zas SL. Transcription Factor-microRNA-target genenetworks associated with ovarian cancer survival and recurrence. PluS One.2013;8(3):e58608.
    [49] Eun Ji Nam, Heejei Yoon, Sang Wun Kim, et al. MicroRNA expression profilesin serous ovarian carcinoma. Clin Cancer Res.2008;14:2690-2695.
    [50] Shu-Mei Wan, Fang Lv, Ting Guan. Identification of genes and microRNAsinvolved in ovarian carcinogenesis. Asian Pacific Journal of Cancer Prevention.2012;13(8):3997-4000.
    [51] Sengupta D, Bandyopadhyay S. Topological patterns in microRNA-generegulatory network: studies in colorectal and breast cancer. Mol Biosyst.2013;9(6):1360-71.
    [52] Dong Liang, Larissa Meyer, David W. Chang, et al. Genetic variants inmicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk,survival, and treatment response. Cancer Res.2010;70:9765-9776.
    [53] Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA. Association betweencommon variation in120candidate genes and breast cancer risk. PLoS Genet.2007;3:e42.
    [54] Butt AJ, Caldon CE, McNeil CM, et al. Cell cycle machinery: links with genesisand treatment of breast cancer. Adv Exp Med Biol.2008;630:189-205.
    [55] Zhang,H., Li,Y. and Lai,M. The microRNA network and tumor metastasis.Oncogene.2010;29:937–948.
    [56] Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovariancancer. Cancer Res.2007;67:8699-707.
    [57] Nam EJ, Yoon H, Kim SW, et al. MicroRNA expression profiles in serousovarian carcinoma. Clin Cancer Res.2008;14:2690-95.
    [58] Xu N, Papagiannakopoulos T, Pan G, Thomson J.A, et al. MicroRNA-145regulates OCT4, SOX2, and KLF4and represses pluripotency in humanembryonic stem cells. Cell.2009;137:647–658.
    [59] Yoo A.S, Staahl B.T, Chen L, Crabtree G.R. MicroRNA-mediated switching ofchromatin-remodelling complexes in neural development. Nature.2009;460:642–646.
    [60] He L, He X, Lim LP, de Stanchina E, Xuan Z, et al. A microRNA component ofthe p53tumour suppressor network. Nature.2007;447:1130–1134.
    [61] Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY.MicroRNA-34b and microRNA-34c are targets of p53and cooperate in control ofcell proliferation and adhesion-independent growth. Cancer Res.2007;67:8433–8438.
    [62] van Jaarsveld MT, Helleman J, Berns EM, Wiemer EA (2010). MicroRNAs inovarian cancer biology and therapy resistance. Int J Biochem Cell Biol.2010;42:1282-90.
    [63] Shu-Mei Wan, Fang Lv, Ting Guan. Identification of Genes and MicroRNAsinvolved in ovarian carcinogenesis. Asian Pacific J Cancer Prev.2013;13(8):3997-4000.
    [64] Roa WH, Kim JO, Razzak R, Du H, Guo L, et al. Sputum microRNA profiling: anovel approach for the early detection of non-small cell lung cancer. Clin InvestMed.2012;35(5):E271.
    [65] Hu J, Guo H, Li H, Liu Y, Liu J, Chen L, Zhang J, Zhang N. MiR-145regulatesepithelial to mesenchymal transition of breast cancer cells by targeting Oct4.PLoS One.2012;7(9):e45965.
    [66] Sachdeva M, Mo YY. MicroRNA-145suppresses cell invasion and metastasis bydirectly targeting mucin1. Cancer Res.2010;70(1):378-87.
    [67] Adammek M, Greve B, K ssens N, Schneider C, Brüggemann K, et al.MicroRNA miR-145inhibits proliferation, invasiveness, and stem cell phenotypeof an in vitro endometriosis model by targeting multiple cytoskeletal elementsand pluripotency factors. Fertil Steril.2013;99(5):1346-1355.
    [68] Lai D, Ma L, Wang F. Fibroblast activation protein regulates tumor-associatedfibroblasts and epithelial ovarian cancer cells. Int J Oncol.2012;41(2):541–50.
    [69] Fang Y, Yu X, Liu Y, Kriegel AJ, et al. MiR-29c is downregulated in renalinterstitial fibrosis in humans and rats and restored by HIF-α activation. Am JPhysiol Renal Physiol.2013;304(10):F1274-82.
    [70] Kwiecinski M, Elfimova N, Noetel A, T x U, Steffen HM, et al. Expression ofplatelet-derived growth factor-C and insulin-like growth factor I in hepaticstellate cells is inhibited by miR-29. Lab Invest.2012;92(7):978-87.
    [71] Kogo R, Mimori K, Tanaka F, Komune S, Mori M: Clinical significance ofmiR-146a in gastric cancer cases. Clin Cancer Res.2011;17:4277-4284.
    [72] Wang D,Liu D,Gao J et al. TRAIL-induced miR-146a expression suppressesCXCR4-mediated human breast cancer migration. FEBS J.2013; doi:10.1111
    [73] Catherine Labbaye and Ugo Testa. The emerging role of MIR-146A in thecontrol of hematopoiesis, immune function and cancer. Journal of hematologyand oncology.2012;5:13.
    [74] Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, et al. A microRNAexpression signature of human solid tumors defines cancer gene targets. ProcNatl Acad.2006;103:2257–2261.
    [75] Fang L,Du WW,Yang W,Rutnam ZJ, Peng C, et al. MiR-93enhancesangiogenesis and metastasis by targeting LATS2. Cell Cycle.2012;11(23):4352-65.
    [76] Wang L,Wang Q, Li HL,Han LY. Expression of MiR200a, miR93, metastasis-related gene RECK and MMP2/MMP9in human cervical carcinoma-relationshipwith Prognosis. Asian Pac J Cancer Prev.2013;14(3):2113-8.
    [77] Soubani O, Ali AS, Logna F, Ali S, Philip PA, Sarkar FH. Re-expression ofmiR-200by novel approaches regulates the expression of PTEN and MT1-MMPin pancreatic cancer. Carcinogenesis.2012;33(8):1563-71.
    [78] Christopher L. Plaisier, Min Pan, Nitin S. Baliga. A miRNA-regulatory networkexplains how dysregulated miRNAs perturb oncogenic processes across diversecancers. Genome Research.2012;22:2302-2314.
    [79] Guangyao Kong, Junping Zhang, Shuai Zhang, Changliang Shan, Lihong Ye,Xiaodong Zhang. Upregulated microRNA-29a by hepatitis B virus X proteinenhances hepatoma cell migration by targeting PTEN in cell culture model. PLoSONE.2011;6(5): e19518.
    [80] Arbyn M, Andersson K, Bergeron C, et al (2011). Cervical cytology biobanks asa resource for molecular epidemiology. Methods Mol Biol,675,279-98.
    [81] Bartel DP (2009). MicroRNAs, target recognition and regulatory functions. Cell,136,215-33.
    [82] Chang CK, Hung WC, Chang HC (2008). The Kazal motifs of RECK proteininhibit MMP-9secretion and activity and reduce metastasis of lung cancer cells invitro and in vivo. J Cell Mol Med,12,12-6.
    [83] Cong N, Du P, Zhang A, et al (2013). Downregulated microRNA-200a promotesEMT and tumor growth through the wnt/β-catenin pathway by targeting theE-cadherin repressors ZEB1/ZEB2in gastric adenocarcinoma. Oncol Rep,10,3892-7.
    [84] Curran S, Murray GI (2000). Matrix metalloproteinases, molecular aspects oftheir roles in tumour invasion and metastasis. Eur J Cancer,36,1621-30
    [85] Dai Y, Xia W, Song T, et al (2013). MicroRNA-200b is overexpressed inendometrial adenocarcinomas and enhances MMP2activity by downregulatingTIMP2in human endometrial cancer cell line HEC-1A cells. Nucleic Acid Ther,23,29-34.
    [86] Denny Lynette (2012). Cervical cancer, prevention and treatment. Discov Med,14,125-11.
    [87] Eissa S, Ali-Labib R, Swellam M, et al (2007). Noninvasive diagnosis of bladdercancer by detection of matrix metalloproteinases (MMP-2and MMP-9) and theirinhibitor (TIMP-2) in urine. Eur Urol,52,1388-96.
    [88] Fang L, Deng Z, Shatseva T, et al (2011). MicroRNA miR-93promotes tumorgrowth and angiogenesis by targeting integrin-β8. Oncogene,30,806-21.
    [89] Figueira RC, Gomes LR, Neto JS, et al (2009). Correlation between MMPs andtheir inhibitors in breast cancer tumor tissue specimens and in cell lines withdifferent metastatic potential. BMC Cancer,9,20-5.
    [90] Liu S, Patel SH, Ginestier C, et al (2012). MicroRNA93regulates proliferationand differentiation of normal and malignant breast stem cells. PLoS Genet,8,e1002751.
    [91] Kim VN, Han J, Siomi MC (2009). Biogenesis of small RNAs in animals. NatRev Mol Cell Biol,10,126-39.
    [92] Kodate M, Kasai T, Hashimoto H, et al (1997). Expression of matrixmetalloproteinase (gelatinase) in T1adenocarcinoma of the lung. Pathol Int,47,461-9.
    [93] Lee JH, Welch DR (1997). Suppression of metastasis in human breast carcinomaMDA-MB-435cells after transfection with the metastasis suppressor gene,KiSS-1. Cancer Res,57,2384-7.
    [94] Liabakk NB, Talbot I, Smith RA, et al (1996). Matrix metallo-proteinase2(MMP-2) and matrix metalloproteinase9(MMP-9) type IV collagenase incolorectal cancer. Cancer Res,56,190-6.
    [95] Lim LP, Lau NC, Garrett-Engele P, et al (2005). Microarray analysis shows thatsome microRNAs downregulate large numbers of target mRNAs. Nature,433,769-73.
    [96] Long NK, Kato K, Yamashita T, et al (2008). Hypermethylation of the RECKgene predicts poor prognosis in oral squamous cell carcinomas. Oral Oncol,44,1052-8.
    [97] Lu J, Getz G, Miska EA, et al (2005). MicroRNA expression profiles classifyhuman cancers. Nature,435,834-8.
    [98] Lui WO, Pourmand N, Patterson BK, Fire A (2007). Patterns of known and novelsmall RNAs in human cervical cancer. Cancer Res,67,6031-43.
    [99] Ma D, Zhang YY, Guo YL, Li ZJ, Geng L (2012). Profiling ofmicroRNA-mRNA reveals roles of microRNAs in cervical cancer. Chin Med J,125,4270-76.
    [100] Mori T, Moriuchi R, Okazaki E, et al (2007). Tgat oncoprotein functions as ainhibitor of RECK by association of the unique C-terminal region. BiochemBiophys Res Commun.355,937-43.
    [101] Namwat N, Puetkasichonpasutha J, Loilome W, et al (2011). Downregulation ofreversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is associatedwith enhanced expression of matrix metalloproteinases and cholangiocarcinomametastases. J Gastroenterol,46,664-75.
    [102] Oh J, Takahashi R, Kondo S, et al (2001). The membrane anchored MMPinhibitor RECK is a key regulator of extracellular matrix integrity andangiogenesis. Cell,107,789-800.
    [103] Pereira PM, Marques JP, Soares AR, Carreto L, Santos MA (2010). MicroRNAexpression variability in human cervical tissues. PLoS One,5, e11780.
    [104] Perry SV (2001). Vertebrate tropomyosin, distribution, properties and function. JMuscle Res Cell Motil,22,5-49.
    [105] Rasheed SA, Teo CR, Beillard EJ, Voorhoeve M, Casey PJ (2013).MicroRNA-182and microRNA-200a control G-protein subunit alpha-13(GNA13) expression and cell invasion synergistically in prostate cancer. Cells JBiol Chem,10,1074-7.
    [106] Rodriguez-Paredes M, Esteller M (2011). Cancer epigenetics reaches mainstreamoncology. Nat Med,17,330-9.
    [107] Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, et al (2008). MicroRNAsaccurately identify cancer tissue origin. Nat Biotechnol,26,462-9.
    [108] Reis ST, Leite KR, Piovesan LF, et al (2012). Increased expression of MMP-9and IL-8are correlated with poor prognosis of Bladder Cancer. BMC Urol,12,18-23.
    [109] Takagi S, Simizu S, Osada H (2009). RECK negatively regulates matrixmetalloproteinase-9transcription. Cancer Res,69,1502-8.
    [110] Miki T, Shamma A, Kitajima S, et al (2010). TThe1-integrin-dependentfunction of RECK in physiologic and tumor angiogenesis. Mol Cancer Res,8,665-76.
    [111] T Chung TT, Yeh CB, Li YC, et al (2012). Effect of RECK gene polymorphismson hepatocellular carcinoma susceptibility and clinicopathologic features. Plosone,7, e33517.
    [112] Toi M, Ishigaki S, Tominaga T(1998). Metalloproteinases and tissue inhibitors ofmetallo-proteinases. Breast Cancer Res Treat,52,113-24.
    [113] Wang X, Tang S, Le SY, et al(2008). Aberrant expression of oncogenic andtumor-suppressive microRNAs in cervical cancer is required for cancer cellgrowth. PLoS One,3, e2557.
    [114] Welch DR, Steeg PS, Rinker-Schaeffer CW (2000). Molecular biology of breastcancer metastasis. Genetic regulation of human breast carcinoma metastasis.Breast Cancer Res,2,408-16.
    [115] Wu L, Belasco JG (2008). Let me count the ways, mechanisms of gene regulationby miRNAs and siRNAs. Mol Cell,29,1-7.
    [116] Yang J, Mani SA, Donaher JL, et al (2004). Twist, a master regulator ofmorphogenesis, plays an essential role in tumor metastasis. Cell,117,927-39.
    [117] Yang L, Parkin DM, Li L, Chen Y (2003). Time trends in cancer mortality inChina,1987-1999. Int J Cancer,106,771-83.
    [118] Yu SJ, Hu JY, Kuang XY, et al (2013). MicroRNA-200a Promotes AnoikisResistance and Metastasis by Targeting YAP1in Human Breast Cancer. ClinCancer Res,10,1158-63.
    [119] Yu XF, Zou J, Bao ZJ, Dong J (2011). miR-93suppresses proliferation andcolony formation of human colon cancer stem cells. World J Gastroenterol,17,4711-7.
    [120] Zhang B, Zhang J, Xu ZY, Xie HL (2009). Expression of RECK and matrixmetalloproteinase-2in ameloblastoma. BMC Cancer,9,427-35.
    [121] Zhang C, Ling Y, Zhang C, et al (2012). The silencing of RECK gene isassociated with promoter hypermethylation and poor survival in hepatocellularcarcinoma. Int J Biol Sci,8,451-8.
    [122] Jia HY, Wang YX, Yan WT,et al. MicroRNA-125b Functions as a TumorSuppressor in Hepatocellular Carcinoma Cells[J].Int J Mol. Sci,2012,13(7):8762-8774.
    [123] Takagi T, Iio A, Nakagawa Y,et al. Decreased expression of microRNA-143and-145in human gastric cancers[J].Oncology,2009,77(1):12-21.
    [124] Sachdeva M,Zhu S,Wu F,et al. p53represses c-Myc through induction of thetumor suppressor miR-145[J]. Proc Natl Acad Sci USA,2009,106(9):3207-3212.
    [125] Takagi T,lioA,NakagawaY,et al.Decreased expression of microRNA-143and-145in human gastric cancers[J].Oncology,2009,77:12-21
    [126] Chen Z,Zeng H,Guo Y,Liu P, et al. miRNA-145inhibits non-small cell lungcancer cell proliferation by targeting c-Myc[J].J Exp Clin Cancer Res,2010,29:151.
    [127] LuiWO,Pourmand N,Patterson BK,et al.Patterns of known and novel small RNAsin human cervical cancer[J].Cancer Res,2007,67:6031-6043.
    [128] Speranza MC, Frattini V, Pisati F,et al.NEDD9,a novel target of miR-145,increases the invasiveness of glioblastoma[J]. Oncotarget,2012,3(7):723-734.
    [129] Fan L,Wu Q,Xing X,et al. MicroRNA-145targets vascular endothelial growthfactor and inhibits invasion and metastasis of osteosarcoma cells[J].Acta BiochimBiophys Sin,2012,44(5):407-414.
    [130] Sachdeva M, Mo YY. MicroRNA-145suppresses cell invasion and metastasis bydirectly targeting mucin1[J].Cancer Res,2010,70(1):378-387.
    [131] Yang E,Hu XF,Xing PX.Advances of MUC1as a target for breast cancerimmunotherapy[J].Clin Cancer Res,2000,6(10):4069-4072
    [132] Ohno T,Aihara R,KamiyamaY,et al.Prognostic significance of combined
    expression of MUCI1and adhesion molecules in advaneed gastric cancer[J].EurJ
    Cancer2006,42(2):256-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700