定量光声成像技术及在骨关节炎诊断的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨关节炎(Osteoarthritis,简称OA),又称退行性关节炎,是一种常见的关节炎症。据世界卫生组织统计,50岁以上人群中,骨关节炎的发病率为50%。目前,虽无可以根治该病的方法,但临床研究表明,如果在骨关节炎早期及早发现并采用手术或者药物方法进行医治,就可以使患病关节的病情得到改善。
     本文尝试采用一种新的生物医学成像方法,即光声成像(PAT,Photoacoustic Tomography),来进行骨关节炎的早期诊断。它不仅具有光学成像各组织间高对比度的特点,而且能够提供超声成像所具有的高分辨率,更重要的是,相比于其它现有的生物医学成像方法,它对关节内的早期病变更加敏感,从而使得骨关节炎早期的诊断效率得到极大提高。
     光声成像的要点在于,它采用一套有效的算法,使得人体关节内不同组织按光学特性得到很好地分辨。本文提出并实现了一套以有限元和牛顿迭代法为基础的单波长和多波长非线性定量重建算法,来重建人体关节组织内的光学参数,以及如血红蛋白浓度、水含量、声速等生理或功能性参数。相比于现有的其他重建算法,这套算法在于将光声传播方程和光扩散模型相结合,所以能够提供别的重建算法所没有的光吸收系数的重建,从而给出定量的结果,这是这套算法的独特优点。此外,这套算法还消除了普通光声算法中声速均匀的假设,因此除了可以得到和组织内各种光吸收物质有关的生理或功能性参数,还可以得到声速的分布,为临床诊断多提供了一个额外的依据。
     本文从光声成像的原理出发,详细地推导了单波长和多波长定量重建算法,对多波长算法的最佳成像条件进行了讨论,并分别对单波长和多波长算法进行了一系列的数值模拟及实验模拟,从理论和实验上验证了这套算法的有效性和精确性。最后,将单波长和多波长算法应用于临床中,对骨关节炎患者和正常人的临床数据进行了图像重建,得到了关节中的光吸收系数、血氧浓度、水含量、声速分布等各种生理或功能性图像。临床数据表明,本文所实现的单波长和多波长算法可以有效的区分患有骨关节炎的关节和正常关节。
     本文首次提出了基于有限元的单波长和多波长定量光声重建算法,并且将该算法应用于骨关节炎的临床诊断中,填补了光声成像领域在人体硬组织成像的空白。临床数据重建表明,这种方法很有可能成为早期手指骨关节炎诊断的强有力工具,从而为骨关节炎诊断提供科学、定量的参考依据。
Osteoarthritis (OA) is a common degenerative, slowly progressive joint disease. According to the World Heath Organization (WHO), approximately 50% of people over 50 year-old suffer from OA today. While there is currently no cure for this disease, numerous clinical studies have shown that the progression of the diseased joint may be modified by medical or surgical intervention if the disease is detected early.
     The goal of this thesis research is to develop a novel biomedical imaging modality called photoacoustic tomography (PAT), which promises to significantly advance our ability to detect such diseased joints at an early stage, and thereby offer the potential for curative OA treatment for this devastating disease. PAT is a newly developed in vivo imaging method for biomedical tissues, which uniquely combines high optical contrast and high ultrasound resolution in a single modality. In addition, it offers better sensitivity to the tissue changes in an OA joint at an early stage over all the cuurent medical imaging modalities.
     The key to the development of successful PAT for joint imaging is an effective image reconstruction algorithm that allows one to characterize the joint tissues. In this thesis we have developed and implemented finite element based reconstruction algorithms for recovering tissue optical property, functional/ physiological parameters such as hemoglobin concentration and water content and acoustic property using both single-and multi-spectral photoacoustic measurements. A unique advantage of our reconstruction method is that it allows us to obtain the distribution of absolute optical absorption coefficient by incorporating a light transport model into our PAT reconstruction framework to realize quantitative PAT. This reconstruction method also has eliminated the assumption of homogenous acoustic velocity in the image domain so that it allows direct recovery of tissue chromophore concentrations and acoustic velocity using tomographic multi-spectral photoacoustic measurements.
     Extensive simulations and laboratory experiments using tissue-like phantoms have been conducted using both single- and multi-spectral photoacoustic data in order to assess the overall imaging capabilities of the reconstruction algorithms developed. Both the single- and multi-spectral reconstruction algorithms have also been tested and evaluated using pilot clinical data from patients with hand OA and healthy volunteers.
     To our knowledge, the quantitative reconstruction algorithms developed represent the first of their kind. Their applications to osteoarthritis imaging as well as hard tissue imaging are also for the first time. The successful pilot clinical experience indicates that the single- and multi-spectral quantitative PAT methods developed in this thesis have great potential to serve as a clinical tool for early detection of osteoarthritis in the hand.
引文
[1]JP Paul. Force Actions Transmitted by Joints in the Human Body. Proceedings of the Royal Society of London. Series B, Biological Sciences,1976,192,1107
    [2]AA Biewener. Scaling body support in mammals:limb posture and muscle mechanics. Science(Washington),1989,245:45~45.
    [3]CC Norkin, PK Levangie. Joint structure & function:a comprehensive analysis.1983,89~91.
    [4]Buckwalter JA. Articular cartilage. Instr Course Lect,1983,32:349~70.
    [5]Lennart T. H. Jacobsson, etc. Joint swelling as a predictor of death from cardiovascular disease in a population study of Pima Indians. Arthritis & Rheumatism,2001,44(5):1170~11176.
    [6]Marian W. Ropes, Granville A. Bennett, Sidney Cobb, Ralph Jacox and Ralph A. Jessar. Diagnostic Criteria for Rheumatoid Arthritis. J Bone Joint Surg Am,1959,41:781~782.
    [7]Buckwalter JA, Mankin HJ. Articular cartilage:degeneration and osteoarthritis, repair, regeneration, and transplantation. Instructional course lectures,1998,47:487~504.
    [8]E Yelin. The economics of osteoarthritis. Osteoarthritis. USA:Oxford University Press,1998.35~37.
    [9]Felson DT. Clinical practice. Osteoarthritis of the knee. N Engl J Med 2006,354:841~848.
    [10]Burr DB. Anatomy and physiology of the mineralized tissues:role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage,2004,12:S20-30.
    [11]Chen CT, Burton-Wurster N, Lust G, Bank RA, Tekoppele JM. Compositional and metabolic changes in damaged cartilage are peak-stress, stress-rate, and loading-duration dependent. J Orthop Res. 1999,17:870~879.
    [12]DT Felson, RC Lawrence, PA Dieppe, etc. Osteoarthritis:new insights. Part 1:the disease and its risk factors. Annals of Internal Medicine. Am Coll Physicians,2000,369~369.
    [13]Arner EC, Di Meo TM, Ruhl DM, Pratta MA. In vivo studies on the effects of human recombinant interleukin-1 beta on articular cartilage. Agents Actions,1989,27:254~7.
    [14]Rizkalla, G, Reiner, A, Bogoch, E,& Poole, AR. Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis:evidence for molecular heterogeneity and extensive molecular changes in disease. J Clin Invest,1992,90:2268~77.
    [15]Attur MG, Dave M, Akamatsu M, Katoh M, Amin AR. Osteoarthritis or osteoarthrosis:The definition of inflammation becomes a semantic issue in the genomic era of molecular medicine. Osteoarthritis Cartilage,2002, 10:1-4.
    [16]Dequeker, J. Inverse relationship of interface between osteoporosis and osteoarthritis. J Rheumatol,1997,24:795~8.
    [17]Dequeker, J, Mokassa, L, Aerssens, J,& Boonen, S. Bone density and local growth factors in generalized osteoarthritis. Microscopy Res Tech, 1997,37:358~71.
    [18]Timothy E. McAlindon, Michael P. LaValley, Juan P. Gulin, David T. Felson. Glucosamine and Chondroitin for Treatment of Osteoarthritis. JAMA.2000,283(11):1469~1475.
    [19]Grainger R.G. Diagnostic radiology a textbook of medical imaging. New York:Churchill Livingstone,1997.
    [20]Valma J Robertson, Kerry G Baker. A Review of Therapeutic Ultrasound: Effectiveness Studies. Physical Therapy,2001,81(7):1339-1350.
    [21]Filler, AG. The history, development, and impact of computed imaging in neurological diagnosis and neurosurgery:CT, MRI, DTI. Nature Precedings,2009.
    [22]Lauterbur PC. Magnetic resonance zeugmatography. Pure and Applied Chemistry,1974,40:149~157.
    [23]Amen, D.G. and Carmichael, B.D. High-resolution brain SPECT imaging in ADHD. Ann Clin. Psychiatry,1997,9(2):81~86.
    [24]Ter-Pogossian, M.M., M.E. Phelps, E.J. Hoffman, N.A. Mullani. A positron-emission transaxial tomograph for nuclear imaging (PET). Radiology,1975,114 (1):89~98.
    [25]WP Chan, P Lang, MP Stevens, K Sack, S Majumdar, DW Stoller, C Basch and HK Genant. Osteoarthritis of the knee:comparison of radiography, CT, and MR imaging to assess extent and severity,1991, 157:799~806.
    [26]Myers SL, Dines K, Brandt DA, Brandt KD, Albrecht ME. Experimental assessment by high frequency ultrasound of articular cartilage thickness and osteoarthritic changes. J Rheumatol,1995,22(1):109~116.
    [27]Jenny A. Tyler, Paul J. Watson, Hwee-Ling Koh, Nicholas J. Herrod, Matthew Robson, Laurance D. Hall. Detection and monitoring of progressive degeneration of osteoarthritic cartilage by MRI. Acta Orfbop Scand,1995,66:130~138.
    [28]Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, et.al. Optical coherence tomography. Science,1991, 254(5035):1178~1181.
    [29]A P Gibson, J C Hebden and S R Arridge. Recent advances in diffuse optical imaging. Phys. Med. Biol,2005,50:R1~R43.
    [30]Yang, S, etc. Noninvasive monitoring of traumatic brain injury and posttraumatic rehabilitation with laser-induced photoacoustic imaging. Appl. Phys. Lett,2007,90:243902.
    [31]Zhang, Q, etc. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography. Phys. Med. Biol,2008,53:1921~1931.
    [32]Betzig, E, etc. Imaging intracellular fluorescent proteins at nanometer resolution. Science,2006,313:1642~1645.
    [33]Hell, S. W. Far-field optical nanoscopy. Science,2007,316:1153~1158.
    [34]Huang, B., Wang, W., Bates, M.& Zhuang, X. Three-dimensional superresolution imaging by stochastic optical reconstruction microscopy. Science,2008,319:810-813.
    [35]Wang, L. V.& Wu, H. Biomedical Optics:Principles and Imaging. Wiley, 2007.
    [36]Z. Yuan, Q. Zhang, E. Sobel, H. Jiang. Three-dimensional diffuse optical tomography of osteoarthritis:initial results in the finger joints. J. Biomed. Opt,2007,12(3):034001.
    [37]Zhen Yuan, Qizhi Zhang, Eric S. Sobel, and Huabei Jiang. Tomographic x-ray guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints. J. Biomed. Opt.,2008,13:044006.
    [38]Harri E Panula, Mika M Hyttinen, etc. Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis. Ann Rheum Dis,1998, 57:237-245.
    [39]Allen D. Meisel and Peter G. Bullough. Philadelphia. Atlas of Osteoarthritis.1984,146~147.
    [40]J. Beuthan, V. Prapavat, R. Naber, O. Minet, G. Muller. Diagnostic of inflammatory rheumatic diseases with photon density waves. Proc.SPIE, 1996,2676,43~53.
    [41]Prapavat V, Runge W, Mans J, Krause A, Beuthan J, Muller G. The development of a finger joint phantom for the optical simulation of early inflammatory rheumatic changes. Biomed Tech (Berl),1997, 42(11):319~26.
    [42]Jason P Mansell, Chris Collins & Allen J Bailey. Viewpoint:Bone, not cartilage, should be the major focus in osteoarthritis. Nature. Clinical Practice Rheumatology,2007,3(6):306~313
    [43]Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues:a review of their chemistry, function, and clinical relevance. Bone,1998, 22(3):181~187.
    [44]R.S. Cotran, V. Kumar, T. Collins. Robbins Pathologic Basis of Disease (Sixth Edition), Philadelphia:W. B. Saunders Company,1999.
    [45]Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang. Tomographic x-ray guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints. J. Biomed. Opt,2008,13:044006-1-10.
    [46]Z. Yuan, Q. Zhang, H. Jiang, E. S. Sobel, H. Jiang. Image-guided optical spectro-scopy in diagnosis of osteoarthritis by combining spectral and spatial a priori information. Proc. SPIE,2009,71740K.
    [47]Oraevsky, A. A.& Karabutov, A. A. "Optoacoustic Tomography", in Biomedical Photonics Handbook Vol. PM125 (ed. Vo-Dinh, T.) Ch. CRC Press,2003,34:3401-3434.
    [48]Zhang, H. F., Maslov, K., Stoica, G.& Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnol,2009,24:848-851.
    [49]Zhang, H. F., Maslov, K.& Wang, L. V. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Hoelen, C. G. A., de Mul, F. F. M., Pongers, R.& Dekker, A. Threedimensional photoacoustic imaging of blood vessels in tissue. Opt. Lett,1998, 23:648-650.
    [50]Hoelen, C. G. A., de Mul, F. F. M., Pongers, R.& Dekker, A. Threedimensional photoacoustic imaging of blood vessels in tissue. Opt. Lett,1998,23:648-650.
    [51]Kostli, K. P. etc. Optoacoustic imaging using a three-dimensional reconstruction algorithm. IEEE J. Sel. Top. Quant,2001,7:918-923.
    [52]Paltauf, G., Viator, J. A., Prahl, S. A.& Jacques, S. L. Iterative reconstruction algorithm for optoacoustic imaging. J. Acoust. Soc. Am, 2002,112:1536-1544.
    [53]Andreev, V. G., Karabutov, A. A.& Oraevsky, A. A. Detection of ultrawideband ultrasound pulses in optoacoustic tomography. IEEE T. Ultrason. Ferr,2003,50:1383~1390.
    [54]Finch, D., Patch, S. K.& Rakesh. Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal,2003, 35:1213-1240.
    [55]Kostli, K. P.& Beard, P. C. Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response. Appl. Opt,2003,42:1899~1908.
    [56]Haltmeier, M., Scherzer, O., Burgholzer, P.& Paltauf, G. Thermoacoustic computed tomography with large planar receivers. Inverse Probl,2004, 20:1663-1673.
    [57]Xu, M.& Wang, L. V. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E,2005,71:016706.
    [58]Cox, B. T.& Beard, P. C. Fast calculation of pulsed photoacoustic fields in fluids using k-space methods. J. Acoust. Soc. Am,2005, 117:3616-3627.
    [59]Anastasio, M. A., Zhang, J., Modgil, D.& La Riviere, P. J. Application of inverse source concepts to photoacoustic tomography. Inverse Probl,2007, 23:S21-S35.
    [60]Wang, L. V., Zhao, X., Sun, H.& Ku, G. Microwave-induced acoustic imaging of biological tissues. Rev. Sci. Instrum,1999,70:3744~3748.
    [61]Wang, L. V., Zhao, X., Sun, H.& Ku, G. Microwave-induced acoustic imaging of biological tissues. Rev. Sci. Instrum,1999,70:3744~3748.
    [62]Kruger, R. A., Reinecke, D. R.& Kruger, G. A. Thermoacoustic computed tomography-technical considerations. Med. Phys,1999,26:1832~1837.
    [63]F. Tranquart, N. Grenier, V. Eder, L. Pourcelot. Clinical use of ultrasound tissue harmonic imaging. Ultrasound in Medicine & Biology,1999, 25(6):889~894.
    [64]Guo, Z., Li, L.& Wang, L. V. The speckle-free nature of photoacoustic tomography. Proc. SPIE,2009,7177:71772J.
    [65]Larina, I. V., Larin, K. V.& Esenaliev, R. O. Real-time optoacoustic monitoring of temperature in tissues. J. Phys. D Appl. Phys,2005, 38:2633~2639.
    [66]Sethuraman, S., Aglyamov, S. R., Smalling, R. W.& Emelianov, S. Y. Remote temperature estimation in intravascular photoacoustic imaging. Ultrasound Med. Biol,2008,34:299~308.
    [67]Shah, J. et al. Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt,2008,13:034024.
    [68]Bell, A. G. On the production and reproduction of sound by light. Am. J. Sci,1880,20:305~324.
    [69]Bowen, T. Radiation-induced thermoacoustic imaging. US patent 4,385,634,1983.
    [70]Oraevsky, A. A., Jacques, S. L.& Tittel, F. K. Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves. Proc. SPIE,1993,1882:86~101.
    [71]Oraevsky, A. A., Jacques, S. L., Esenaliev, R.O.& Tittel, F. K. Laser-based optoacoustic imaging in biological tissues. Proc. SPIE,1994, 2134A:122~128.
    [72]Kruger, R. A. Photoacoustic ultrasound. Med. Phys,1994,21:127-131.
    [73]Kruger, R. A.& Liu, P. Photoacoustic ultrasound:pulse production and detection in 0.5% liposyn. Med. Phys,1994,21:1179~1184.
    [74]Oraevsky, A. A., Esenaliev, R.0., Jacques, S. L., Thomsen, S. L.& Tittel, F. K. Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers. Proc. SPIE,1995,2389:198~208.
    [75]Kruger, R. A., Liu, P., Fang, Y. R.& Appledorn, C. R. Photoacoustic ultrasound (PAUS)—reconstruction tomography. Med. Phys,1995, 22:1605~1609.
    [76]Ku, G.& Wang, L. V. Scanning thermoacoustic tomography in biological tissue. Med. Phys,2000,27:1195~1202.
    [77]X. Wang, Y. Peng, G. Ku, G. Stoica, L. Wang. Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact. Optics Letters.2003,28:1739~1741.
    [78]Xueding Wang, Yongjiang Pang, Geng Ku, etc. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nature Biotechnology,2003,21:803~806.
    [79]Jung-Taek Oh, Meng-Lin Li, Hao F. Zhang, Konstantin Maslov, George Stoica, Lihong V. Wang. Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. J. Biomed. Opt,2006, 11:034032.
    [80]Konstantin Maslov. In vivo dark-field reflection-mode photoacoustic microscopy. Optics Letters,2005,30(6):625~627.
    [81]Geng Ku and Lihong V. Wang. Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt. Lett,2005,30(5):507~509.
    [82]Srirang Manohar, etc. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Optics Express,2007,15(9):12277~12285.
    [83]Elina A. Genina, Alexey N. Bashkatov, and Valery V. Tuchin. Optical Clearing of Cranial Bone. Advances in Optical Technologies.2008, 267867.
    [84]E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb. Measurement of brain activity by near-infrared light. Journal of BiomedicalOptics,2005, 10(1):011008.
    [85]S. Krishnamurthy, S. K. Powers, P. Witmer, and T. Brown. Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors. Lasers in Surgery and Medicine,2000,27(3):224~234.
    [86]V. X. D. Yang, P. J. Muller, P. Herman, and B. C. Wilson. A multispectral fluorescence imaging system:design and initial clinical tests in intra-operative photofrin-photodynamic therapy of brain tumors. Lasers in Surgery and Medicine,2003,32(3):224~232.
    [87]JA Viator, G Paltauf, SL Jacques, SA Prah. Design and testing of an endoscopic photoacoustic probe for determination of treatment depth after photodynamic therapy. Proceedings of SPIE,2001,4256:16-27.
    [88]S Mallidi, AB Karpiouk, SR Aglyamov, S Sethuraman. Measurement of blood perfusion using photoacoustic, ultrasound and strain imaging. Proc. of SPIE,2007,6437:643707.
    [89]Y. Sun and H. Jiang. Quantitative three-dimensional photoacoustic tomography of the finger joints:phantom studies in a spherical scanning geometry. Phys. Med. Biol,2009,54:5457-5467.
    [90]Sun Y, Sobel E and Jiang H. Quantitative three-dimensional photoacoustic tomo-graphy of the finger joints:an in-vivo study. J. Biomed. Opt,2009, 14:064002-1-5.
    [91]A. Grinvald et al. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature,1986,324(6095):361~364.
    [92]Maslov, K., Zhang, H. F., Hu, S.& Wang, L. V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett,2008,33:929~931.
    [93]Song, K. H., Stein, E. W., Margenthaler, J. A.& Wang, L. V. Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. J. Biomed. Opt,2008,13:054033.
    [94]John Gamelin, Andres Aguirre, Anastasios Maurudis, Fei Huang, and Diego Castillo, Lihong V. Wang, Quing Zhu. Curved array photoacoustic tomographic system for small animal imaging. J. Biomed. Opt.,2008, 13:024007.
    [95]Diwu Yang, Da Xing*, Sihua Yang, Liangzhong Xiang. Fast full-view photoacoustic imaging by combined scanning with a linear transducer. Optics Express,2007,15(23):15566~15575.
    [96]Bangzheng Yin, Da Xing, Yi Wang, Yaguang Zeng, Yi Tan and Qun Chen. Fast photoacoustic imaging system based on 320-element linear transducer array. Physics in Medicine and Biology,2004, 49(7):1339~1345.
    [97]Diwu Yang, Da Xing, Huaimin Gu, Yi Tan, and Lvming Zeng. Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm. Applied Physics Letters, 2005,87:194101.
    [98]A.A. Karabutov, E.V. Savateeva, N.B. Podymova, A.A. Oraevsky. Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. Journal of Applied Physics,2000, 87(4):2003~2012.
    [99]R.A. Kruger, Pingyu-Liu, Yuncai-Fang, C.R. Appledorn. Photoacoustic ultrasound (paus)-reconstruction tomography. Medical Physics,1995, 22(10):1605~1609.
    [100]J.A. Viator, B. Choi, M. Ambrose, J. Spanier, J.S. Nelson. In vivo port-wine stain depth determination with a photoacoustic probe. Applied Optics,2003,42(16):3215~3224.
    [101]Geng-Ku, Xueding-Wang, G. Stoica, L.V. Wang. Multiple-bandwidth photoacoustic tomography. Physics in Medicine and Biology,2004, 49(7):1329~1338.
    [102]R.G.M. Kolkman, E. Hondebrink, W. Steenbergen, F.F.M. de-Mul. In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor. IEEE Journal of Selected Topics in Quantum Electronics,2003, 9:343~346.
    [103]M. Yamazaki, T. Shimada, S. Sato, T. Miya, H. Ohigashi, H. Ashida, M. Obara. Characteristics of a Photoacoustic Detector for Biomedical Measurements. Review of Laser Engineering,2002,30:(2002) 598~601.
    [104]Edward Zhang, Jan Laufer, and Paul Beard. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Applied Optics,2008,47(4):561~557.
    [105]J.J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, M. Frenz. Transparent ITO coated PVDF transducer for optoacoustic depth profiling. Optics Communications,2005,253:401~406.
    [106]M. Jaeger, J.J. Niederhauser, M. Hejazi, M. Frenz. Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode. Journal of Biomedical Optics,2005, 10:024035.
    [107]J. A. Viator, G. Paltauf, S. L. Jacques, and S. A. Prahl. Design and testing of an endoscopic photoacoustic probe for determination of treatment depth after photodynamic therapy. Proc. SPIE,2001,4256:16~20.
    [108]S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov. Intravascular photoacoustic imaging using an IVUS imaging catheter. IEEE Trans. Ultrason. Ferroelectr. Freq. Control,2007, 54:978~986.
    [109]Joon-Mo Yang, Konstantin Maslov, Hao-Chung Yang, Qifa Zhou, K. Kirk Shung, and Lihong V. Wang. Photoacoustic endoscopy. Optics Letters, 2009,34(10):1591~1593.
    [110]Zhang QZ, Liu Z, Carney PR, Jiang HB. Imaging epilepsy using finite-based photoacoustic tomography:Initial in vivo results. Optical Society America Annual Meeting, Lauderdale, FL,2006.
    [111]Zhang Q, Liu Z, Carney PR, Yuan Z, Chen H, Roper SN, Jiang H. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography. Phys Med Biol,2008,53(7):1921~1931.
    [112]Li, M.-L. et al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE, 2008,96:481~489.
    [113]Copland, J. A. et al. Bioconjugated gold nanoparticles as a molecular based contrast agent:Implications for imaging of deep tumors using optoacoustic tomography. Mol. Imaging Biol,2004,6:341~349.
    [114]Porcheret et al. Treatment of knee pain in older adults in primary care: development of an evidence-based model of care. Rheumatology (Oxford), 2007,46:638-648.
    [115]Felson. Clinical practice. Osteoarthritis of the knee. New England Journal of Medicine,2006,354:841~848.
    [116]Bernstein. Evidence-Based Medicine Appendix:Ten Rules for Evaluating Evidence. J Am Acad Orthop Surg,2004,12:1-3.
    [117]Brandt. Non-surgical treatment of osteoarthritis:a half century of "advances". Ann Rheum Dis,2004,63:117~122.
    [118]Itay, Abramovici, Nevo. Use of Cultured Embryonal Chick Epiphyseal Chon-drocytes as Grafts for Defects in Chick Articular Cartilage. Orthopaedic Practice.1987,220:304~307.
    [119]Howell, D.S., Pelletier, J.-P. Etiopathogenesis of osteoarthritis. In: Arthritis and Allied Conditions.12 th ed. Philadelphia:Lea & Febiger, 1993.1723-1734.
    [120]Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med,1994,331:889~895.
    [121]Ostergaard M, Stoltenberg M, Lovgreen-Nielsen P, Volck B, Jensen CH, Lorenzen I. Magnetic resonance imaging-determined synovial membrane and joint effusion volumes in rheumatoid arthritis and osteoarthritis: comparison with the macroscopic and microscopic appearance of the synovium. Arthritis Rheum,1997,40 (10):1856~1867.
    [122]J.M. Jin. The Finite Element Method in Electromagnetics. John Wiley & Sons, New York,2002.
    [123]H. Gan, P. Levin, R. Ludwig. Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain. J. Acoust. Soc. Am,1993,94:1651~1662.
    [124]H. Jiang, Z. Yuan and X. Gu. Spatially varying optical and acoustic property reconstruction using finite element-based photoacoustic tomography. JOSA A,2006,23:878~888.
    [125]C.G.A. Hoelen and F.F.M. de Mul. Image reconstruction for photo-acoustic scanning of tissue structures. Appl. Opt,2000, 39:5872~5883.
    [126]Manohar, S. etc. Initial results of in vivo noninvasive cancer imaging in the human breast using near-infrared photoacoustics. Opt. Express,2007, 15:12277~12285.
    [127]Yulia V. Zhulina. Optimal statistical approach to optoacoustic image reconstruction. Applied Optics,2000,39(32):5971~5977.
    [128]Stephen J. Norton, Tuan Vo-Dinh. Optoacoustic diffraction tomography: analysis of algorithms. Opt. Soc. Am.A,2003,20(10):1859~1866.
    [129]Minghua Xu and Lihong V. Wang. Time-Domain Reconstruction for Thermo-acoustic Tomography in a Spherical Geometry. IEEE Transctions On Medical Imaging,2002,21(7):814~822.
    [130]R.A. Kruger, P. Liu, Y. Fang, C. Appledorn. Photoacoustic ultrasound (PAUS)-reconstruction tomography. Med. Phys.1995,22:1605~1609.
    [131]Pingyu Liu. The P-transform and photoacoustic image reconstruction. Physics in Medicine and Biology,1998,43(3):667~674.
    [132]C. Li, S. R.Grobmyer, L. L. Fajardo, and H. Jiang. Multi-spectral diffuse optical tomography with absorption and scattering spectral constraints. Appl. Opt,2007,46:8229~8236.
    [133]Greenleaf, J.F., Bahn, R.C. Clinical imaging with transmissive ultrasound computerized tomography. IEEE Trans. Biomed. Eng,1981,28, 1981:177~185.
    [134]H. Zhao, X. Gu, H. Jiang. Model-based ultrasound tomography:Tissue phantom experiments. Med. Phys,2005,32:2659~2664.
    [135]Corlu, A., Durdurn, T., Choe, R., Schweiger, M., Hillman, E., Arridge, S.R.& Yodh, A.G. Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography. Opt. Lett, 2003,28:2339~2341.
    [136]Li, A., Zhang, Q., Culver, J. P., Miller, E.L., Boas, D.A. Reconstruction chromosphere concentration images directly by continuous-wave diffuse optical tomography. Opt. Lett,2004,29:256~258.
    [137]Jiang, H., Yuan, Z., Gu, X. Spatially varying optical and acoustic property reconstruction using finite element-based photoacoustic tomography. J. Opt. Soc. Am. A,2006,23:878~888.
    [138]Yin, L., Wang, Q., Zhang, Q., Jiang, H. Tomographic imaging of absolute optical absorption coefficient in turbid medium using combing photoacoustic and diffusing light measurements. Opt. Lett,2007, 32:2556~2558.
    [139]Jacobson JA, Girish G, Jiang Y, Sabb BJ. Radiographic evaluation of arthritis:Degenerative joint disease and variations. Radiology,2008, 248:737~747.
    [140]Peloschek P, Langs G, Weber M, Sailer J, Reisegger M, Imhof H, Bischol H, Kainberger F. An automatic model-based system for joint space measurements on hand radiographs:Initial experience. Radiology,2007, 243:855~862.
    [141]L Terslev, S Torp-Pedersen, E Qvistgaard, P von der Recke, H Bliddal. Doppler ultrasound findings in healthy wrists and finger joints. Ann Rheum Dis,2004,63:644~648.
    [142]Steven B Abramson, Mukundan Attur and Yusuf Yazici. Prospects for disease modification in osteoarthritis. Nature Clinical Practice Rheumatology,2006,2:304~312。
    [143]N Gerwin, C Hops, A Lucke. Intraarticular drug delivery in osteoarthritis. Advanced Drug Delivery Reviews,2006,58(2):226~242.
    [144]M Martinez Blanco, etc. Osteoarthrosis of the temporomandibular joint:A clinical and radiological study of 16 patients. Med. oral patol. oral cir. Bucal,2004,9(2):106~115.
    [145]Y Henrotin, B Kurz, T Aigner. Oxygen and reactive oxygen species in cartilage degradation:friends or foes? Osteoarthritis and Cartilage,2005, 13(8):643~654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700