含钒氧化物和复合氧化物催化剂的制备及其在甲烷和丙烷选择氧化反应中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球范围内石油的有限贮存量及日益严重的能源危机,寻找可以替代石油的其它能源形式已经越来越引起人们的关注,其中围绕天然气的有效利用而开展的研究在世界范围内广泛展开。众所周知,饱和的低碳烷烃(主要以甲烷,乙烷,丙烷等为主)是天然气中的主要成分,通过催化过程实现低碳烷烃的功能化是天然气有效利用的主要途径。
     目前文献报道的甲烷转化途径有直接转化和间接转化两种,间接转换是目前甲烷利用的主要形式,例如由甲烷经水蒸气重整反应制合成气,然后由F-T合成等反应进一步转化为液体燃料和有机化工原料;但这些工艺过程存在诸多缺点,如设备复杂、过程繁琐、投资大、操作条件苛刻、需高温高压、设备要耐腐蚀等等。如果能够实现甲烷的直接转化,则必然大大节约生产成本及能耗,符合国民经济可持续发展的要求。在甲烷的直接转化过程中,甲烷选择氧化制甲醛是近年来研究较多的方向之一。在甲烷选择氧化制甲醛的研究中,所采用的活性组分大部分是过渡金属元素,其中以Mo和V居多,所用载体主要包括Al_2O_3、TiO_2、ZrO_2以及SiO_2等,以SiO_2为主。总体而言,这些催化剂的活性均不够高,除与活性组分有关外,还与活性组分在载体上的分散程度有关。介孔材料以其规则孔道结构、高比表面积和热稳定性成为一类受到广泛关注的新型载体,在低碳烷烃的选择性氧化反应中以介孔材料MCM-41、MSU-2、SBA-1、SBA-15等为载体的负载型催化剂显示出比较好的催化活性。
     丙烯是现代石油化工重要的基础原料之一,从丙烯出发可以生产一系列重要的丙烯衍生物,如丙烯腈、丙烯醛、丙烯酸、聚丙烯、异丙橡胶等。目前丙烯主要来自于石油蒸汽裂解,随着石油资源的日趋短缺,势必影响丙烯的产出,难以满足丙烯日益增加的旺盛需求。天然气中有着相对丰富的丙烷资源,而从丙烷催化选择氧化制丙烯则被认为是生产丙烯的一条可能途径。含有钒基的氧化物负载型催化剂在丙烷催化选择氧化制丙烯中具有较好的催化作用,在已报道的研究体系中,所使用的载体有SiO_2,Al_2O_3,TiO_2,ZrO_2和MgO等。经研究发现,催化剂的酸碱性、催化剂表面钒物种的状态、表面钒物种的还原性能、载体的比表面和孔道结构等因素都会影响催化剂的选择氧化性能。一般认为在具有大孔径和孔容的氧化硅上有较好的丙烷选择氧化制丙烯的催化效果。随着MCM-41系列介孔分子筛的开发,氧化物负载在介孔分子筛上作为催化剂已有大量报道,一般是以负载法制备催化剂。这种方法制备的催化剂活性组分主要分布在孔道表面,其优点是制备过程简便实用,但其缺点是负载上的组分容易阻塞孔道,高温反应后易团聚。如果能将纳米氧化物颗粒以高度分散的形式嵌入到介孔分子筛孔壁,使得活性组分更容易和载体相互作用,不但不会阻塞孔道,而且还具有比较高的活性比表面,增加抗团聚性能,从而有可能提高催化效果。
     本论文旨在开发应用于甲烷和丙烷选择氧化的新型金属氧化物催化剂,提高活性组分在载体中的分散度及增强活性组分与载体之间的相互作用,减少活性组分的流失;另外,本论文还研究了不同的制备方法对催化剂制备及性能的影响。通过各种现代表征手段,研究活性组分的存在状态及在反应中的作用,进一步关联催化活性与催化剂微观结构的关系。
     论文的主要工作及结果如下:
     一、以杂多酸为前驱体,浸渍和原位合成含PMoV复合氧化物分子筛催化剂及在甲烷选择氧化中的催化性能研究
     近年来的研究表明,负载型MoO_3或V_2O_5催化剂中添加P元素具有很好的修饰作用,在甲烷选择氧化制备甲醛的反应中能够显著提高甲醛的选择性。第三章和第四章内容主要是围绕处在研究开发阶段的甲烷直接选择氧化制备甲醛(MPO)反应而展开的。
     我们选用含PMoV的杂多酸H_5PMo_(10)V_2O_(40)作为合成催化剂的前驱体,具有孔径分布均一,热稳定性较好的介孔SBA-15为载体,通过常温下湿法浸渍制备了不同含量的负载型PMoV/SBA-15,对其甲烷选择氧化反应(MPO)性能进行了比较,考察了负载量、反应温度、空速等对甲烷转化率和甲醛选择性的影响,结果表明甲烷转化率随负载量的增大和反应温度的升高而提高,甲醛的选择性随反应温度的升高而降低、随负载量的增大先升后降,加大空速甲烷的转化率降低而甲醛的选择性升高,在考察范围内催化剂在反应条件为:T=640℃、GHSV=48320L/Kg·h、氧化物负载量为2.89%时,甲醛的时空产率为最高(295g·Kg_(cat)~(-1)h~(-1))。XRD、氮吸附、NH_3-TPD、H_2-TPR、Raman和FT-IR结果表明,氧化物含量≤2.89%时,P-Mo-V氧化物在载体介孔孔道内以高度分散的状态存在,催化剂的酸性和氧化还原性质与负载量相关,这些特征和性质进而影响催化剂的反应活性。
     众所周知,在介孔材料的合成中,盐酸和硝酸一般作为酸度调节剂来使用。考虑杂多酸既可溶于水又可溶于醇类中,利用其溶解后可以完全电离出氢离子的特点,我们选用含有PMoV杂多酸H_5PMo_(10)V_2O_(40)作为合成介孔材料的酸度调节剂和活性组分的前驱体,在乙醇体系中,合成出具有规整孔道结构的PMoV-mesoSiO_2介孔材料,杂多酸的添加量会直接影响合成样品的形貌和孔结构特点。通过TG-DTA,XRD,XRF,氮吸附,TEM,FTIR和拉曼等的表征,发现这些介孔材料具有类似MCM-48的三维立方结构。P-Mo-V氧化物的含量低于6.68%时,复合氧化物在mesoSiO_2中具有很好的分散性,而适当氧化物含量的催化剂在甲烷选择氧化制备甲醛反应中具有较好的催化活性。同时在相近的含量下,比较由共合成法和普通浸渍法制备的催化剂的催化活性,发现由共合成法制备出的3.40PMoV-mesoSiO_2催化剂具有较高的催化活性。在优化的反应条件下,该催化剂上甲醛的最高时空产率为330 g Kg_(cat)~(-1)h~(-1)。
     二、共合成法制备含钒介孔分子筛及在丙烷选择氧化中的催化性能研究
     基于前人大量研究结果表明:含钒基的二氧化硅催化剂在丙烷选择氧化制丙烯中有较好催化活性。本部分主要是利用可溶于水的硫酸氧钒作为前驱体,在不同的条件下,原位共合成了含钒不同类型的介孔分子筛并应用于丙烷选择氧化反应。
     因为新型介孔分子筛SBA-15具有大的比表面及孔径,自从问世以来,一直被人们广泛应用在催化领域。在第五章中,我们在水相中以硫酸氧钒为前驱体,P123为模板剂,通过调节水热混合液的pH值,经过水热及焙烧处理后制备出含钒分子筛,分别用TG-DTA,XRD,XRF,氮吸附,TEM,拉曼,NH_3-TPD和H_2-TPR等研究了催化剂的物化性质并测试了其在丙烷选择氧化反应的催化性能。结果表明,由pH调节法所合成出的V-SBA-15催化剂具有大约350 m~2/g的比表面、10 nm左右的平均孔径且典型的两维六角的孔道结构;氧化钒在分子筛的骨架内主要是以高度分散的孤立态的四面体钒氧形式存在,这正是丙烷选择氧化反应中的活性中心位。通过优化反应温度、空速和丙烷与氧气之间的比例等条件,0.98V-SBA-15催化剂对于丙烷选择氧化反应取得较好的催化活性结果:T=600℃,GHSV=15000 L·Kg~(-1)·h~(-1),丙烯的单程最大产率为13.3%。
    
     具有大的比表面及热稳定性和水热稳定性的HMS分子筛一直是催化工作者关注的热点。第六章中主要是在合成蠕虫状材料HMS的过程中,加入硫酸氧钒制备出V-HMS分子筛。通过对合成出的分子筛进行相应的物化表征分析,显示我们合成出的V-HMS样品具有大的比表面和孔容,分别为930 m~2/g和0.8 cm~3/g左右。钒物种进入了分子筛骨架并与硅形成稳定的Si-O-V键。发现催化剂中氧化钒含量≤6.21%时,钒物种以高度分散的孤立态的钒氧四面体存在。在优化的反应条件下,6.21V-HMS上丙烯选择性为43.0%,单程最大产率为16.6%。优于文献中报道的负载型V/HMS催化剂。
     考虑在介孔材料中所使用的模板剂一般都是长链的嵌段共聚物,价格较昂贵,而采用比较环保的化学试剂是现代绿色化学的一个要求,第七章中我们使用毒性较小且价格相对便宜的有机二元羧酸(戊二酸)来作为模板剂,采用溶胶—凝胶法,将氧化钒纳米粒子嵌入到硅骨架,得到高分散、高比表面(~600 m~2/g)、较大孔径(~5 nm)的钒硅分子筛催化材料,并研究其在丙烷选择氧化反应中的催化活性。研究表明,催化剂制备前后钒物种基本无损失,合成得到的钒硅介孔分子筛中钒物种分布均匀,主要以孤立态四面体构型为主。3.96V-meso-SiO_2在T=600℃,GHSV=18750 L·Kg~(-1)·h~(-1)时,丙烷有较大转化率(45.8%),丙烯产率为14.8%。
     三、双溶剂法制备大孔径、负载型钒基催化剂及在丙烷选择氧化中的应用研究
     MCM-41和SBA-15是催化领域应用非常广泛的介孔分子筛,二者的结构均属P6mm相,是两维孔道结构。但在选择氧化反应中,传质和扩散的因素使人们还注意到开拓更大孔径的载体及具有三维连续孔结构材料。最近一种新的介孔泡沫材料MCF被合成出来。它是一种具有超大孔径、三维连续孔道结构、极好的热稳定性的新型材料,其形貌类似于蜂窝或海绵。这种介孔材料的孔分布很窄,晶胞(Cell)之间通过窗口(Window)相连接,因而更有利于物质的扩散和传输。另外MCF具有易合成、孔径可调、孔壁厚和热稳定性好的优点。
     在第八章中,我们采用双溶剂法,通过正己烷作为有机相,硫酸氧钒溶液为水相,介孔材料MCF为载体,利用双溶剂法可以通过毛细管凝聚和硫酸氧钒溶液和正己烷之间的亲水憎水作用,使得水溶液大部分进入到载体孔道内的优点,合成出不同负载量的VOx/MCF催化剂,在优化的反应条件下,7.03V/MCF催化剂上丙烷的单程产率可以达到17.3%。另外采用普通浸渍法和双溶剂法合成出相近含量的VOx/MCF催化剂。通过对它们进行相应的物化表征和丙烷选择氧化制丙烯的催化活性测试,得出由双溶剂法制备出的催化剂,可以保证氧化钒尽可能进入载体的内表面,在载体中高度分散,而普通浸渍法制备的样品表面则有大量聚集态甚至是晶态的氧化钒,双溶剂法制备的催化剂在催化丙烷选择氧化的性能明显优于普通浸渍所得催化剂。
Studies on the synthesis and catalytic application of vanadium-based metal oxides in the selective oxidation of methane and propane
     Because of the worsening global energy crisis and limited natural oil resource, more and more attention has been paid on other alternative energy sources.One of the promising ways is the effective utilization of natural gas,and as a result, investigations focused on this area are carried on by many groups worldwide.The natural gas consists of light alkanes,such as methane and propane,so one of the most popular ways in utilization of natural gas is to directly produce organic products through catalytic conversion of light alkanes.
     There are direct and indirect ways of transforming methane to other products. The indirect process has been commercialized.For example,methane is firstly converted to synthesis gas and then to liquid fuel and organic chemicals.Indirect process suffers some drawbacks,such as the request of heavy investment,high temperature and pressure,etc.So,much effort has been paid in the direct transforming of methane.Among this research,methane selective oxidation(MPO)to formaldehyde is one of the attractive reactions.The active species in the catalysts are mainly molybdenum and vanadium oxide as well as other transition metal oxides. Various supports are used,such as silica,Al_2O_3 and TiO_2.However,catalytic performance of MPO over these catalysts is still under expectation.
     Propene is one of the most important chemicals,and a variety of derivatives can be produced from propene,such as polypropene,acrylonitrile,acrolein,acrylic acid, etc.Propene is mainly produced from oil-cracking,and as a result of the increasingly shortage of oil resource,the production of propene in this way cannot meet the growing demand.As there is a considerable amount of propane in natural gas, producing of propene from catalytic oxidative dehydrogenation of propane(ODP)is now very desirable.It is reported that catalysts containing vanadium oxide have remarkable activity in ODP and the supports may be SiO_2,Al_2O_3,TiO_2,ZrO_2 and MgO,etc.The results show that catalytic performance in ODP can be affected by a series of aspects,such as the surface acidity,the redox state of vanadium species, surface area and porous structure of the catalyst.It is found that better catalytic activity can obtained in silica with large pore diameter and pore volume.As the discovery and application of MCM-41 type mesoporous silica,many supported metal oxide catalysts are prepared using mesoporous silica as supports.Most of these catalysts are obtained through a simple two-step process:support is prepared first and then active components are loaded on its inner surface by impregnation.However,the mesopores may be easily blocked and the active species may sinter at high temperature.These problems can be solved if the active components are embedded in the wall of mesopores in a highly dispersive state.
     The main purpose of this dissertation is,therefore,to develop some methods for preparing mesoporous silica based metal oxides catalysts for the selective oxidation of methane and propane,in which the dispersion of the active species has been improved and the interaction between the active species and the supports has been strengthened. All the catalysts were characterized using various characterization techniques and the relationship between the intrinsic state of metal oxide species and their catalytic activity were studied.
     1.Synthesis of mesoporous materials containing PMoV mixed oxides by impregnation and co-synthesis methods using hyteropolyacid as precursor and their application in the selective oxidation of methane to formaldehyde
     Recently,some investigations indicated that MoO_3 or V_2O_5 supported on ordered mesoporous silicas showed better catalytic activities than that supported on commercial amorphous silica.It is also showed that the supported phosphorus-assisted vanadium or molybdenum oxide exhibited better activity due to the formation of active dispersed oxide species or molybdophosphoric acid-like species on the support.
     We prepared PMoV mixed oxide supported on SBA-15 with different loadings using wet impregnation method and hyteropolyacid H_5PMo_(10)V_2O_(40)as the precursor and studied its catalytic activity in the MPO reaction.In order to understand their catalytic performance in MPO reaction,we studied the influences of various factors to the conversion and selectivity,such as loading,temperature and space velocity.It showed that the higher loading and temperature,the higher conversion of methane, while the selectivity of formaldehyde reached a highest value at certain loading.When increasing space velocity,the conversion of methane increased while the selectivity of formaldehyde decreased.The best reaction condition is as follows:T=640℃、GHSV =48320 L/(Kg·h).The maximum space yield of HCHO reached 295 g·Kg_(cat)~(-1)h~(-1)at 2.89%loading.Characterization result of XRD,as well as N_2 adsorption,NH_3-TPD, shows that when the loading of oxides is below 2.89%,P-Mo-V oxides exist in a highly dispersed state in the mesopores of the support,and the acidity,redox property of catalyst are related with the loading.All these aspects and property can affect the catalytic activity.
     It is known that during the process of synthesizing mesoporous materials,HCl and HNO_3 are usually applied as acidity regulator.Since hyteropolyacid could be dissolved in water or alcohol and release hydrogen-ion,we used hyteropolyacid as the acidity regulator and mixed oxide precursor to synthesis mixed oxide-containing mesoporous materials.Another part of work was mainly focused on the synthesis of PMoV-silica mesoporous composite and its catalytic application.H_5PMo_(10)V_2O_(40)was used as the acid regulator and inorganic precursor and ethanol as solvent.We obtained PMoV-mesoSiO_2 catalytic materials with orderly mesopores.The amount of added H_5PMo_(10)V_2O_(40)can affect the morphology and structure of the product.XRD and TEM characterization results showed these mesoporous materials are MCM-48-type structure.Oxides composite is highly dispersed in mesoporous silica when its content is not high than 6.68 wt%.Under certain content of oxide composites,the products exhibit good catalytic activity in MPO to formaldehyde.Compared the catalysts prepared with co-synthesis and wet impregnation methods,the former have better catalytic activity at nearly the same content of the active component.The maximum space yield of HCHO 330 g·Kg_(cat)~(-1)h~(-1)over the catalyst prepared with co-synthesis method with a PMoVO loading of 3.40%.
     2.Synthesis of V-containing mesoporous materials and their application in the selective oxidation of propane
     Mesoporous SBA-15 has been widely applied in catalytic research for its high surface area and pore diameter.The silica supported vanadium oxides are good catalysts for the propane selective oxidation based on the previous researches.This part of work mostly consist of the synthesis of V-containging mesoporous materials with VOSO_4 as a precursor and to apply in the selective oxidation of propane.In Chapter 5,we developed pH-adjusting method to synthesize V-containing mesoporous silica using VOSO_4 and TEOS as the V and Si sources,P123 as template,and ammonia solution to adjust the pH of the mixture.Characterizations,such as TG-DTA, XRD,XRF,N_2 adsorption,TEM,Raman spectroscopy,NH_3-TPD and H_2-TPR are carried out.It showed that the material has a BET specific surface area of approximately 350 m~2/g,average pore diameter of 10 nm and a SBA-15 type 2D hexagonal arranged pore structure.V species are highly dispersed in a form of V-O tetrahedron in mesopores.Catalytic performance in the selective oxidation of propane reaction under optimized conditions are yield of propene reached 13.3%at T=600 and GHSV=15000 L·Kg~(-1)·h~(-1)over the catalyst of 0.98V-SBA-15.
     Mesoporous HMS is a material of high surface area,thermostability and hydrothermostability.We obtained V-HMS using VOSO_4 as the precursor.Its BET surface area is approximately 930 m~2/g and pore volume is 0.8 cm~3/g,and vanadium is embedded in silica matrix.The sample show better catalytic performance in the selective oxidation of propane reaction than the V-containg mesoporous SBA-15 with yield of HCHO reached 16.6%over the catalyst of 6.21V-HMS.And the sample also has better catalytic performance than the Vanadium oxide impregnated with HMS reported on the before literature.
     Triblock copolymer is widely used as soft template in synthesis of mesoporous materials.However,the cost of this template is relatively high.We employ a cheaper organic acid-glutaric acid as template,through a sol-gel process,to synthesize V-containing silica catalyst.Vanadium oxide embedded into the silica matrix and highly dispersed and the catalyst has high surface area.approximately 600 m~2/g, average pore diameter of 5 nm.Characterizations denote that the vanadium has little loss and a form of V-O tetrahedron in mesopores.The yield of propene reached 13.3% at T=600 and GHSV=15000 L·Kg~(-1)·g~(-1)over the catalyst of 0.98V-SBA-15.
     3.Double solvent system used in preparing of effective catalysts with large pore diameter and its application in the selective oxidation of propane
     The most widely used mesoporous materials in catalytic field are MCM-41 and SBA-15 which are both 2D hexagonal,P6mm group.However,their pore sizes are limited to hundred nanometers.It was reported that larger pore size benefits the molecular diffusion and transportation even in the reactions involving small molecules,such as selective oxidation of propane.Therefore,people seek to find materials with macropore and 3D continuous porous structure.Recently a noval foam material MCF is synthesized,which possesses ultra large pore diameter and 3D continuous pores,and shows thermal stability.This kind of material has a narrow distribution of pore diameter and'cells' are connected through'window',which greatly favor diffusion and transportation.
     We synthesized vanadium oxide loaded MCF by impregnation with the double solvent method using n-hexane as organic phase and VOSO_4 aqueous solution as water phase.Catalytic performance in the selective oxidation of propane reaction under optimized conditions are yield of propene reached 17.3%over the catalyst of 7.03V/MCF The catalytic activity of VOx/MCF in the selective oxidation of propane reaction to propene reaction,along with the catalyst with the same V loading by commom impregnation were studied.The results showed that catalyst prepared by double solvent impregnation has a better activity which can be explained by vanadium oxides dispersed better on the catalyst prepared by double solvent impregnation.
引文
[1]张立德,牟其美.纳米材料学.[M]辽宁:辽宁科学技术出版社,1994.
    [2]闵恩泽.21世纪石油化工催化材料的发展与对策.[J]石油与天然气化工,2000,29(5):215-232.
    [3]徐如人,庞文琴,于吉红,霍启升,陈接胜.分子筛与多孔材料化学.[M]北京:科学出版社,2004.
    [4]Kresge C T,Leonowicz M E,Roth W J,Vartuli J C,Beck J S.Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism.[J]Nature,1992,359(6397):710-712.
    [5]Beck J S,Vartuli J C,Roth W J,Leonowicz M E,Kresge C T,Schmitt K D,Chu C T W,Olson D H,Sheppard E W.A new family of mesoporous molecular sieves prepared with liquid crystal templates.[J]J Am Chem Soc,1992,114(27):10834-10843.
    [6]Zhao D Y,Feng J L,Huo Q S,Melosh N,Frederickson G H,Chmelka B F,Stucky G D.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores.[J]Science,1998,279(5350):548-552.
    [7]Schmidt-Winkel P,Lukens W.W,Jr,Zhao D Y,Yang P D,Chmelka B F,Stucky G D.Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows.[J]J Am Chem Soc,1999,121(1):254-255.
    [8]Schueth F.Non-siliceous mesostructured and mesoporous materials.[J]Chem Mater,2001,13(10):3184-3195.
    [9]Kaneda M,Tsubakiyama T,Carlsson A,Sakamoto Y,Ohsuna T,Terasaki O,Joo S H,Ryoo R.Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography.[J]J Phys Chem B,2002,106(6):1256-1266.
    [10]Zhang W H,Liang C H,Sun H J,Shen Z Q,Guan,Y J,Ying P L,L C.Synthesis of ordered mesoporous carbons composed of nanotubes via catalytic chemical vapor desposition.[J]Adv Mater,2002,14(23):1776-1778.
    [11]Ryoo R,Joo S H,Kruk M,Jaroniec M.Ordered mesoporous carbons.[J]Adv Mater,2001,13(9):677-681.
    [12]Bagshaw S A,Prouzet E,Pinnavaia T J.Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants.[J]Science,1995,269(5228):1242-1244.
    [13]Vaudry F,Khodabandeh S,Davis M E.Synthesis of pure alumina mesoporous materials.[J]Chem Mater,1996,8(7):1451-1464.
    [14]Deng W,Bodart P,Pruski M,Shanks,B H Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating.[J]Micropor Mesopor Mat,2002,52(3):169-177.
    [15]乐英红,马臻,华伟明等.二氧化钛介孔分子筛的合成和表征.[J]化学学报.2000,58(7):777-780.
    [16]Tiemann M,Froba M.Mesostructured aluminophosphates synthesized with supramolecular structure directors.[J]Chem Mater,2001,13(10):3211-3217.
    [17]陈赓良.国内外天然气利用的现状与展望.[J]石油与天然气化工,2002,31(5):231-234.
    [18]张涛.天然气燃料电池的原理与应用.[J]煤气与热力,2002,(5):417-419.
    [19]Brockerhoff P,Emonts B,Use of natural gas in a catalytic radiant burner for low-emission heat production.[J]Stud Surf Sci Catal,1997,107:133-138.
    [20]Anon.Use of liquefied natural gas projected to increase.[J]Power Eng-US,2003,107(3):16-16.
    [21]Volpe M A.Partial oxidation of methane over VOx/a-Al_2O_3 catalysts.[J]Appl Catal A Gen,2001,210(1-2):355-361.
    [22]Brik Y,Kacimi M,Ziyad M,Bozon-Verduraz F.Titania-Supported Cobalt and Cobalt-Phosphorus Catalysts:Characterization and Performances in Ethane Oxidative Dehydrogenation.[J]J Catal,2001,202(1):118-128.
    [23]Evans O R,Bell A T,Tilley T.D.Oxidative dehydrogenation of propane over vanadia-based catalysts supported on high-surface-area mesoporous MgAl_2O_4.[J]J Catal,2004,226(2):292-300.
    [24]马鸣,陈伟,姜健准,何海龙,陈锡荣.我国天然气资源的开发利用现状.[J]石油化工,2005,34(4):394-398.
    [25]Rodhe H.A comparison of the contribution of various gases to the greenhouse effect.[J]Science,1990,248(4960):1217-1219.
    [26]王大力.大气CO浓度升高对全球CH_4排放的影响.[J]科学通报,1999,44:1-6.
    [27]Suzuki T,Wada K,Shima M,Watanabe Y.Photoinduced partial oxidation of methane into formaldehyde on silica-supported molybdena.[J]Chem Soc Chem Commun,1990,15:1059-1060.
    [28]K Wada,K Yoshida,Y Watanabe.Selective photo-oxidation of light alkane using solid metal oxide semiconductors. [J] Appl Catal A: General 1993, 99(1): 21-36.
    [29] Gesser H D, Hunter N R, Prakash C B. The direct conversion of methane to methanol by controlled oxidation. [J] Chem Rev, 1985, 85(4): 235-244
    [30] Zhang X, He D H, Zhang Q J, Ye, Q, Xu, B Q; Zhu, Q M. Selective oxidation of methane to formaldehyde overMo/ZrO_2 Catalysts. [J] Appl Catal, A, 2003, 249(1): 107-117.
    [31] Zhang X, He D H, Zhang Q J, Xu, B Q, Zhu Q M. Methanol from oxidation of methane over MoOx/La-Co-oxide Catalysts. [J] Stud Surf Sci Catal, 2004, 147: 541-546.
    [32] Tabata K, Teng Y, Takemoto T, Suzuki E, Banares M A, Pena M A, Fierro J L G. Activation of methane by oxygen and nitrogen oxide. [J] Catal Rev Sci Eng, 2002, 44(1): 1-58
    [33] Otsuka K, Takahashi R, Amakawa K, Yamanaka, I. Partial oxidation of light alkanes by NOx in the gas phase. [J] Catal Today, 1998, 45(1-4): 23-28
    [34] Otsuka K, Takahashi R, Yamanaka I. Oxygenates from light alkanes catalyzed by NOx in the gas phase. [J] J Catal, 1999, 185(1): 182-191.
    [35] Takemoto T, He D H, Teng Y H, Tabata K,Suzuki E. Enhancement of methanol selectivity in the products of direct slective oidationof methane in CH4-O2-NO with Cu-ZnO/SiO_2. [J] Appl Catal A Gen, 2002, 225(1-2): 177-184.
    [36] Takemoto T, He D H, Teng Y H, Tabata K, Suzuki E. The optimization of methanol yield in direct selective oxidation of methane with O_2 and NO in the presence of Cu-ZnO/Al_2O_3. [J] Mol Catal A Chem, 2002, 179(1-2): 279-286.
    
    [37] Barbero J A, A lvarez M C, Banares M A, Pena M A, Fierro J L G. Breakthrough in the direct conversion of methane into C_(1~-)O xygenates. [J] Chem Commun, 2002, 11:1184-1185.
    [38] Jone C J, Taube D, Ziatdinov V R, Periana, R A, Nielsen R J, Oxgaard, J G, William A. Selective oxidation of methane to methanol catalyzed, with C-H Activation, by homogeneous, cationic gold. [J] Angew Chem Int Ed, 2004, 43(35): 4626-4629.
    [39] Shilov A E, Shulpin G B. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes. [M] Dordrecht: Dordrecht Kluwer Academic Publishers, 2000.
    [40] Yamanaka I, Soma M, Otsuka K. Oxidation of methane to methanol with oxygen catalyzed by europium trichloride at room-temperature.[J]Chem Soc Chem Commun,1995,21:2235-2236.
    [41]Yamanaka I,Morimoto K,Soma M,Otsuka K.Oxidation of methane and benzene with oxygen catalyzed by reduced vanadium species at 40℃.[J]J Mol Catal A Chem,1998,133(3):251-254.
    [42]Lin M R,Hogan T,Sen A.A highly catalytic bimetallic system for the low-temperature selective oxidation of methane and lower alkanes with dioxygen as the oxidant.[J]J Am Chem Soc,1997,119(26):6048-6053.
    [43]Berndt H,Martin A,Bruckner A,Schreier A,Muller E,Kosslick D,Wolf G.U,Lucke B.[J]J.Catal,2000,19(2):384-400.
    [44]Zhao D Y,Feng J L,Huo Q S,Melosh N,Fredrickson G H,Chmelka B F,Stucky G D.[J]Science.1998,279(5350):548-552.
    [45]Lin B M,Wang X X,Guo Q,Yang W,Zhang Q H,Wang Y.Excellent Catalytic performance of SBA-15-Supported vanadium oxide for partial oxidation of methane to formaldehyde.[J]Chem Lett,2003,32(9):860-861.
    [46]汪晓星,林宝敏,杨薇等.SBA-15负载钒氧化物催化剂上甲烷选择氧化反应.[J]化学学报,2004,6(2):1738-1744.
    [47]Kobayashi T,Guilhaume N,Miki J,Kitamura N,Haruta M.Oxidation of methane to formaldehyde over Fe/SiO_2 and Sn-W mixed oxides.[J]Catal Today,1996,32(1-4):171-175.
    [48]Arena F,Parmaliana A.Scientific basis for process and catalyst Design in the selective oxidation of methane to formaldehyde.[J]Acc Chem Res,2003,36(12):867-875.
    [49]Arena F,Torre T,Venuto A,Frusteri F,Mezzapica A,Paraliana A.Tailoring effective FeOx/SiO_2 catalysts in methane to formaldehyde partial oxidation.[J]Catal Lett,2002,80(1-2):(69-72)
    [50]Wang Y,Otsuka K.Catalytic oxidation of methane to methanol initiated in a gas mixture of hydrogen and oxygen.[J]J Chem Soc Chem Commun,1994,19,2209-2210.
    [51]Wang Y,Otsuka K.Catalytic oxidation of methane to methanol with H_2-O_2 gas mixture at atmospheric pressure.[J]J Catal,1995,155(2):256-267.
    [52]Otsuka K,Wang Y.Direct conversion of methane into oxygenates.[J]Appl Catal A,2001,222(1-2):145-161.
    [53]Wang X X,Wang Y,Tang Q H,Guo Q,Zhang Q H,Wan H L. MCM-41-supported Iron phosphate catalyst for partial oxidation of methane to oxygenates with oxygen and nitrous oxide. [J] Catal, 2003, 217(2): 457-467.
    [54] Wang Y, Wang X X, Su Z, Guo Q, Tang Q H, Zhang Q H, Wan H L. SBA-15-supported Iron phosphate catalyst for partial oxidation of methane to formaldehyde. [J] Catal Today, 2004, 93-95: 155-161.
    [55] Yang W, Wang X X, Guo Q, Zhang Q H, Wang, Y. Superior catalytic performance of phosphorus-Modified molybdenum oxide clusters encapsulatedinside SBA-15 in the partial oxidation of methane. [J] New J Chem, 2003, 27(9): 1301-1303.
    [56] Lin M R, Sen A. Direct catalytic conversion of methane to acetic acid in an aqueous medium. [J] Nature, 1994, 368(6472): 613-615.
    [57] Taniguchi Y, Hayashida T, Shibasaki H, Piao D G, Kitamura T, Yamaji T, Fujiwara Y. Highly efficient vanadium-catalyzed transformation of CH4 and CO to acetic Acid. [J] Org Lett, 1999, 1(4): 557-559.
    [58] Asadullah M, Kitamura T, Fujiw ara Y. Calcium-catalyzed selective and quantitative transformation of CH4 and CO into acetic acid. [J] Angew Chem, Int Ed, 2000, 39(14): 2475-2478.
    [59] Jia C, Kitamura T, Fujiw ara Y. Catalytic functionalization of arenes and alkanes via C-H bond activation. [J] Acc Chem Res, 2001, 34(8): 633-639.
    [60] Basickes N, Hogan T E, Sen A. Radical-initiated functionalization of methane and ethane in fuming sulfuric acid. [J] J Am Chem Soc, 1996, 118(51): 13111-131120.
    [61] Periana R A, Mironov O, Taube D, Bhalla G, Jones C J. Catalytic oxidative condensation of CH_4 to CH_3COOH in one step via CH activation. [J] Science, 2003, 301(5634): 814-818.
    [62] Mukhopadhyay S, Bell A T. Direct liquid-phase sulfonation of methane to methanesulfonic acid by SO_3 in the presence of a metal peroxide. [J] Angew Chem, Int Ed, 2003, 42(9): 1019-1021.
    [63] Mukhopadhyay S, Bell A T. A High-Yield Approach to the sulfonation of methane to m ethanesulfonic acid initiated by H_2O_2 and a metal chloride. [J] Angew Chem, Int Ed, 2003,42(26): 2990-2993.
    [64] Mukhopadhyay S, B ell A T. Direct sulfonation of methane to methanesulfonic acid by sulfur trioxide catalyzed by Ce (IV) sulfate in the presence of molecular oxygen. [J] Adv Synth Catal, 2004, 346(8): 913-916.
    [65] Mukhopadhyay S, Bell A T. Direct catalytic sulfonation of methane with SO_2 to methanesulfonic acid (MSA) in the presence of molecular O_2. [J] Chem Commun, 2003, 13: 1590-1591.
    [66] Mukhopadhyay S, ZerellaM, BellA T, Vijay S, Smith G S. Synthesis of methane sulfonyl chloride (MSC) from methane and sulfuryl chloride. [J] Chem Commun, 2004, 4: 472-473.
    [67] Ishii Y, Matsunaka K, Sakaguchi S. The First Catalytic Sulfoxidation of Saturated Hydrocarbons with SO_2/O_2 by a Vanadium Species. [J] Am Chem Soc, 2000,122(30): 7390-7391.
    [68] Shepelev S S, Ione K G. Syntheses of hydrocarbons from C_1 compounds using zeolite catalysts(3): Syntheses from methane in the presence of oxidizing agents. [J] Kinet Catal, 1984, 25(2): 284-288.
    [69] Anderson J R ,Tsai P. Oxidation of methane over H-ZSM-5 and other catalysts. [J] Appl Catal, 1985, 19(1): 141-152.
    [70] Han S, Martenak D J, Palermo R E, Pearson J A, Walsh D E. The direct partial oxidation of methane to liquid hydrocarbons over HZSM-5 catalyst. [J] J Catal, 1992, 136(2): 578-583.
    [71] Ismaicov E G, Aliev S M, Suleimanov Sh Sh, Dadashev B A, Sokolovskii V D. Temperature programmed reaction of methane with Re-and Pt-containing oxide contacts. [J] React Catal Kinet Lett, 1991, 45(2): 185-189.
    [72] Abasov S I, Babaeva F A, Dadashev B A. Methane conversion on the oxidized platinum rhenium alumina catalysts. [J] Kinet Catal, 1991, 32(1): 202-210.
    [73] Clariage J B, Green M I H, Tsang S C, York, A P E. Oxidative oligomerization of methane to aromatics. [J] Appl Catal, 1992, 89(1): 103-116.
    [74] Otsuka K, Komatsu T. Conversion of methane to aromatic hydrocarbons by combination of catalysts. [J] Chem Lett, 1986, 179(11): 1955-1958.
    [75] Devries L, Ryason P R. Conversions of low molecular weight hydrocarbons to higher molecular weight hydrocarbons using a boron compound containing catalyst. [P] US, 4507517, 1985-10-31.
    [76] Bragin O V, Vasina T V, Mishin I. Ethylene conversion on dealuminized mordenites. [J] Kinet Catal, 1985, 26(2): 109-115.
    [77] Inui T, Ishihara Y, Karoachi K. Zeolite: Facts, figures, future. [M] Netherlands: Elsevier Science Publishers. 1989.
    [78] Liu R S, Iwamoto M, Lunsford J H. Partial oxidation of methane by nitrous oxide over molybdenum oxide supported on silica.[J]J Chem Soc,Chem Commun,1982,1:78-79.
    [79]Solymosi F,Szoeke A,Cserenyi J.Conversion of methane to benzene over Mo_2C and Mo_2C/ZSM-5 catalysts.[J]Catal Lett,1996,39(3-4):157-161.
    [80]Szoke A,Solymosi F.Selective oxidation of methane to benzene over K_2MoO_4/HZSM-5catalysts.[J]Appl Catal A,1996,142(2):361-374.
    [81]Wang L S,Xu Y D,Xie M S,Liu S T,Tao L X,Xu,G F.Activation and aromatization of methane and ethane over Mo(Ⅵ)/HZSM-5 and W(Ⅵ)/HZSM-5 zeolites catalysts.[J]Stud Surf Sci Catal,1995,94:495-500.
    [82]Wong S T,Xu Y D,Wang L S,Liu S T,Li G J,Xie M S,Guo X X.Methane and ethane activation without adding oxygen:promotional effect of W in Mo-W/HZSM-5.[J]Catal Lett,1996,38(1-2):39-43.
    [83]Marczeushki M,Marczewska K.Catalysts for methane transformations into aromatics.[J]React Catal Letter,1995,55(1):81-86.
    [84]Acres Guy J K.Platinum catalysts for the control of air pollution;Elimination of organic fume by catalytic combustion.[J]Platinum Met Rev,1970,14(1):2-10.
    [85]Schwartz A,Holbrooka L L,Wise H.Catalytic oxidation studies with platinum and palladium.[J]J Catal,1971,21(2):199-207.
    [86]Hicks R F,Young M L,Lee R G,Qi H H,Structure sensitivity of methane oxidation over platinum and palladium.[J]J Catal,1990,122(2):280-294.
    [87]Hicks R F,Young M L,Lee R G,Qi H H.Effect of catalyst structure on methane oxidation over palladium and alumina.[J]J Catal,1990,122(2):295-306.
    [88]Otto K.Methane oxidation over Pt on γ-alumina:kinetics and structure sensitivity.[J]Langmuir,1989,5(6):1364-1369.
    [89]Arai H,Yamada T,Eguchi K,Seiyama T.Catalytic combustion of methane over various perovskite-type oxides.[J]Appl Catal,1986,26(1-2):265-276.
    [90]Gadalla A.M,Sommer,M.E.Carbon dioxide reforming of methane on nickel catalysts.[J]Chem.Eng.Sci,1989,44(12),2825-2829.
    [91]陈赓良.天然气制合成气工艺技术的发展动向.[J]天然气化工,1996,21(6):45-50.
    [92]Ichikawa M,Fukushima T.[J]J Chem Soc Chem Commun,1985,6:321-323.
    [93]Mccrary J H,Mccrary G E,Chubb T A,Nemecek J J,Simmons D E.An experimental study of the CO_2-CH_4 reforming-methanation cycle as a mechanism for converting and transporting solar energy.[J]Sol Energy,1982,29(2):141-151.
    [94]Richardson J T,Paripatydar S A.Carbon dioxide reforming of methane with support Rhodium.[J]Appl Catal,1990,61(2):293-309.
    [95]Chubb T A.Characteristics of carbon dioxide-methane reforming-methanation cycle relevant to the Solchem thermochemical power system.[J]Sol Energy,1980,24(4):341-345.
    [96]Marcinkowska K,Kaliaguine S,Roberge P C.Photocatalytic oxidation of propane by oxygen on supported molybdenum/silica catalysts.[J]J Catal,1984,90(1):49-58.
    [97]Wada K,Yoshida K,Takatani T,Watanabe Y.Selective photo-oxidation of light alkane using solid metal oxide semiconductors.[J]Appl Catal A:General,1993,99(1):21-36.
    [98]Tanaka S,Takenaka T,Funabiki T,Yoshida S.Selective photooxidation of propane to propone over alkali-ion modified silica-supported vanadium oxide.[J]Chem Lett,1994(9):1585-1588.
    [99]Takenaka S,Kuriyama T,Tanaka T,Funabiki T,Yoshida S.Photooxidation of propane over alkali-ion-modified V_2O_5/SiO_2 catalysts.[J]J Catal,1995,155(2):196-203.
    [100]Yoshida S,Takenaka S,Tanaka T,Hirano H,Hayashi H.Highly dispersed titanium oxide on silica:preparation,characterization by XAFS,and photocatalysis.[J]Stud Surf Sci Catal,1996,101:871-880.
    [101]Marcinkowska K,Kaliaguine S,Roberge P C.Photocatalytic oxidation of propane by oxygen on supported molybdenum/silica catalysts.[J]J Catal,1984,90(1):49-58.
    [102]侯震山,赵洪,贺迪经.丙烷在双功能催化剂上的芳构化.[J]分子催化,1998,28(3):214-220.
    [103]程漠杰,王迈江,杨亚书.Zn/HZSM-5上丙烷芳构化的研究-丙烷的活化.[J]物理化学学报,1995,11(8):724-729.
    [104]Lugo H J,Lunsford J.H.The dehydrogenation of ethane over chromium catalysts[J]J Catal,1985,91(1):155-166.
    [105]Rossi S D,Ferrari G,Fremiotti S,Garrone E,Ghiotti G,Campa M C,Indovina V.Propane dehydrogenation on chromia/silica and chromia/alumina catalysts.[J] J Catal,1994,148(1): 36-46.
    [106] Rossi S D, Ferrari G, Fremioti S, Cimino A, Indovina V. Propane dehydrogenation on chromia/zirconia Catalysts. [J] Appl Catal A: Gen, 1992, 81(1): 113-132.
    [107] Blasco T, Lopez Nieto J M. Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts. [J] Appl Catal A, 1997, 157(1-2): 117-142.
    [108] Deo G, Wachs I E. Predicting molecular structures of surface metal oxide species on oxide supports under ambient conditions. [J] J Phys Chem, 1991, 95 (15): 5889-5895.
    [109] Gil-Llambias F J, Escudey A M, Fierro J L G, Lopez Agudo A. Determination of the active surface area of vanadia by electrophoretic migration and XPS measurements. [J] J Catal, 1985, 95(2): 520-526.
    [110] Del Arco M, Holgado M J, Martinez C, Rives V. Reactivity of vanadia with silica, alumina, and titania surfaces. [J] Langmuir, 1990, 6(4): 801-806.
    [111] Noller H, Lercher J A, Vinek H. Acidic and basic sites of main group mixed metal oxides. [J] Mater Chem Phys, 1988, 18(5-6): 577-593.
    [112] Corma A, Lopez-Nieto J M, Paredes N, Perez M, Shen Y, Cao H, Suib S L. Oxidative dehydrogenation of propane over supported-vanadium oxide catalysts. [J] Stud Surf Sci Cata, 1992, 72: 213-220.
    [113] Chaar M A, Patel D, Kung H H. Selective oxidative dehydrogenation of propane over vanadium magnesium oxide catalysts. [J] J Catal, 1988, 109(2): 463-467.
    [114] Gao X T, Ruiz P, Xin Q, Guo X X, Delmon B. Effect of Coexistence of Magnesium Vanadate Phases in the Selective Oxidation of Propane to Propene. [J] J Catal, 1994, 148(1): 56-67.
    [115] Corma A, Lopez Nieto J M, Paredes N. Influence of the preparation methods of V-Mg-O catalysts on their catalytic properties for the oxidative dehydrogenation of propane. [J] J Catal, 1993,144 (2): 425-438.
    [116] Busca G, Lorenzelli V, Oliveri G, Ramis G. On the catalyst features affecting selectivity in n-C4 hydrocarbon oxidation and oxidative dehydrogenation. Ft-IR studies. [J] Stud Surf Sci Catal, 1994, 82: 253-263.
    [117] Concepcion P, Galli A, Nieto J M Lopez, Dejoz A, Vazquez M I. On the influence of the acid-base character of catalysts on the oxidative dehydrogenation of alkanes. [J] Topics in Catal, 1996, 3(3-4): 451-460.
    [118] Galli A, Lopez Nieto J M, Dejoz A, Vazquez M I. The effect of potassium on the selective oxidation of n-butane and ethane over Al_2O_3-supported vanadia catalysts. [J] Catal Lett, 1995, 34(1-2): 51-58.
    [119]Mamedov E A, Cortes Corberan V. Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts. [J] Appl Catal A, 1995, 127(1-2): 1-40.
    [120] Grzybowska B, Mekss P, Grabowski R, Wcislo K, Barbaux Y, Gengembre L. Effect of potassium addition to V_2O_5/TiO_2 and MoO_3/TiO_2 catalysts on their physicochemical and catalytic properties in oxidative dehydrogenation of propane. [J] Stud Surf Sci Catal, 1994, 82: 151-158.
    [121] Grabowski R, Grzybowska B, Kozlowska A, Stoczynski J, Wcisto K, Barbaux Y. Effect of alkali metals additives to V_2O_5/TiO_2 catalyst on physicochemical properties and catalytic performance in oxidative dehydrogenation of propane. [J] Topics in Catal, 1996, 3(3,4): 277-288.
    [122] Grabowski R, Grzybowska B, Samson K, Sloczynski J, Stoch J, Wcislo K. Effect of alkaline promoters on catalytic activity of V_2O_5/TiO_2 and MoO_3/TiO_2 catalysts in oxidative dehydrogenation of propane and in isopropanol decomposition. [J] Appl Catal A, 1995, 125(1): 129-144.
    [123] Das N, Eckert H, Hu H C, Wachs I E, Walzer J, Feher F. Bonding states of surface vanadium(V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy. [J] J Phys Chem, 1993, 97(31): 8240-8243.
    [124] Wachs I E. Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts. [J] Catal Today, 1996, 27(3-4): 437-455.
    [125] Lapina O B, Mastikhin V M, Shubin A A, Krasilnikov V N, Zamaraev K I. Vanadium-51 solid state NMR studies of vanadia based catalysts. [J] Prog Nucl Mag Res Sp, 1992, 24(6): 457-525.
    [126] Lapina O B, Mastikhin V M, Simonova L G, Bulgakova Yu O. Characterization of surface species of supported vanadia-alumina catalysts by vanadium-51 NMR. [J] J Mol Catal, 1991, 69 (1): 61-73.
    [127] Okuhara T, Inumaru K, Misono M, Matsubayashi H, Shimada H, Nishijima A. Structures and dehydrogenation activities of vanadium oxide overlayers on supports. [J] Catal Lett, 1993, 20(1-2): 73-79.
    [128] Lopez Nieto J M, Kremenic G, Fierro J L G. Selective oxidation of propene over supported vanadium oxide catalysts. [J] Appl Catal, 1990, 61 (2): 235-251.
    [129] Rao V V, Chary K V R, Durgakumari V, Narayanan S. Alkylation of phenol over simple oxides and supported vanadium oxides. [J] Appl Catal, 1990, 61(1): 89-97
    [130] Went G T, Oyama S T, Bell A T. Laser Raman spectroscopy of supported vanadium oxide catalysts. [J] J Phys Chem, 1990, 94(10): 4240-4246.
    [131] Chen K D, Iglesia E, Bell A T. Kinetic isotopic effects in oxidative dehydrogenation of propane on vanadium oxide catalysts. [J] J Catal, 2000, 192(1): 97-203.
    [132] Eckert H, Wachs I E. Solid-state vanadium-51 NMR structural studies on supported vanadium(V) oxide catalysts: vanadium oxide surface layers on alumina and titania supports. [J] J Phys Chem, 1989, 93(18): 6796-6805.
    [133] Blasco T, Lopez Nieto J M. Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts. [J] Appl Catal A, 1997, 157(1-2): 117-142.
    [134] Mars P, Van Krevelen D W. Oxidations carried out by means of vanadium oxide catalysts. [J] Chem Eng Sci, 1954, 3(Spec Suppl): 41-59.
    [135] Wachs I E, Weckhuysen B M. Structure and reactivity of surface vanadium oxide species on oxide supports. [J] Appl Catal A, 1997, 157(1-2): 67-90.
    [136] Grasselli R K, Burrington J D. Selective oxidation and ammoxidation of propylene by heterogeneous catalysis. [J] Adv Catal, 1981, 30: 133-163.
    [134] Grasselli R K. Selective catalytic oxidation and ammoxidation of hydrocarbons over mixed metal oxides. [J] Actas Simp Iberoam Catal, 9th, 1984, 1: 102-121.
    [138] Mazzochia C, Aboumrad C, Diagne C, Tempesti E, Herrmann J M, Thomas G. On the nickel molybdate (NiMoO_4) oxidative dehydrogenation of propane to propene: some physical correlations with the catalytic activity. [J] Catal Lett, 1991, 10(3-4): 181-191.
    [139] Grzybowska B, Mekss P, Grabowski R, Wcislo K, Barbaux Y, Gengembre L. Effect of potassium addition to V_2O_5/TiO_2 and MoO_3/TiO_2 catalysts on their physicochemical and catalytic properties in oxidative dehydrogenation of propane. [J] Stud Surf Sci Catal, 1994, 82: 151-158.
    [140] Grabowski R, Grzybowska B, Samson K, Sloczynski J, Stoch J, Wicslo K. Effect of alkaline promoters on catalytic activity of V_2O_5/TiO_2 and MoO_3/TiO_2 catalysts in oxidative dehydrogenation of propane and in isopropanol decomposition.[J]Appl Catal A Gen,1995,125(1):129-144.
    [141]Barrault J,Magaud L,Gann M,Toumoux M.Selective oxidation of propane in the presence of bismuth-based catalysts.[J]Stud Surf Sci Catal,1994,82:305-314.
    [142]Meunier F C,Yasmeen A,Ross J R H.Oxidative dehydrogenation of propane over molybdenum-containing catalysts.[J]Catal Today,1997,37(1):33-42.
    [143]朱红娟.丙烷选择氧化反应制丙烯的研究.[D]大连:中科院大连化物所,2002.
    [144]Corb V C,Valenzuela R X.Gallium oxide promoted zeolite catalysts for oxidehydrogenation of propane.[J]Catal Today,1996,32(1-4):193-204.
    [145]Dahl I M,Grande K,Jens K J,Rytter E,Slagtern A.Oxidative dehydrogenation of propane in lithium hydroxide lithium iodide melts.[J]Appl Catal A Gen,1991,77(1):163-174.
    [146]Ono Y,Nakatani H,Kitagawa H,Suzuki E.Role of metal cations in the transformation of lower alkanes into aromatic hydrocarbons.[J]Stud Surf Sci Catal,1989,49:279-290.
    [147]Concepcion P,Lopez-Nieto J M,Perez-Pariente J.The oxidative activation of short chain alkanes on microporous metal aluminophosphates.[J]Stud Surf Sci Catal,1995,(94):681-688.
    [148]Kubacka A,Wloch E,Sulikowski B,Valenzuela R X,Cortes Corberan V.Oxidative dehydrogenation of propane on zeolite catalysts.[J]Catal Today,2000,61(1-4):343-352.
    [149]Fang Z M,Hong Q,Zhou Z H,Dai S J,Weng W Z,Wan H L.Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method.[J]Catal Lett,1999,61(1,2):39-44.
    [150]Alfonso M J,Menendez M,Santamaria J.Vanadium-based catalytic membrane reactors for the oxidative dehydrogenation of propane.[J]Catal Today,2000,56(1-3):247-252.
    [151]Blasco T,Lopez Nieto J M.Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts.[J]Appl Catal A,1997,157(1-2):117-142.
    [152] Deo G, Wachs I E. Predicting molecular structures of surface metal oxide species on oxide supports under ambient conditions. [J] J Phys Chem, 1991, 95 (15): 5889-5895.
    [153] Kijenski J, Baiker A, Glinski M, Dollenmeier P, Wokaun A. Monolayers and double layers of vanadium pentoxide on different carriers: preparation, characterization, and catalytic activities. [J] J Catal, 1986,101(1): 1-11.
    [154] Nickl J, Dutroit D, Baiker A, Scharf U, Wokaun A. Vanadia on titania prepared by vapor deposition of vanadyl alkoxide: Influence of preparation variables on structure and activity for the selective catalytic reduction of nitric oxide by ammonia. [J] Appl Catal, A: General, 1993, 98(2): 173-193.
    [155] Bond G C, Tahir S F. Vanadium oxide monolayer catalysts: preparation, characterization and catalytic activity. [J] Appl Catal, 1991, 71(1): 1-31.
    [156] Koranne M M, Goodwin J G J, Marcelin G. Characterization of silica- and alumina-supported vanadia catalysts using temperature programmed reduction. [J] J Catal, 1994,148(1): 369-377.
    [157] Michalakos P M, Kung M C, Jahan I, Kung H H. Selectivity patterns in alkane oxidation over magnesium vanadate (Mg_3(VO_4)_2)-magnesia, magnesium vanadate (Mg_2V_2O_7), and vanadyl diphosphate ((VO)_2P_2O_7). [J] J Catal, 1993, 140(1): 226-242.
    [158] Fox D B, Lee E H, Rei M H. Carbon Dioxide as Hydrogen Acceptor in Dehydrogenation of Alkanes. [J] Ind Eng Chem, 1972, 11(4): 444-446.
    [159] Mamedov A K, Mirzabekova S R, Nuriyev S A, Aliev V S. Conversion of propane with carbon dioxide into C_2-C_3 olefins and CO [J] Petro Chem, 1991, 31(5): 627-634.
    [160] Mamedov A K, Mirzabekova S R, Aliev V S, Krylov 0 V. Conversion of methane and ethane by carbon dioxide in the presence of manganese-containing catalysts [J] Neftekhimiya,1992, 32(3): 250-254.
    [161] Takahara I, Saito M. Promoting effects of carbon dioxide on dehydrogenation of propane over a SiO_2-supported Cr_2O_3 catalyst [J] Chem Lett, 1996, 11: 973-974.
    [162] Bettahar M M, Costentin G, Savary L, Lavalley J C. On the partial oxidation of propane and propylene on mixed metal oxide catalysts. [J] Appl Catal A: Gen, 1996,145(1-2): 1-48.
    [163] Abon M, Bere K E, Tuel A. Evolution of a VPO catalyst in n-butane oxidation reaction during the activation.[J]J Catal,1995,156(1):28-31.
    [164]Jansen P A,Ruitenbeek M.New insights into the nature of the active phase of VPO catalyst.[J]J Catal,2000,196(2):379-387.
    [165]Batis N H,Batis H,Ghorbel A.Study of chromium-doped catalysts in n-butane oxidation to maleic anhydride.[J]Appl Catal A:Gen,1996,147(2):347-361.
    [166]Takita Y,Tanaka K,Ichimaru S.Location and functions of Zn as promoter element in the V-P-O catalysts for n-butane oxidation to malaic anhydride.[J]J Catal,1991,130:347-359.
    [167]Zazhigalov V A,Haber J,Stoch J.Properties of cobalt promoted(VO)_2P_2O_7 in the oxidation of butane.[J]Appl Catal,1993,96:135-156.
    [161]Sananes M T,Petunchi J O,Lombardo E A.The effect of Zn,Ti,and Zr used as additives in VPO formulations.[J]Catal Today,1992,15:527-535.
    [168]王宗祥,刘广舜,毛国梁.V-P-O催化剂上丙烷氧化制丙烯酸的研究.[J]石油学报,1998,14(3):21-26.
    [169]Lin M M.Selective oxidation of propane to acrylic acid with molecular oxygen.[J]Appl Catal A:Gen,2001,207:1-10.
    [170]Cavani F,Trifro F.Selective oxidation of light alkanes:Interaction between the catalyst and the gase phase on different classes of catalytic material.[J]Catal Today,1999,51:561-580.
    [171]曾翎,季伟捷,陈懿.制备条件对VPO催化剂结构和催化性能的影响(Ⅱ):复合助剂对VPO催化剂物性的影响.[J]石油化工,2000,29(4):252-255.
    [173]Misono M,Nojiri N.Recent progress in catalytic technology in Japan.[J]Appl Catal,1990,64(1-2):1-30.
    [174]王恩波,胡长文,许林.多酸化学导论.[M]北京:化学工业出版社,1998.
    [175]Misono M.Acidic and catalytic properties of heteropoly compounds.[J]Mater Chem Phys,1987,17(1-2):103-120.
    [176]Krieger H,Kirch L.Process for the production of unsaturated acids.[P]US 4260822,1981-04-7.
    [177]Li W,Oshihara K,Ueda W.Catalytic performance for propane selective oxidation and surface properties of 12-molybdophosphoric acid treated with pyridine.[J]Appl Catal A:Gen,1999,182(2):357-363.
    [178]Mizuno N,Yateishi M,Iwamoto M.Pronounced catalytic activity of Fe_(0.08)Cs_(2.5)H_(1.26)PVMo_(11)O_(40)for direct oxidation of propane into acrylic acid.[J]Appl Catal A Gen,1995,128(2):165-170.
    [179]Thorsteinson E M,Wilson T P,Young F G.The oxidative dehydrogenation of ethane over catalysts containing mixed oxides of molybdenum and vanadium.[J].J Catal,1978,52(1):116-132.
    [180]To S,Takahashi M,Hirose S.Production of catalyst for producing acrylic acid.[P]JP 10137585,1998-05-26.
    [181]Ushikubo T,Nakamura H,Koyasu Y.Method for producing an unsaturated carboxylic acid.[P]US 5380933,1995-01-10.
    [182]Ushikubo T,Koyasu Y,Nakamura H.Production of alpha,beta-unsaturated carboxylic acid.[P]JP 10045664,1998-02-17.
    [183]Takahashi M,To S,Hirose S.Production of catalyst for producing acrylic acid.[P]JP 11285636,1999-10-19.
    [1]Brunauer S,Emmett P H,Teller E.Adsorption of Gases in Multimolecular Layers.[J]J Am Chem Soc,1938,60:309-319.
    [1]马鸣,陈伟,姜健准,何海龙,陈锡荣.我国天然气资源的开发利用现状.[J]石油化工,2005,34(4):394-398.
    [2]Xu Y D,Lin L W.Recent advances in methane dehydro-aromatization over ransition metal ion-modified zeolite catalysts under non-oxidative conditions.[J]Appl Catal A Gen,1999,188(1-2):53-67.
    [3]李锦春.甲烷化学最新技术进展.[J]天然气化工,1999,24(5):49-55.
    [4]王野.甲烷选择氧化和氧化官能团化的研究进展.[J]石油化工,2005,34(3):205-212.
    [5]Arena F,Parmaliana A.Scientific Basis for Process and Catalyst Design in the Selective Oxidation of Methane to Formaldehyde.[J]Accounts Chem Res,2003,36(12):867-875.
    [6]Wang Y,Otsuka K.Structure of catalytic active site for oxidation of methane to methanol by H_2-O_2 gas mixture over iron-containing catalysts.[J]J Mol Catal A Chem,1996,111(3):341-356.
    [7]Zhang Q J,He D H,Han Z S,Zhang X,Zhu Q M.Controlled partial oxidation of methane to methanol/formaldehyde over Mo-V-Cr-Bi-Si oxide catalysts.[J]Fuel 2002,81(11-12):1599-1603.
    [8]Koranne M M,Goodwin Jr J G,Marcelin G.Oxygen involvement in the partial oxidation of methane on supported and unsupported V_2O_5.[J]J Catal,1994,148(1):378-387.
    [9]Parmaliana A,Frusteri F,Mezzapica A,Miceli D,Scurrell M S,Giordano N.A basic approach to evaluate methane partial oxidation catalysts.[J]J Catal,1993,143(1):262-274.
    [10]张昕,贺德华,张启俭,叶青,徐柏庆,朱起明.Mo/ZrO_2催化剂上甲烷选择氧化制甲醛.[J]催化学报,2003,24(1):22-26.
    [11]Spencer N D,Pereira C J.Vanadium pentoxide-silica-catalyzed methane partial oxidation with molecular oxygen.[J]J Catal,1989,116(2):399-406.
    [12]曹荣,陈燕馨,李峥嵘,李文钊.甲烷部分氧化制甲醛催化剂MoO_3/SiO_2及MoO_3·MxOy/SiO_2的程序升温还原研究.[J]分子催化,1996,10(5):368-374.
    [13]Herman R G,Sun Q,Shi C L,Klier K,Wang C B,Hu H C,Wachs I E,Bhasin M M.Development of active oxide catalysts for the direct oxidation of methane to formaldehyde.[J]Catal Today 1997,37(1):1-14.
    [14]Miceli D,Arena F,Parmaliana A,Scurrell M S,Sokolovskii V.Effect of the metal oxide loading on the activity of silica supported molybdenum trioxide and vanadium pentoxide catalysts in the selective partial oxidation of methane.[J]Catal Lett,1993,18(3):283-288.
    [15]Banares M A,Fierro J L G.Selective oxidation of methane to formaldehyde on supported molybdate catalysts.[J]Catal Lett,1993,17(3-4):205-211.
    [16]Solsona B,Blasco T,Lopez N J M,Pena M L,Rey F,Vidal-Moya A.Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes.[J]J Catal,2001,203(2):443-452.
    [17]Liu Y M,Cao Y,Yi N,Feng W L,Dai W L,Yan S R,He H Y,Fan K N.Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane.[J]J Catal,2004,224(2):417-428.
    [18]Wang Y,Zhang Q H,Ohishi Y,Shishido T,Takehira K.Synthesis of V-MCM-41 by template-ion exchange method and its catalytic properties in propane oxidative dehydrogenation.[J]Catal Lett,2001,72(3-4):215-219.
    [19]Dai L X,Teng Y H,Tabata K,Suzuki E,Tatsumi T.Mo-containing SBA-1 mesoporous molecular sieves as catalysts for partial oxidation of methane.[J]Chem Lett,2000(7):794-795.
    [20]汪晓星,林宝敏,杨薇,郭倩,张庆红,王野.SBA-15负载钒氧化物催化剂上甲烷选择氧化反应.[J]化学学报,2004,62(18):1738-1744.
    [21]Yang W,Wang X X,Guo Q,Zhang Q H,Wang Y.Superior catalytic performance of phosphorus-modified molybdenum oxide clusters encapsulated inside SBA-15 in the partial oxidation of methane.[J]New J Chem,2003,27(9):1301-1303.
    [22]Tsigdinos G A,Hallada C J.Molybdovanadophosphoric acids and their salts:I Investigation of methods of preparation and characterization.[J]Inorg Chem,1968,7(3):437-441.
    [23]Zhao D Y,Feng J L,Huo Q S,Melosh N,Fredrickson G H,Chmelka B F,Stucky G D.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores.[J]Science,1998,279(5350):548-552.
    [24]Yue B,Tan D J,Yan S R,Zhou Y,Zhu K K,Pan J F,Zhuang J H,He H Y.Preparation of MoO_3-V_2O_5 nanowires with controllable Mo/V ratios inside SBA-15 channels using a chemical approach with heteropoly acid.[J]Chin J Chem,2005,23(1):32-36.
    [25] Liu Y M, Cao Y, Yan S R, Dai W L, Fan K N. Highly Effective Oxidative Dehydrogenation of Propane Over Vanadia Supported on Mesoporous SBA-15 Silica. [J] Catal Lett, 2003, 88(1-2): 61-67.
    [26] Solsona B, Blasco T, Lopez Nieto J M, Pena M L, Rey F, Vidal-Moya A. Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes. [J] J Catal, 2001,203(2): 443-452.
    [27] Zhou R, Cao Y, Yan S R, Deng J F, Liao Y Y, Hong B F. Oxidative dehydrogenation of propane over mesoporous HMS silica supported vanadia. [J] Catal Lett, 2001, 75(1-2): 107-112.
    [28] Vradman L, Landau M V, Herskowitz M, Ezersky V, Talianker M, Nikitenko S, Koltypin Y, Gedanken A. High loading of short WS_2 slabs inside SBA-15: promotion with nickel and performance in hydrodesulfurization and hydrogenation. [J]J Catal, 2003, 213(2): 163-175.
    [29] Mestl G J. In situ Raman spectroscopy for the characterization of MoVW mixed oxide catalysts. [J] Raman Spectrosc, 2002, 33(5): 333-347.
    [30] Busca G J. Differentiation of mono-oxo and polyoxo and of monomeric and polymeric vanadate, molybdate and tungstate species in metal oxide catalysts by IR and Raman spectroscopy. [J] Raman Spectrosc, 2002, 33(5): 348-358.
    [31] Chao K J, Wu C N, Chang H, Lee L J, Hu S F. Incorporation of vanadium in mesoporous MCM-41 and microporous AFI zeolites. [J] J Phys Chem B, 1997, 101(33): 6341-6349.
    [32] Antinolo A, Canizares P, Carrillo-Hermosilla F, Fernandez-Baeza J, Funez F J, de Lucas A, Otero A, Rodriguez L, Valverde J L. A grafted methane partial oxidation catalyst from MoO_2(acac)_2 and HZSM-5 zeolite. [J] Appl Catal A Gen, 2000, 193(1-2): 139-146.
    [33] Yang W, Wang X X, Guo Q, Zhang Q H, Wang Y. Superior catalytic performance of phosphorus-modified molybdenum oxide clusters encapsulated inside SBA-15 in the partial oxidation of methane. [J] New J Chem, 2003, 27(9): 1301-1303.
    [34] Ohmae M, Miyaji K, Azuma Naoto, Takeishi K, Morioka Y, Ueno A, Ohfune H, Hayashi H, Udagawa Y. Effeet of water vapor upon partial oxidation of methane over highly-dispersed MoO_3/SiO_2. [J] Chem Lett, 1997(1): 31-32.
    [35] Sugino Tomomi, Kido Ayako, Azuma Naoto, Ueno Akifumi, Udagawa Yasuo. Partial Oxidation of Methane on Silica-Supported Silicomolybdic Acid Catalysts in an Excess Amount of Water Vapor. [J] J Catal, 2000, 190(1): 118-127.
    [36] Aoki K, Ohmae M, Nanba T, Takeishi K, Azuma N, Ueno A, Ohfune H, Hayashi H, Udagawa Y. Direct conversion of methane into methanol over MoO_3/SiO_2 catalyst in an excess amount of water vapor. [J] Catal Today, 1998, 45(1-4): 29-33.
    [37] Parmaliana A, Frusteri F, Mezzapica A, Scurrell M S, Giordano N. Novel high activity catalysts for partial oxidation of methane to formaldehyde. [J] J Chem Soc Chem Commun, 1993, (9): 751-753.
    [38] Berndt H, Martin A, Bruckner A, Schreier E, Muller D, Kosslick H, Wolf G U, Lucke B. Structure and Catalytic Properties of VOx/MCM Materials for the Partial Oxidation of Methane to Formaldehyde. [J]J Catal, 2000, 191(2): 384-400.
    [39] Fornes V, Lopez C, Lopez H H, Martinez A. Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde. [J] Appl Catal A Gen, 2003,249(2): 345-354.
    [40] Banares M A, Wachs I E. Molecular structures of supported metal oxide catalysts under different environments. [J] Raman Spectros, 2002, 33(5): 359-380.
    [41] Nagamisa N. Structure analysis of silicon dioxide films formed by oxidation of silane. [J] J Appl Phys, 1972, 43(8): 3378-3386.
    [42] Ternane R, Cohen-Adad M T, Panczer G, Goutaudier C, Kbir-Ariguib N. Introduction of boron in hydroxyapatite:synthesis and structural characterization. [J] J Alloy Compd, 2002, 333(1-2): 62-71.
    [43] Ferreira-Aparicio P, Rodriguez-Ramos I, Guerrero-Ruiz A. Methane interaction with silica and alumina supported metal catalysts. [J] Appl Catal A Gen, 1997, 148(2): 343-356.
    [44] Zhang X, He D H, Zhang Q J, Ye Q, Xu B Q, Zhu Q M. Selective oxidation of methane to formaldehyde over Mo/ZrO_2 catalysts. [J] Appl Catal A Gen, 2003, 249(1): 107-117.
    [45] Zhang Qinghong, Wang Ye, Ohishi Yoshihiko, Shishido Tetsuya, Takehira Katsuomi. Vanadium-Containing MCM-41 for Partial Oxidation of Lower Alkanes. [J] J Catal, 2001, 202(2): 308-318.
    [46] Arnoldy P, De Jonge J C M, Moulijn J A. Temperature-programed reduction of molybdenum(VI) oxide and molybdenum(IV) oxide. [J] J Phys Chem89(21): 4517-4526.
    [47] Arena F, Giordano N, Parmaliana A. Working mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde II Redox properties and reactivity of SiO_2, MoO_3/SiO_2, V_2O_4/SiO_2, TiO_2, and V_2O_5/TiO_2 systems. [J] J Catal, 1997, 167(1): 66-76.
    [48] Parmaliana A, Arena F. Working mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde I Catalytic behavior of SiO_2, MoO_3/SiO_2, V_2O_5/SiO_2, TiO_2, and V_2O_5/TiO_2 systems. [J] J Catal, 1997, 167(1): 57-65.
    [49] Alptekin G O, Herring A M, Williamson D L, Ohno T R, McCormick R L. Methane partial oxidation by unsupported and silica supported iron phosphate catalysts: influence of reaction conditions and co-feeding of water on activity and selectivity. [J] J Catal, 1999, 181(1): 104-112.
    [50] Spencer N D. Partial Oxidation of Methane to Formaldehyde by Means of Molecular Oxygen. [J] J Catal, 1988,109(1): 187-197.
    [51] Otsuka K, Wang Y, Yamanaka I, Morikawa A. Kinetic-study of the Partial oxidationof methane over Fe_2(MO_4)_3 Catalyst. [J] J Chem Soc Faraday Trans, 1993, 89(23): 4225-4230.
    [52] Fornes V, Lopez C, Lopez H H, Martinez A. Catalytic performance of mesoporous VOx / SBA - 15 catalysts for the partial oxidation of methane to formaldehyde. [J] Appl Catal A Gen, 2003, 249(2): 345-354.
    [53] Zhu B C, Li H B, Yang W S, Lin L W.Effects of reaction conditions on the selective oxidation of propane to acrylic acid on Mo-V-Te-Nb oxides. [J] Catal Today, 2004, 93-95: 229-234.
    [54] Fornes V, Lopez C, Lopez H H, Martinez A. Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde. [J] Appl Catal A Gen, 2003, 249(2): 345-354.
    [55] Pitchai R, Klier K.Partial oxidation of methane.[J] Catal Rev Sci Eng, 1986, 28(1):13-88.
    [56] Faraldos M, Bafiares M A, Anderson J A, Hu H, Wachs I E, Fierro J L G. Comparion of silica-supported MoO_3 and V_2O_5 catalysts in the selective partial oxidation of methane. [J] J Catal, 1996, 160(2): 214-221.
    [57] Parmaliana A, Sokolovskii V, Miceli D, Arena F, Giordano N. On the nature of the catalytic activity of silica-based oxide catalysts in the partial oxidation of methane to formaldehyde with O_2. [J] J Catal, 1994, 148(2): 514-23., 1985,
    [58] Yamada Y, Ueda At, Shioyama H, Kobayashi T. High throughput experiments on methane partial oxidation using molecular oxygen over silica doped with various elements.[J] Appl Catal A Gen, 2003, 254(1): 45-58.
    [59] Parmaliana A, Arena F, Frusteri F, Miceli D, Sokolovskii V. On the nature of active sites of silica based oxide catalysts in the partial oxidation of methane to formaldehyde. [J] Catal Today, 1995, 24(3): 231-6.
    [60] Ueda W, Chen N F, Oshihara K. Selective oxidation of C1-C3 alkanes over molybdenum- and vanadium-based oxide catalysts. [J] Kinetics and Catal, 1999, 40 (3): 401-404.
    [1] Spencer N D. Partial oxidation of methane to formaldehyde by means of molecular oxygen. [J] J Catal, 1988,109(1): 187-197.
    
    [2] Spencer N D, Pereira C J. Vanadium pentoxide-silica-catalyzed methane partial oxidation with molecular oxygen. [J] J Catal, 1989, 116(2): 399-406.
    [3] Koranne M M, Goodwin Jr J G, Marcelin, G. Oxygen involvement in the partial oxidation of methane on supported and unsupported V_2O_5. [J] J Catal, 1994, 148(1): 378-387.
    [4] Parmaliana A, Frusteri F, Mezzapica A, Miceli D, Scurrell M S, Giordano N. A basic approach to evaluate methane partial oxidation catalysts. [J] J Catal, 1993, 143(1): 262-274.
    [5] Solsona B, Blasco T, Lopez Nieto J M, Pena M L, Rey F, Vidal-Moya A. Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes. [J]J Catal 2001, 203(2): 443-452.
    [6] Liu Y M, Cao Y, Yi N, Feng W L, Dai W L, Yan S R, He H Y, Fan K N. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane. [J] J Catal, 2004, 224(2): 417-428.
    [7] Nieminen V, Kumar N, Salmi T, Murzin D Yu. n-Butane isomerization over Pt-H-MCM-41. [J] Catal Commun, 2004, (5 ): 15-19.
    [8] Berndt H, Martin A, Bruckner A, Schreier E, Muller D, Kosslick H, Wolf G U, Lucke B. Structure and Catalytic Properties of VOx/MCM Materials for the Partial Oxidation of Methane to Formaldehyde. [J] J Catal, 2000, 191(2): 384-400.
    [9] Dai L X, Teng Y H, Tabata K, Suzuki E, Tatsumi T. [J] Micropor Mesopor Mat, 2001,44-45:573-580.
    [10] Fornes V, Lopez C, Lopez H H, Martinez A. Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde. [J] Appl Catal A Gen, 2003, 249(2): 345-354.
    
    [11] Wojcieszak R, Monteverdi S, Mercy M, Nowak I, Ziolek M, Bettahar M M. Nickel containing MCM-41 and A1MCM-41 mesoporous molecular sieves: Characteristics and activity in the hydrogenation of benzene. [J] Appl Catal A Gen, 2004, 268(1-2): 241-253.
    
    [12] Wang W, Song M, Zhang Z Y, Richardson M. Synthesis and characterization of high nickel-containing mesoporous silica via a modified direct synthesis method. [J] J Non Cryst Solids, 2006, 352(21-22): 2180-2186.
    [13] Kaneko Y, Iyi N, Kurashima K, Matsumoto T, Fujita T, Kitamura K. Hexagonal-Structured Polysiloxane Material Prepared by Sol-Gel Reaction of Aminoalkyltrialkoxysilane without Using Surfactants. [J] Chem Mater, 2004, 16(18): 3417-3423.
    [14] Tsigdinos G A, Hallada C J. Molybdovanadophosphoric acids and their salts I Investigation of methods of preparation and characterization. [J] Inorg Chem, 1968, 7(3): 437-441.
    [15] Yue B, Tan D J, Yan S R, Zhou Y, Zhu K K, Pan J F, Zhuang J H, He H Y. Preparation of MoO3-V2O5 nanowires with controllable Mo/V ratios inside SBA-15 channels using a chemical approach with heteropoly acid. [J] Chin J Chem, 2005, 23(1): 32-36.
    [16] Liu X Y, Tian B Z, Yu C Z, Gao F, Xie SH, Tu B, Che R C, Peng LM, Zhao D Y. Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry. [J] Angew Chem Int Ed, 2002,41(20): 3876-3878.
    [17] Liu Y M, Cao Y, Yan S R, Dai W L, Fan K N. Highly Effective Oxidative Dehydrogenation of Propane Over Vanadia Supported on Mesoporous SBA-15 Silica. [J] Catal Lett, 2003, 88(1-2): 61-67
    [18] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. [J] Pure Appl Chem, 1985, 57(4): 603-619.
    [19] Grosso David, Soler-Illia, Galo J de A A, Crepaldi Eduardo L, Cagnol Florence, Sinturel Christophe, Bourgeois Alexis, Brunet-Bruneau Aline, Amenitsch Heinz, Albouy Pierre A, Sanchez Clement.Highly Porous TiO_2 Anatase Optical Thin Films with Cubic Mesostructure Stabilized at 700℃. [J] Chem Mater, 2003,15(24): 4562-4570.
    [20] Crepaldi E L, de A A Soler-Illia G J, Grosso D, Albouy P A, Sanchez C. Design and post-functionalisation of ordered mesoporous zirconia thin films. [J] Chem Commun, 2001, (17): 1582-1583.
    [21] Soler-Illia G J A A, Crepaldi E L, Grosso D, Durand D, Sanchez C. Structural control in self-standing mesostructured silica oriented membranes and xerogels. [J] Chem Commun, 2002, (20): 2298-2299.
    [22] Crepaldi Eduardo L, de Soler-Illia Galo J, Grosso David, Cagnol Florence, Ribot Francois, Sanchez Clement. Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO_2. [J] J Am Chem Soc, 2003, 125(32): 9770-9786.
    [23] Sanchez Clement, Lebeau Benedicte, Chaput Frederic, Boilot Jean-Pierre. Optical properties of functional hybrid organic-inorganic nanocomposites. [J] Adv Mater, 2003,15(23): 1969-1994.
    [24] Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy Pierre A, Amenitsch H, Antonietti Markus, Sanchez C. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nat Mater, 2004, 3(11): 787-792.
    [25] Igarashi Naoko, Hashimoto Kazuhito, Tatsumi Takashi. Catalytical studies on trimethylsilylated Ti-MCM-41 and Ti-MCM-48 materials. [J] Micropor Mesopo Mat, 2007, 104(1-3): 269-280.
    [26] Vralstad Torbjorn, Oye Gisle, Stoecker Michael, Sjoeblom Johan. Synthesis of comparable Co-MCM-48 and Co-MCM-41 materials containing high cobalt contents. [J] Micropor Mesopo Mat, 2007, 104(1-3): 10-17.
    [27] Huo Qisheng, Margolese David I, Ciesla Ulrike, Feng Pingyun, Gier Thurman E, Sieger Peter, Leon Rosa, Petroff Pierre M, Schueth Ferdi, STucky Galen D. Generalized synthesis of periodic surfactant/inorganic composite materials. [J] Nature, 1994, 368(6469): 317-321.
    [28] Bagshaw Stephen A, Prouzet Eric, Pinnavaia Thomas J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. [J] Science, 1995, 269(5228): 1242-1244.
    [29] Zhao Dongyuan, Yang Peidong, Huo Qisheng, Chmelka Bradley F, Stucky Galen D. Topological construction of mesoporous materials. [J] Curr Opin Solid St M, 1998, 3(1):111-121.
    [30] Das N, Eckert H, Hu H C, Wachs I E, Walzer J F, Feher F J. Bonding states of surface vanadium(V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy. [J] J Phys Chem, 1993, 97(31): 8240-8243.
    [31] Banares M A, Wachs I E. Molecular structures of supported metal oxide catalysts under different environments. [J] J Raman Spectrosc , 2002, 33(5): 359-380.
    [32] Chao K J, Wu C N, Chang H, Lee L J, Hu S F. Incorporation of vanadium in mesoporous MCM-41 and microporous AFI zeolites. [J] J Phys Chem B, 1997, 101(33): 6341-6349.
    [33] Busca G. Differentiation of mono-oxo and polyoxo and of monomeric and polymeric vanadate, molybdate and tungstate species in metal oxide catalysts by IR and Raman spectroscopy. [J] J Raman Spectrosc, 2002, 33(5): 348-358.
    [34] Mestl G. In situ Raman spectroscopy for the characterization of MoVW mixed oxide catalysts. [J] J Raman Spectrosc, 2002, 33(5): 333-347.
    [35] Antinolo A, Canizares P, Carrillo-Hermosilla F, Fernandez-Baeza J, Funez F J, de Lucas A, Otero A, Rodriguez L, Valverde J L. A grafted methane partial oxidation catalyst from MoO2(acac)2 and HZSM-5 zeolite. [J] Appl Catal A Gen, 2000, 193(1,2): 139-146.
    [36] Yang W, Wang X X, Guo Q, Zhang Q H, Wang Y. Superior catalytic performance of phosphorus-modified molybdenum oxide clusters encapsulated inside SBA-15 in the partial oxidation of methane. [J] New J Chem, 2003, 27(9): 1301-1303.
    [37] Ohmae M, Miyaji K, Azuma N, Takeishi K, Morioka Y, Ueno A, Ohfune H, Hayashi H, Udagawa Y. Effeet of water vapor upon partial oxidation of methane over highly-dispersed MoO_3/SiO_2. [J] Chem Lett, 1997(1): 31-32.
    [38] Sugino Tomomi, Kido Ayako, Azuma Naoto, Ueno Akifumi, Udagawa Yasuo. Partial Oxidation of Methane on Silica-Supported Silicomolybdic Acid Catalysts in an Excess Amount of Water Vapor. [J] J Catal, 2000, 190(1): 118-127.
    [39] Aoki K, Ohmae M, Nanba T, Takeishi K, Azuma N, Ueno A, Ohfune H, Hayashi H, Udagawa Y. Direct conversion of methane into methanol over MoO_3/SiO_2 catalyst in an excess amount of water vapor. [J] Catal Today, 1998, 45(1-4): 29-33.
    [40] Parmaliana A, Frusteri F, Mezzapica A, Scurrell M S, Giordano N. Novel high activity catalysts for partial oxidation of methane to formaldehyde. [J] J Chem Soc Chem Commun, 1993, (9):751-753.
    [41] Berndt H, Martin A, Bruckner A, Schreier E, Muller D, Kosslick H, Wolf G U, Lucke B. Structure and Catalytic Properties of VOx/MCM Materials for the Partial Oxidation of Methane to Formaldehyde. [J] J Catal, 2000, 191(2): 384-400.
    [42] Fornes V, Lopez C, Lopez H H, Martinez A. Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde. [J] Appl Catal A Gen, 2003, 249(2): 345-354.
    [43] Banares M A, Wachs I E. Molecular structures of supported metal oxide catalysts under different environments. [J] J Raman Spectros, 2002, 33(5): 359-380.
    [44] Nagamisa N. Structure analysis of silicon dioxide films formed by oxidation of silane. [J] J Appl Phys, 1972,43(8): 3378-3386.
    [45] Ternane R, Cohen-Adad M T, Panczer G, Goutaudier C, Kbir-Ariguib N. Introduction of boron in hydroxyapatite :synthesis and structural characterization. [J] J Alloy Compd, 2002, 333: 62-71.
    [45] Ferreira-Aparicio P, Rodriguez-Ramos I, Guerrero-Ruiz A. Methane interaction with silica and alumina supported metal catalysts. [J] Appl Catal A Gen, 1997, 148(2): 343-356.
    [46] Yang X L, Dai WL, Chen H, Cao Y, Li H X, He H H, Fan K N. Novel efficient and green approach to the synthesis of glutaraldehyde over highly active W-doped SBA-15 catalyst. [J] J Catal,2005, 229: 259-263.
    [47] Huo Q S, Margolese D I, Ciesla U, Demuth D G, Feng P Y, Gier T E, Sieger P, Firouzi A, Chmelka B F. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. [J] Chem Mater, 1994, 6(8): 1176-91.
    [48] Huo Q S, Margolese D I, Stucky G D. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. [J] Chem Mater, 1994, 8(5): 1147-1160.
    [49] Tian B Z, Liu, X Y, Tu B, Yu C Z, Fan J, Wang L M, Xie S H, Stucky G D, Zhao D Y. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. [J] Nat Mater, 2003, 2(3): 159-163.
    [50] Liu X Y, Tian B Z, Yu C Z, Gao F, Xie S H, Tu B, Che R C, Peng L M, Zhao D Y. Room -temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry. [J] Angew Chem Int Ed, 2002, 41(20): 3876-3878.
    [51] Faraldos M, Bafiares M A, Anderson J A, Hu H, Wachs I E, Fierro J L G. Comparion of silica-supported MoO_3 and V_2O_5 catalysts in the selective partial oxidation of methane. [J] J Catal, 1996, 160(2): 214-221.
    [52]Ueda W,Chen N F,Oshihara K.Selective oxidation of C-1-C-3 alkanes over molybdenum- and vanadium-based oxide catalysts.[J]Kinet Catal,1999,40(3):401-404.
    [1]Kung H H.Oxidative dehydrogenation of light(C_2 to C_4)alkanes.[J]Adv Catal,1994,40:1-38.
    [2]Cavani F,Trifiro F.The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins.[J]Catal Today,1995,24(3):307-313.
    [3]Mamedov E A,Cortes Corberan V.Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts.[J]Appl Catal A,1995,127(1-2):1-40.
    [4]Bettahar M M,Costentin G,Savary L,Lavalley J C.On the partial oxidation of propane and propylene on mixed metal oxide catalysts.[J]Appl Catal A,1996,145(1-2):1-48.
    [5]Blasco T,Lopez Nieto J M.Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts.[J]Appl Catal A,1997,157(1-2):117-142.
    [6]照日格图,葛庆杰,李文钊,贾美林,于春英,徐恒泳.Ni-V-O催化剂上丙烷氧化脱氢制丙烯的反应.[J]催化学报,2000,21(4):332-336.
    [7]Klisinska A,Haras A,Samson K,Witko M,Grzybowska B.Effect of additives on properties of vanadia-based catalysts for oxidative dehydrogenation of propane.Experimental and quantum chemical studies.[J]J Mol Catal A,2004,210(1-2):87-92.
    [8]Concepcion P,Navarro M T,Blasco T,Lopez Nieto J M,Panzacchi B,Rey F.Vanadium oxide supported on mesoporous Al_2O_3.[J]Catal Today,2004,96(4):179-186.
    [9]Singh R P,Banares M A,Deo G.Effect of phosphorous modifier on V_2O_5/TiO_2 catalyst:ODH of propane.[J]J Catal,2005,233(2):388-398.
    [10]Gao X T,Jehng J M,Wachs I E.In Situ UV-vis-NIR Diffuse Reflectance and Raman Spectroscopic Studies of Propane Oxidation over ZrO_2-Supported Vanadium Oxide Catalysts.[J]J Catal,2002,209(1):43-50.
    [11]Concepcion P,Lopez Nieto J M,Perez Pariente J.Oxidative dehydrogenation of propane on VAPO-5,V_2O_5/ALPO_4-5 and V_2O_5/MgO catalysts.[J]J Mol Catal A,1995,99(3):173-182.
    [12]Habuta Y,Narishige N,Okumura K,Katada N,Niwa M.Catalytic activity and solid acidity of vanadium oxide thin layer loaded on TiO_2,ZrO_2,and SnO_2.[J]Catal Today,2003,78(1-4):131-138.
    [13] Corma A, Lopez Nieto J M, Paredes N, Perez M, Shen Y, Cao H, Suib S L. Oxidative dehydrogenation of propane over supported-vanadium oxide catalysts. [J] Stud Surf Sci Catal, 1992, 72: 213-220.
    [14] Comcepcion P, Galli A, Lopez Nieto J M, Dejoz A, Vazquez M I. On the influence of the acid-base character of catalysts on the oxidative dehydrogenation of alkanes. [J] Topics Catal, 1996, 3(3-4): 451-460.
    [15] Gali A, Lopez Nieto J M, Dejoz A,Vazquez M I. The effect of potassium on the selective oxidation of n-butane and ethane over Al_2O_3-supported vanadia catalysts. [J] Catal Lett, 1995, 34(1-2): 51-58.
    [16] Berndt H, Martin A, Bruckner A, Schreier E, Miiller D, Kosslick H, Wolf G U, Lucke B. Structure and Catalytic Properties of VOx/MCM Materials for the Partial Oxidation of Methane to Formaldehyde. [J] J Catal, 2000, 191(2): 384-400.
    [17] Byevskaya O V, Bruckner A, Kondratenko E V, Wolf D, Baerns M. Fundamental and combinatorial approaches in the search for and optimization of catalytic materials for the oxidative dehydrogenation of propane to propene. [J] Catal Today, 2001, 67(4): 369-378.
    [18] Zhang X Z, Yue Y H, Gao Z. Chromium Oxide Supported on Mesoporous SBA-15 as Propane Dehydrogenation and Oxidative Dehydrogenation Catalysts. [J] Catal Lett, 2002, 83(1-2): 19-25.
    [19] Fornes V, Lopez C, Lopez H H, Martinez A. Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde. [J] Appl Catal A, 2003, 249(2): 345-354.
    [20] Lin B M, Wang X X, Guo Q, Yang W, Zhang Q H, Wang Y. Excellent catalytic performances of SBA-15-supported vanadium oxide for partial oxidation of methane to formaldehyde. [J] Chem Lett, 2003, 32(9): 860-861.
    [21] Wang Y, Zhang Q H, Ohishi Y, Shishido T, Takehira K. Synthesis of V-MCM-41 by template-ion exchange method and its catalytic properties in propane oxidative dehydrogenation. [J] Catal Lett, 2001, 72(3-4): 215-219.
    [22] Liu Y M, Cao Y, Yi N, Feng W L, Dai W L, Yan S R, He H Y, Fan K N. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane. [J] J Catal, 2004, 224(2): 417-428.
    [23] Wojcieszak R, Monteverdi S, Mercy M, Nowak I, Ziolek M, Bettahar M M. Nickel containing MCM-41 and A1MCM-41 mesoporous molecular sieves. Characteristics and activity in the hydrogenation of benzene. [J] Appl Catal A, 2004, 268(1-2): 241-253.
    [24] Zhang W H, Lu J Q, Han B, Li M J, Xiu J H, Ying P L, Li C. Cyclodextrin-Based Pseudopolyrotaxanes as Templates for the Generation of Porous Silica Materials. [J] Chem Mater, 2002, 14(8): 3413-3421.
    [25] Luan Z H, Bae J Y, Kevan L. Vanadosilicate Mesoporous SBA-15 Molecular Sieves Incorporated with N-Alkylphenothiazines. [J] Chem Mater, 2000, 12(10): 3202-3207.
    [26] Wang W, Song M, Zhang Z Y, Richardson M. Synthesis and characterization of high nickel-containing mesoporous silica via a modified direct synthesis method.[J] J Non Cryst Solids, 2006, 352(21-22): 2180-2186.
    [27] Wu Sh, Han Y, Zou Y C, Song J W, Zhao L, Di Y, Liu Sh Z, Xiao F Sh. Synthesis of Heteroatom Substituted SBA-15 by the "pH-Adjusting" Method. [J] Chem Mater, 2004, 16(3): 486-492.
    [28] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. [J] Science, 1998, 279(5350): 548-552.
    [29] Vradman L, Landau M V, Herskowitz M, Ezersky V, Talianker M, Nikitenko S, Koltypin Y, Gedanken A. High loading of short WS2 slabs inside SBA-15: promotion with nickel and performance in hydrodesulfurization and hydrogenation. [J] Journal of Catalysis, 2003,213(2): 163-175.
    [30] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. [J] Pure Appl Chem, 1985, 57(4): 603-619.
    [31] Chao K J, Wu C N, Chang H, Lee L J, Hu S F. Incorporation of Vanadium in Mesoporous MCM-41 and Microporous AFI Zeolites. [J] J Phys Chem B, 1997, 101(33): 6341-6349.
    [32] Solsona B, Blasco T, Lopez Nieto J M, Pena M L, Rey F, Vidal-Moya A. Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes. [J] J Catal, 2001, 203(2): 443-452.
    [33] Abello L, Husson E, Replin Y, Lucazezu G. Vibrational spectra and valence force field of crystalline vanadium pentoxide.[J] Spectrochim Acta A, 1983, 39(7): 641-651.
    [34] Liu Y M, Cao Y, Zhu K K, Yan Sh R, Dai W L, He H Y, Fan K N. Highly efficient VOx/SBA-15 mesoporous catalysts for oxidative dehydrogenation of propane.[J] Chem Comm, 2002, 23: 2832-2833.
    [35] Chen K D, Iglesia E, Bell A T. Kinetic isotopic effects in oxidative dehydrogenation of propane on vanadium oxide catalysts. [J] J Catal, 2000,192(1):197-203.
    [36] Eckert H, Wachs I E. Solid-state vanadium-51 NMR structural studies on supported vanadium(V) oxide catalysts: vanadium oxide surface layers on alumina and titania supports. [J] J Phys Chem, 1989, 93(18): 6796-6805.
    [37] Khodakov A, Olthof B, Bell A T, Iglesia E. Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. [J] J Catal, 1999, 181(2): 205-216.
    [38] Marumo F, Isobe M, Iwai S, Kondo Y. Form of sodium metavanadate. [J] Acta Crystallogr B, 1974,30(8): 1628-1630.
    [39] Liu Y M, Cao Y, Yan S R, Dai W L, Fan K N. Highly Effective Oxidative Dehydrogenation of Propane Over Vanadia Supported on Mesoporous SBA-15 Silica. [J] Catal Lett, 2003, 88(1-2): 61-67.
    [40] Miller J M, Lakshmi L J. V_2O_5 catalysts supported on Al_2O_3-SiO_2 mixed oxide: ~(51)V, ~1H MAS solid-state NMR, DRIFTS and methanol oxidation studies. [J] Appl Catal A, 2000, 190(1-2): 197-206.
    [41] Boccuti M R, Rao K M, Zecchina A, Leofanti G, Petrini G. Spectroscopic characterization of silicalite and titanium-silicalite. [J] Stud Surf Sci Catal, 1989, 48: 133-144.
    [42] Camblor MA, Corma A, Perez-Pariente J. Infrared spectroscopic investigation of titanium in zeolites. A new assignment of the 960 cm-1 band. [J] J Chem Soc Chem Commun, 1993, 6: 557-559.
    [43] Chen C Y, Li H X, Davis M E. Studies on mesoporous materials: I. Synthesis and characterization of MCM-41. [J] Micropor Mesorpor Mat, 1993, 2(1): 17-26.
    [44] Fu Z H, Yin D L, Xie Q J, Zhao W, Lv A, Yin D H, Xu Y Z, Zhang L X. Ti complexes assembled HMS as effective catalysts for epoxidation of alkene. [J] J Mol Catal A Chem, 2004, 208(1-2): 159-166.
    [45] Went Gregory T, Oyama S Ted, Bell Alexis T. Laser Raman spectroscopy of supported vanadium oxide catalysts.[J]Journal of Physical Chemistry, 1990, 94(10): 4240-4246.
    [46]Busca,Guido,Ramis Gianguido,Lorenzelli Vincenzo.FT-IR study of the surface properties of polycrystalline vanadia.[J]J Mol Catal,1989,50(2):231-240.
    [47]Wachs Israel E,Deo Goutam,Weckhuysen Bert M,Andreini Amedeo,Vuurman Michael A,de Boer Michiel,Amiridis Michael D.Selective catalytic reduction of NO with NH_3 over supported vanadia catalysts.[J]J Catal,1996,161(1):211-221.
    [48]Santamaria-Gonzalez Jose,Luque-Zambrana Joaquin,Merida-Robles Josefa,Maireles-Torres Pedro,Rodriguez-Castellon Enrique,Jimenez-Lopez Antonio.Catalytic behavior of vanadium-containing mesoporous silicas in the oxidative dehydrogenation of propane.[J]Catal Lett,2000,68(1-2):67-73.
    [49]Adamski A,Sojka Z,Dyrek K.Surface Heterogeneity of Zirconia-Supported V_2O_5 Catalysts:The Link between Structure and Catalytic Properties in Oxidative Dehydrogenation of Propane.[J]Langmuir,1999,15(18):5733-5741.
    [50]Baltes M,Cassiers K,Van der Voort P,Weckhuysen B M,Schoonheydt R A,Vavsant E F.MCM-48-Supported Vanadium Oxide Catalysts,Prepared by the Molecular Designed Dispersion of VO(acac)_2:A Detailed Study of the Highly Reactive MCM-48 Surface and the Structure and Activity of the Deposited VOx.[J]J Catal,2001,197(1):160-171.
    [51]Puglisi M,Arena F,Frusteri F,Sokolovskii V,Parmaliana A.Effect of vanadia loading in propane oxidative dehydrogenation on V_2O_5/SiO_2 catalysts.[J]Catal Lett,1996,41(1-2):41-43.
    [52]Grubert G,Rathousky J,Schulz-Ekloff G,Wark M,Zukal A.Reducibility of vanadium oxide species in MCM-41.[J]Micropor Mesopor Mat,1998,22(1-3):225-236.
    [1] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieve synthesized by a liquid-crystal template mechanism. [J] Nature, 1992, 359(6397): 710-712.
    [2] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W. A new family of mesoporous molecular sieves prepared with liquid crystal templates. [J] J Am Chem Soc, 1992,114(27): 10834-10843.
    [3] Cauvel A, Renard G, Brunei D. Monoglyceride Synthesis by Heterogeneous Catalysis Using MCM-41 Type Silicas Functionalized with Amino Groups. [J] J Org Chem, 1997, 62(3): 749-751.
    [4] Liu A M, Hidajat K, Kawi S. Combining the advantages of homogeneous and heterogeneous catalysis: rhodium complex on functionalized MCM -41 for the hydrogenation of arenes. [J] J Mol Catal A: Chem, 2001, 168(1-2): 303-306.
    [5] Trens P, Feliu A M, Dejoz A, Gougeon Regis D M, Hudson M J, Harris R K. Textural and spectroscopic characterisation of vanadium MCM-41 materials Application to gas-phase catalysis. [J] Stud Surf Sci Catal, 2000, 128: 279-288.
    [6] Corma A, Navarro M T, Perez Pariente J. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and it s application as a catalyst for selective oxidation of hydrocarbons. [J] J Chem Soc Chem Commun, 1994, (2): 147-148.
    [7] Koyano K A, Tatsumi T. Synthesis of titanium-containing mesoporous molecular sieves with a cubic structure. [J] J Chem Soc Chem Commun, 1996, (2): 145-146.
    [8] Wang Y, Ohishi Y, Shishido T, Zhang Q H, Yang W, Guo Q,Wan H L, Takehira K. Characterizations and catalytic properties of Cr-MCM-41 prepared by direct hydrothermal synthesis and template-ion exchange. [J] J Catal, 2003, 220(2): 347-357.
    [9] Wang Y, Zhang Q H, Ohishi Y, Shishido T, Takehira K. Synthesis of V-MCM-41 by template-ion exchange method and its catalytic properties in propane oxidative dehydrogenation. [J] Catal Lett, 2001, 72(3-4): 215-219.
    [10] Yamamoto K, Nohara Y, Tatsumi T. Synthesis and catalysis of Ti-MCM-41 materials with organic-inorganic hybrid network. [J] Chem Lett, 2001, (7): 648-649.
    [11] Luo Y, Lu G Z, Guo Y L, Wang Y S. Study on Ti-MCM-41 zeolites prepared with inorganic Ti sources: synthesis, characterization and catalysis. [J] Catal Commun, 2002, 3(3): 129-134.
    [12] Luo Y, Lin J. Synthesis and characterization of Co(II) salen functionalized MCM-41-type hybrid mesoporous silicas and their applications in catalysis for styrene oxidation with H_2O_2. [J] Micropor Mesopor Mat, 2005, 86(1-3): 23-30.
    [13] Gerstberger G, Anwander, R. Screening of rare earth metal grafted MCM-41 silica for asymmetric catalysis. [J] Micropor Mesopor Mat, 2001, 44-45: 303-310.
    [14] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. [J] Nature, 1994, 368: 321-323.
    [15] Tanev P T, Pinnavaia T J. Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties. [J] Chem Mater, 1996 ,8(8): 2068-2079.
    [16] Zhang W Z, Froba M,Wang J L, Tanev P T,Wong J, Pinnavaia T J. Mesoporous Titanosilicate Molecular Sieves Prepared at Ambient Temperature by Electrostatic(S~+I~-, S~+X~-I~+) and Neural(S~0I~0) Assembly Pathways: A Comparison of Physical Properties and Catalytic Activity for Peroxide Oxidation. [J] Am Chem Soc, 1996,118(38): 9164-9171.
    [17] Wang Y, Li G, Wang X S, Jin C Z. Oxidative Desulphurization of 4,6-Dimethyldibenzothiophene with Hydrogen Peroxide over Ti-HMS. [J] Energ Fuel, 2007, 21(3): 1415-1419.
    [18] Zhu Z Q, Bian W, Liu L, Lue Z H. Catalytic oxidation of cyclopentene to glutaraldehyde over WO_3/Ti-HMS catalyst. [J] Catal Lett, 2007, 117(1-2): 79-84.
    [19] Ookoshi T, Onaka M. A remarkable Mo catalyst for olefin metathesis: hexagonal mesoporous silica-supported molybdenum oxide(MoO_3/HMS). [J] Chem Commun, 1998, (21): 2399-2400.
    [20] Abdel-Fattah T M, Pinnavaia T J. Tin-substituted mesoporous silica molecular sieve(Sn-HMS): synthesis and properties as a heterogeneous catalyst for lactide ring-opening polymerization. [J] Chem Commun, 1996, (5): 665-666.
    [21] Zhang J L, Minagawa M, Ayusawa T, Natarajan S, Yamashita H, Matsuoka M, Anpo M. In Situ Investigation of the Photocatalytic Decomposition of NO on the Ti-HMS under Flow and Closed Reaction Systems. [J] J Phy Chem B, 2000, 104(48): 11501-11505.
    [22] Liu Y Y, Murata K, Inaba M, Mimura N. Selective Oxidation of Propylene to Propylene Oxide by Molecular Oxygen over Ti-Al-HMS Catalysts. [J] Catal Lett, 2003, 89(1-2): 49-53.
    [23] Itoh A, Kodama T, Maeda S, Masaki Y. Selective acceleration for deprotection of benzyl ethers with Ti-HMS. [J] Tetrahedron Lett, 1998, 39(51): 9461-9464.
    [24] Fu Z H, Chen J H, Yin D L,Yin D H, Zhang L X, Zhang Y Y. Highly effective Cu-HMS catalyst for hydroxylation of phenol. [J] Catal Lett, 2000, 66(1-2): 105-108.
    [25] Zhang P B, Zhang Z, Wang S P, Ma X B. A new type of catalyst PdCl_2/Cu-HMS for synthesis of diethyl carbonate by oxidative carbonylation of ethanol. [J] Catal Commun, 2007, 8(1): 21-26.
    [26] Bhoware S S, Shylesh S, Kamble K R, Singh A P. Cobalt-containing hexagonal mesoporous molecular sieves (Co-HMS): Synthesis, characterization and catalytic activity in the oxidation reaction of ethylbenzene. [J] J Mol Catal A: Chem, 2006, 255(1-2): 123-130.
    [27] Chiranjeevi T, Kumar P, Maity S K, Rana M S, Murali Dhar G, Prasada Rao T S R. Characterization and hydrodesulfurization catalysis on WS_2 supported on mesoporous Al-HMS material. [J] Micropor Mesopor Mat, 2001, 44-45: 547-556.
    [28] Yang R T, Pinnavaia T J, Li W B, Zhang W Z. Fe~(3+) exchanged mesoporous Al -HMS and Al-MCM-41 molecular sieves for selective catalytic reduction of NO with NH_3. [J] J Catal, 1997, 172(2): 488-493.
    
    [29] Onaka M, Hashimoto N, Kitabata Y, Yamasaki R. Aluminum-rich mesoporous aluminosilicate (Al-HMS) as a solid acid catalyst for the Diels-Alder reaction of acrylates with 1,3-dienes. [J] Appl Catal, A: Gen,2003, 241(1-2): 307-317.
    [30] Vradman L, Landau M V, Herskowitz M, Ezersky V, Talianker M, Nikitenko S, Koltypin Y, Gedanken A. High loading of short WS2 slabs inside SBA-15: promotion with nickel and performance in hydrodesulfurization and hydrogenation. [J] J Catal, 2003, 213(2): 163-175.
    [31] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. [J] Pure Appl Chem, 1985, 57(4): 603-619.
    [32] Tanev P T, Pinnavaia T J. A Neutral Templating Route to Mesoporous Molecular Sieves. [J] Science, 1995,267: 865-867.
    [33] Chao K J, Wu C N, Chang H, Lee L J, Hu S F. Incorporation of Vanadium in Mesoporous MCM-41 and Microporous AFI Zeolites. [J] J Phys Chem B, 1997, 101(33): 6341-6349.
    [34] Liu Y M, Cao Y, Zhu K K, Yan Sh R, Dai W L, He H Y, Fan K N. Highly efficient VOx/SBA-15 mesoporous catalysts for oxidative dehydrogenation of propane. [J] Chem Commun, 2002, 23: 2832-2833.
    [35] Abello L, Husson E, Replin Y, Lucazezu G. Vibrational spectra and valence force field of crystalline vanadium pentoxide. [J] Spectrochim Acta A, 1983, 39(7): 641-651.
    [36] Solsona B, Blasco T, Lopez Nieto J M, Pena M L, Rey F, Vidal-Moya A. Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes. [J] J Catal, 2001, 203(2): 443-452.
    [37] Khodakov A, Olthof B, Bell A T, Iglesia E. Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. [J] J Catal, 1999, 181(2): 205-216.
    [38] Marumo F, Isobe M, Iwai S, Kondo Y. Form of sodium metavanadate. [J] Acta Crystallogr B, 1974, 30(8): 1628-1630.
    [39] Fu Z H, Yin D L, Xie Q J, Zhao W, Lv A, Yin D H, Xu Y Z, Zhang L X. Ti complexes assembled HMS as effective catalysts for epoxidation of alkene [J] J Mol Catal A Chem, 2004,208(1-2): 159-166.
    [40] Parvulescu V, Snastasescu C, Constantin C, Su B L. Mono (V, Nb) or bimetallic (V-Ti, Nb-Ti) ions modified MCM-41 catalysts: synthesis, characterization and catalysis in oxidation of hydrocarbons (aromatics and alcohols). [J] Catal. Today, 2003, 78(1-4): 477-485.
    [41] Wu P, Tatsumi T, Komatsu T, Yashima T. A Novel Titanosilicate with MWW Structure: II Catalytic Properties in the Selective Oxidation of Alkenes. [J] J Catal, 2001, 202(2): 245-255.
    [42] Santamaria-Gonzalez J, Luque-Zambrana J, Merida-Robles J, Maireles-Torres P, Rodriguez-Castellon E, Jimenez-Lopez Antonio. Catalytic behavior of vanadium-containing mesoporous silicas in the oxidative dehydrogenation of propane. [J] Catal Lett, 2000, 68(1-2): 67-73.
    [43] Liu Y M, Cao Y, Yan S R, Dai W L, Fan K N. Highly Effective Oxidative Dehydrogenation of Propane Over Vanadia Supported on Mesoporous SBA-15 Silica.[J]Catal Lett,2003,88(1-2):61-67.
    [44]Adamski A,Sojka Z,Dyrek K.Surface Heterogeneity of Zirconia-Supported V_2O_5 Catalysts-The Link between Structure and Catalytic Properties in Oxidative Dehydrogenation of Propane.[J]Langmuir,1999,15(18):5733-5741.
    [45]Baltes M,Cassiers K,Van der Voort P,Weckhuysen B M,Schoonheydt R A,Vavsant E F.MCM-48-Supported Vanadium Oxide Catalysts,Prepared by the Molecular Designed Dispersion of VO(acac)_2:A Detailed Study of the Highly Reactive MCM-48 Surface and the Structure and Activity of the Deposited VOx.[J]J Catal,2001,197(1):160-171.
    [46]Bettahar M M,Costentin G,Savary L,Lavalley J C.On the partial oxidation of propane and propylene on mixed metal oxide catalysts.[J]Appl Catal A,1996,145(1-2):1-48.
    [47]Gasior M,Grzybowska B,Samson K,Ruszel M,Haber J.Oxidation of CO and C_3 hydrocarbons on gold dispersed on oxide supports.[J]Catal Today,2004,91-92:131-135.
    [48]Rane V H,Rajput A M,Karkamkar A J.Energy-efficient conversion of propane to propylene and ethylene over a V_2O_5/CeO_2/SA5205 catalyst in the presence of limited oxygen.[J]Appl Energ,2004,77(4):375-382.
    [49]Puglisi M,Arena F,Frusteri F,Sokolovskii V,Parmaliana A.Effect of vanadia loading in propane oxidative dehydrogenation on V_2O_5/SiO_2 catalysts.[J]Catal Lett,1996,41(1-2):41-43.
    [50]Zhou R,Cao Y,Yan S R,Deng J F,Liao Y Y,Hong B F.Oxidative dehydrogenation of propane over mesoporous HMS silica supported vanadia.[J]Catal Lett,2001,75(1-2):107-112.
    [1]Ebelmen J J.Ann,1846,57:331.
    [2]Ebelmen J J.Acad.Sci,1845,21:502.
    [3]Geffcken W,Berger E.[P]GP 1939,736411.
    [4]Novak B M.Hybrid nanocomposite materials-between inorganic glasses and organic polymers.[J]Adv Mater,1993,5(6):422-424.
    [5]Ribeiro E S,Rosatto S S,Gushikem Y,Kubota L T.Electrochemical study of Meldola's blue,methylene blue and toluidine blue immobilized on a SiO_2/Sb_2O_3 binary oxide matrix obtained by the sol-gel processing method.[J]J Solid State Electr,2003,7(10):665-670.
    [6]Bao L L,Mahurin S M,Haire R G,Dai S.Silver-Doped Sol-Gel Film as a Surface-Enhanced Raman Scattering Substrate for Detection of Uranyl and Neptunyl Ions.[J]Anal Chem,2003,75(23):6614-6620.
    [7]Machesney J,Johnson D W,Bhandarkar S,Bohrer M,Fleming J W,Monberg E M,Trevor D J.Sol-gel process for optical fiber manufacture.[J]Ceramic Trans,1998,95:65-71.
    [8]Liu H K,Kuo W S,Lin B H.Pressure infiltration of sol-gel processed short fiber ceramic matrix composites.[J]J Mate Sci,1998,33(8):2095-2101.
    [9]Choi J Y,Kim C H,Kim D K.Synthesis of monodisperse spherical Si_3N_4/SiC composite powder from alkoxides by sol-gel process and heat-treatment.[J]Ceramic Trans,1996,74:153-161.
    [10]Diaz M,Garcia-Cano I,Mello-Castanho S,Moya J S,Rodriguez M A.Synthesis of nanocrystalline yttrium disilicate powder by a sol-gel method.[J]J Non-Crys Solids,2001,289(1-3):151-154.
    [11]Spatz J P,Roescher A,Moller M.Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide)films Size and interparticle distance control in monoparticulate films.[J]Adv Mater,1996,8(4):337-343.
    [12]Shiomi H,Kakimoto C,Nakahira A,Takeda S.Preparation of SnO_2 monolithic gel by sol-gel method.[J]J Sol-Gel Sci Tech,2000,19(1-3):759-763.
    [13]Castro Liliana,Reyes P,Montes C C.Synthesis and Characterization of Sol-Gel Cu-ZrO_2 and Fe-ZrO_2 Catalysts.[J]J Sol-Gel Sci Tech,2002,25(2):159-168.
    [14]Tanaka S,Mizukami F,Niwa S,Toba M,Tasi G,Kunimori K.Highly selective formation of aldehydes in the hydrogenation of the corresponding acid chlorides with silica-supported palladium catalysts prepared by a complexing agent-assisted sol-gel method.[J]Appl Catal A Gen,2002,229(1-2):175-180.
    [15]Moradi G R,Basir M M,Taeb A,Kiennemann A.Promotion of Co/SiO_2 Fischer-Tropsch catalysts with zirconium.[J]Catal Commun,2003,4(1):27-32.
    [16]Matsumoto T,Murakami Y,Takasu Yoshio.Size Control of Titanium Oxide Sheets by Regulating Catalysis in a Catalytic Sol-Gel Process and Their UV Absorption Properties.[J]J Phys Chem B,2000,104(9):1916-1920.
    [17]Lee B,Zhu H G,Zhang Z T,Overbury S H,Dai S.Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method.[J]Micropor Mesopor Mat,2004,70(1-3):71-80.
    [18]Wang L P,Kong A G,Chen B,Ding H M,Shan Y K,He M Y.Direct synthesis,characterization of Cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H_2O_2[J]J Mol Catal A,2005,230(1-2):143-150.
    [19]Shi L Y,Wang Y M,Ji A,Gao L,Wang Y.In situ direct bifunctionalization of mesoporous silica SBA-15.[J]J Mater Chem,2005,15(13):1392-1396.
    [20]Yasuda H,Nakayama Y,Satoh Y,Shen Z Q,Ni X F,Inoue M,Namba S.Activity of samarocene catalysts adsorbed on mesoporous silicates for the polymerization of methyl methacrylate.[J]Polymer Int,2004,53(11):1682-1685.
    [21]Ryoo R,Ko C H,Kim J M,Howe R.Preparation of nanosize Pt clusters using ion exchange of Pt(NH_3)4~(2+)inside mesoporous channel of MCM-41.[J]Catal Lett,1996,37(1-2):29-33.
    [22]Rodriguez-Castellon E,Diaz L,Braos-Garcia P,Merida-Robles J,Maireles-Torres P,Jimenez-Lopez A,Vaccari A.Nickel-impregnated zirconium-doped mesoporous molecular sieves as catalysts for the hydrogenation and ring-opening oftetralin.[J]Appl Catal A Gen,2003,240(1-2):83-94.
    [23]Liu Q Y,Wu W L,Wang J,Ren X Q,Wang Y R.Characterization of 12-tungstophosphoric acid impregnated on mesoporous silica SBA-15 and its catalytic performance in isopropylation of naphthalene with isopropanol.[J]Micropor Mesopor Mat,2004,76(1-3):51-60.
    [24]Inaki Y,Kajita Y,Yoshida H,Yoshida H,Ito K,Hattori T.New basic mesoporous silica catalyst obtained by ammonia grafting.[J]Chem Commun,2001,22:2358-2359.
    [25]Shylesh S,Singh A P.Synthesis,characterization,and catalytic activity of vanadiumincorporated,-grafted, and -immobilized mesoporous MCM-41 in the oxidation of aromatics. [J] J Catal, 2004, 228(2): 333-346.
    [26] Kapoor M P, Ichihashi Y, Kuraoka K, Matsumura Y. Catalytic methanol decomposition over palladium deposited on thermally stable mesoporous titanium oxide. [J] J Mol Catal A, 2003, 198(1-2): 303-308.
    [27] Chiker F, Nogier J P, Launay F, Bonardet J L. Optimisation of gas phase deposition of titanium on mesoporous silica SB Al 5: active site counting and catalytic activity in cyclohexene epoxidation. [J] Appl Catal A Gen, 2004, 259(2): 153-162.
    [28] Luan Z. H., Bae J. Y., Kevan L. Vanadosilicate Mesoporous SBA-15 Molecular Sieves Incorporated with N-Alkylphenothiazines. [J] Chem Mater, 2000, 12(10): 3202-3207.
    [29] Tanev P T, Pinnavaia T J. A Neutral Templating Route to Mesoporous Molecular Sieves. [J] Science, 1995, 267: 865-867.
    [30] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous moledular sieves by nonionic polyethylene oxide surfactants. [J] Science, 1995, 269: 1242-1244.
    [31] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. [J] Pure Appl Chem, 1985, 57(4): 603-619.
    [32] Chao K J, Wu C N, Chang H, Lee L J, Hu S F. Incorporation of Vanadium in Mesoporous MCM-41 and Microporous AFI Zeolites. [J] J Phys Chem B, 1997, 101(33): 6341-6349.
    [33] Liu Y M, Cao Y, Zhu K K, Yan Sh R, Dai W L, He H Y, Fan K N. Highly efficient VOx/SBA-15 mesoporous catalysts for oxidative dehydrogenation of propane. [J] Chem Comm, 2002,23: 2832-2833.
    [34] Solsona B, Blasco T, Lopez Nieto J M, Pena M L, Rey F, Vidal-Moya A. Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes. [J] J Catal, 2001, 203(2): 443-452.
    [35] Abello L, Husson E, Replin Y, Lucazezu G. Vibrational spectra and valence force field of crystalline vanadium pentoxide. [J] Spectrochim Acta A, 1983, 39(7): 641-651.
    [36] Chen K D, Iglesia E, Bell A T. Kinetic isotopic effects in oxidative dehydrogenation of propane on vanadium oxide catalysts. [J] J Catal, 2000, 192(1): 97-203.
    [37] Eckert H, Wachs I E. Solid-state vanadium-51 NMR structural studies on supported vanadium(V) oxide catalysts: vanadium oxide surface layers on alumina and titania supports. [J] J Phys Chem, 1989, 93 (18): 6796-6805.
    [38] Khodakov A, Olthof B, Bell A T, Iglesia E. Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. [J] J Catal, 1999, 181(2): 205-216.
    [39] Marumo F, Isobe M, Iwai S, Kondo Y. Form of sodium metavanadate. [J] Acta Crystallogr B, 1974, 30(8): 1628-1630.
    [40] Blasco T, Lopez Nieto J M. Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts. [J] Appl Catal A, 1997,157(1-2): 117-142.
    [41] Boccuti M R, Rao KM, Zecchina A, Leofanti G, Petrini G. Spectroscopic characterization of silicalite and titanium-silicalite. [J] Stud Surf Sci Catal, 1989, 48:133-144.
    [42] Camblor M A, Corma A, Perez-Pariente J. Infrared spectroscopic investigation of titanium in zeolites A new assignment of the 960 cm'1 band. [J] J Chem Soc Chem Commun, 1993, 6: 557-559.
    [43] Fu Z H, Yin D L, Xie Q J, Zhao W, Lv A, Yin DH, Xu YZ, Zhang LX. Ti complexes assembled HMS as effective catalysts for epoxidation of alkene. [J] J Mol Catal A: Chem, 2004,208(1-2): 159-166.
    [44] Parvulescu V, Snastasescu C, Constantin C, Su B L. Mono (V, Nb) or bimetallic (V-Ti, Nb-Ti) ions modified MCM-41 catalysts: synthesis, characterization and catalysis in oxidation of hydrocarbons (aromatics and alcohols). [J] Catal Today, 2003, 78(1-4): 477-485.
    [45] Wu P, Tatsumi T, Komatsu T, Yashima T. A Novel Titanosilicate with MWW Structure: II Catalytic Properties in the Selective Oxidation of Alkenes. [J] J Catal, 2001, 202(2): 245-255.
    [46] Santamaria-Gonzalez Jose, Luque-Zambrana Joaquin, Merida-Robles Josefa, Maireles-Torres Pedro, Rodriguez-Castellon Enrique, Jimenez-Lopez Antonio. Catalytic behavior of vanadium-containing mesoporous silicas in the oxidative dehydrogenation of propane. [J] Catal Lett, 2000, 68(1-2): 67-73.
    [47] Solsona B, Blasco T, Lopez Nieto J M, Pena M L, Rey F, Vidal-Moya A. Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes. [J] J Catal, 2001, 203(2): 443-452.
    [48] Liu Y M, Cao Y, Yi N, Feng W L, Dai W L, Yan S R, He H Y, Fan K N. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane. [J] J Catal, 2004, 224(2): 417-428.
    [49] Adamski A, Sojka Z, Dyrek K. Surface Heterogeneity of Zirconia-Supported V_2O_5 Catalysts the Link between Structure and Catalytic Properties in Oxidative Dehydrogenation of Propane. [J] Langmuir, 1999, 15(18): 5733-5741.
    [50] Baltes M, Cassiers K, Van der Voort P, Weckhuysen B M, Schoonheydt R A, Vavsant E F. MCM-48-Supported Vanadium Oxide Catalysts, Prepared by the Molecular Designed Dispersion of VO(acac)2: A Detailed Study of the Highly Reactive MCM-48 Surface and the Structure and Activity of the Deposited VOx. [J]J Catal, 2001, 197(1):160-171.
    [51] Corma A, Lopez-Nieto J M, Paredes N, Perez M, Shen Y, Cao H, Suib S L. Oxidative dehydrogenation of propane over supported-vanadium oxide catalysts. [J] Stud Surf Sci Cata, 1992, 72: 213-220.
    [52] Bettahar M M, Costentin G, Savary L, Lavalley J C. On the partial oxidation of propane and propylene on mixed metal oxide catalysts. [J] Appl Catal A Gen, 1996, 145(1-2): 1-48.
    [53] Pena M L, Dejoz A, Fornes V, Rey F, Vazquez M I, Lopez Nieto J M. V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase. [J] Appl Catal A Gen, 2001,209(1-2): 155-164.
    [54] Puglisi M, Arena F, Frusteri F, Sokolovskii V, Parmaliana A. Effect of vanadia loading in propane oxidative dehydrogenation on V_2O_5/SiO_2 catalysts. [J] Catal Lett, 1996, 41(1-2): 41-43.
    [55] Han Y, Wang H M, Cheng H, Jin R H, Deng J F. Dispersed vanadium phosphorus oxide on titania-silica xerogels: highly active for selective oxidation of propane. [J] New J Chem, 1998, 22(11): 1175-1176.
    [56] Zhou R, CaoY, Yan S R, Deng J F, Liao Y Y, Hong B F. Oxidative dehydrogenation of propane over mesoporous HMS silica supported vanadia. [J] Catal Lett, 2001, 75(1-2): 107-112.
    [1]Concepcion P,Botella P,Nieto J M Lopez.Catalytic and FT-IR study on the reaction pathway for oxidation of propane and propylene on V- or Mo-V-based catalysts.[J]Appl Catal A Gen,2004,278(1):45-56.
    [2]Zhang,Q H,Wang Y,Ohishi Y,Shishido T,Takehira K.V-MCM-41 for selective oxidation of propane to propene and acrolein.[J]Chem Lett,2001,(3):194-195.
    [3]Taylor S H,Pollard A J J.Silica and boron nitride supported molybdenum and vanadium oxide catalysts for propane oxidation.[J]Catal Today,2003,81(2):179-188.
    [4]Han Y F,Wang,H M,Cheng H,Jin R H,Deng,J F.Dispersed vanadium phosphorus oxide on titania-silica xerogels:highly active for selective oxidation of propane.[J]N J Chem,1998;22(11):1175-1176.
    [5]Klisinska A,Haras A,Samson K,Witko M,Grzybowska B.Effect of additives on properties of vanadia-based catalysts for oxidative dehydrogenation of propane.Experimental and quantum chemical studies.[J]J Mol Catal A,2004,210(1-2):87-92.
    [6]Carrazan,S R G,Peres C,Bernard J P,Ruwet M,Ruiz P,Delmon B.Catalytic synergy in the oxidative dehydrogenation of propane over MgVO catalysts.[J]J Catal,1996,158(2):452-76.
    [7]Chaar M A,Pate 1 D,Kung H H.Seleetive oxidative dehydrogenation of ProPane overV-Mg-O Catalysts.[J]J Catal,1988,109(2):463-467
    [8]Erdohelyi A,Solymosi F.Partial oxidation of ethane over potassium vanadium trioxide/silica and potassium promoted vanadium/silica catalysts[J]Appl Catal,1988,39(1-2):L11-L14.
    [9]Owens L,Kung H.H.The effect of loading of vanadia on silica in the oxidation of butane.[J]J Catal,1993,144(1):202-213.
    [10]Puglisi M,Arena F,Frusteri F,Sokolovskii V,Parmaliana A.Effect of vanadia loading in propane oxidative dehydrogenation on V_2O_5/SiO_2 catalysts.[J]Catal Lett,1996,41(1-2):41-43.
    [11]Rulkens R,Tilley T D.A Molecular Precursor Route to Active and Selective Vanadia-Silica-Zirconia Heterogeneous Catalysts for the Oxidative Dehydrogenation of Propane.[J]J Am Chem Soc,1998,120(38):9959-9960.
    [12] Eon J G, Olier R, Volta J C. Oxidative dehydrogenation of propane on γ-Al_2O_3 supported vanadium oxides. [J] J Catal, 1994, 145(2): 318-326.
    [13] Concepcion P, Navarro M T, Blasco T, Lopez Nieto J M, Panzacchi B, Rey F. Vanadium oxide supported on mesoporous Al_2O_3. [J] Catal Today, 2004, 96(4): 179-186.
    [14] Grabowski R, Grzybowski B, Samson K, Sloczynski J, Stoch J, Wcislo K. Effect of alkaline promoters on catalytic activity of V_2O_5/TiO_2 and MoO_3/TiO_2 catalysts in oxidative dehydrogenation of propane and in isopropanol decomposition. [J] Appl Catal A Gen, 1995,125(1): 129-144.
    [15] Singh R P, Banares M A, Deo G. Effect of phosphorous modifier on V_2O_5/TiO_2 catalyst: ODH of propane. [J] J Catal, 2005,233(2): 388-398.
    [16] Concepcion P, Lopez Nieto J M, Perez Pariente J. Oxidative dehydrogenation of propane on VAPO-5, V_2O_5/ALPO_4-5 and V_2O_5/MgO catalysts. [J] J Mol Catal A, 1995,99(3): 173-182.
    [17] Gao X T, Jehng J M,Wachs I E. In Situ UV-vis-NIR Diffuse Reflectance and Raman Spectroscopic Studies of Propane Oxidation over ZrO_2-Supported Vanadium Oxide Catalysts. [J] J Catal, 2002, 209(1): 43-50.
    [18] Berndt H, Martin A, Bruckner A, Schreier E, Muller D, Kosslick H, Wolf G U, Lucke B. Structure and Catalytic Properties of VOx/MCM Materials for the Partial Oxidation of Methane to Formaldehyde. [J] J Catal, 2000, 191(2): 384-400.
    [19] Pena M L, Dejoz A, Fornes V, Rey E, Vazquez M I, Nieto J M L.V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase. [J] Appl Catal A Gen, 2001, 209 (1-2): 155-164.
    [20] Liu Y M, Cao Y, Yi N, Feng W L, Dai W L, Yan S R, He H Y, Fan K N. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane. [J] J Catal, 2004, 224(2): 417-428.
    [21] Schmidt-Winkel P, Lukens W W, Zhao D Y, Yang P D, Chmelka B F, Stucky G D. Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows. [J] J Am Chem Soc, 1999,121(1): 254-255.
    [22] Schmidt-Winkel P, Glinka C J, Stucky G D. Microemulsion Templates for Mesoporous Silica. [J] Langmuir 2000,16(2): 356-361.
    [23] Lettow J S, Han Y J, Schmidt-Winkel P, Yang P D, Zhao D Y, Stucky G D, Ying J Y. Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas. [J] Langmuir 2000,16(22): 8291-8295.
    [24] Schmidt-Winkel P, Lukens W W, Yang P D, Margolese D I, Lettow J S, Ting J Y, Stucky G D. Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores. [J] Chem Mater, 2000, 12(3): 686-696.
    [25] Pham-Huu C, Keller N, Estournes C. Synthesis of CoFe_2O_4 nanowire in carbon nanotubes A new use of the confinement effect. [J] Chem. Commun, 2002, 17: 1882-1883.
    [26] Imperor-Clerc M, Bazin D, Appay M D. Crystallization of beta-MnO_2 nanowires in the pores of SBA-15 silicas: In situ investigation using synchrotron radiation. [J] Chem Mater, 2004, 16(9): 1813-1821.
    [27] Jiao K, Zhang B, Yue B, Ren Y, Liu S X Yan S R, Dickinson C; Zhou W Z, He H Y. Growth of porous single-crystal Cr_2O_3 in a 3-D mesopore system. [J] Chem Commun, 2005,45: 5618-5620.
    [28] Liu S X, Yue B, Jiao K, Zhou Y, He H Y. Template synthesis of one-dimensional nanostructured spinel zinc ferrite. [J] Mater Lett 2006, 60(2): 154-158.
    [29] Berndt H, Martin A, Bruckner A, Schreier E, Muller D, Kosslick H, Wolf G U, Lucke B. Structure and Catalytic Properties of VOx/MCM Materials for the Partial Oxidation of Methane to Formaldehyde. [J] J Catal, 2000, 191(2): 384-400.
    [30] Sing K S W, Everett D H, Haul R V W, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. [J] Pure Appl Chem, 1985, 57: 603-619.
    [31] Lukens W W, Schmidt-Winkel P, Zhao D Y, Feng J L, Stucky G D. Evaluating pore sizes in mesoporous materials: A simplified standard adsorption method and a simplified Broekhoff-de Boer method. [J] Langmuir 1999, 15(16): 5403-5409.
    [32] Chao K J, Wu C N, Chang H, Lee L J, Hu S F. Incorporation of Vanadium in Mesoporous MCM-41 and Microporous AFI Zeolites. [J] J Phys Chem B, 1997, 101(33): 6341-6349.
    [33] Abello L, Husson E, Replin Y, Lucazezu G. Vibrational spectra and valence force field of crystalline vanadium pentoxide. [J] Spectro Acta A, 1983, 39(7): 641-651.
    [34] Liu Y M, Cao Y, Zhu K K, Yan S R, Dai W L, He H Y, Fan K N. Highly efficient VOx/SBA-15 mesoporous catalysts for oxidative dehydrogenation of propane. [J] Chem Commun, 2002, 23: 2832-2833.
    [35] Solsona B, Blasco T, Lopez Nieto J M, Pena M L, Rey F, Vidal-Moya A. Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes. [J] J Catal, 2001, 203(2): 443-452.
    [36] Abello L, Husson E, Replin Y, Lucazezu G. Vibrational spectra and valence force field of crystalline vanadium pentoxide. [J] Spectro Acta A, 1983, 39(7): 641-651.
    [37] Went G T, Oyama S T, Bell A T. Laser Raman spectroscopy of supported vanadium oxide catalysts. [J] J Phys Chem, 1990, 94(10): 4240-6.
    [38] Wachs I E, Weckhuysen B M. Structure and reactivity of surface vanadium oxide species on oxide supports. [J] Appl Catal A Gen, 1997, 157(1-2): 67-90.
    [39] Busca G, Ramis G, Lorenzelli V. FT-IR study of the surface properties of polycrystalline vanadia. [J] J Mol Catal, 1989, 50(2): 231-40.
    [40] Wachs Israel E, Deo G, Weckhuysen B M, Andreini A, Vuurman M A, de Boer Michiel, Amiridis M D. Selective catalytic reduction of NO with NH3 over supported vanadia catalysts. [J] J Catal, 1996, 161(1): 211-221.
    [41] Santamaria-Gonzalez J, Luque-Zambrana J, Merida-Robles J, Maireles-Torres P, Rodriguez-Castellon E, Jimenez-Lopez A. Catalytic behavior of vanadium-containing mesoporous silicas in the oxidative dehydrogenation of propane. [J] Catal Lett, 2000, 68(1-2): 67-73.
    [42] Adamski A, Sojka Z, Dyrek K. Surface Heterogeneity of Zirconia-Supported V_2O_5 Catalysts-The Link between Structure and Catalytic Properties in Oxidative Dehydrogenation of Propane. [J] Langmuir, 1999, 15(18): 5733-5741
    [43] Zhou R, CaoY, Yan S R, Deng J F, Liao Y Y, Hong B F. Oxidative dehydrogenation of propane over mesoporous HMS silica supported vanadia. [J] Catal Lett, 2001, 75(1-2): 107-112.
    [44] Vradman L, Landau M V, Herskowitz M, Ezersky V, Talianker M, Nikitenko S, Koltypin Y, Gedanken A. High loading of short WS_2 slabs inside SBA-15: promotion with nickel and performance in hydrodesulfurization and hydrogenation. [J] J Catal, 2003, 213(2): 163-175.
    [45] Baltes M, Cassiers K, Van V P, Weckhuysen B M, Schoonheydt R A, Vansant E F. MCM-48-Supported Vanadium Oxide Catalysts, Prepared by the Molecular Designed Dispersion of VO(acac)_2:A Detailed Study of the Highly Reactive MCM-48 Surface and the Structure and Activity of the Deposited VOx.[J]J Catal,2001,197(1):160-171.
    [46]Grubert G,Rathousky J,Schulz-Ekloff G,Wark M,Zukal A.Reducibility of vanadium oxide species in MCM-41.[J]Micro Mesopor Mat,1998,22(1-3):225-236.
    [47]Blasco T,Lopez Nieto J M.Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts.[J]Appl Catal A,1997,157(1-2):117-142.
    [48]Kung,Harold H.Oxidative dehydrogenation of light(C2 to C4)alkanes.[J]Adv Catal,1994,40:1-38.
    [50]Klisinska A,Haras A,Samson K,Witko M,Grzybowska B.Effect of additives on properties of vanadia-based catalysts for oxidative dehydrogenation of propane.Experimental and quantum chemical studies.[J]J Mol Catal A,2004,210(1-2):87-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700