少自由度并联机构运动学及五自由度并联机构的相关理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
少自由度并联机构近年来成为国际机构学和机器人领域研究的热点。它的运动学研究也随之受到越来越多的关注。在机构运动学分析中,Jacobian矩阵扮演着一个不可或缺的角色。然而对于少自由度并联机构,目前却没有一种统一并实用的建立其Jacobian矩阵的方法。为此,本文基于6自由度并联机构的影响系数法,针对一类少自由度并联机构(机构自由度等于支链自由度数),给出建立其N×N型Jacobian矩阵和N×N×N型Hessian矩阵的方法。同时通过引入仿射坐标系,将该方法发展适用于全部14类少自由度并联机构。利用N×N型Jacobian矩阵找出机构N个输入速度元素与N个独立输出速度元素间的映射关系。并利用坐标变换,为N自由度并联机构(N<6)给出一种建立6×N型Jacobian矩阵的方法。
     在现有的少自由度并联机构中,结构对称的5自由度并联机构历史较短,且大部分现有机型的自由度为三转两移。在黄真教授等人于2002年利用基于约束螺旋的型综合理论认清这类机构的约束关系并综合出机构实例后,人们才意识到这类机构的确存在。然而,仅仅意识到事物的存在并不代表认清它的本质。为了加深对该类机构本质的认识并探索这类机型的实用性,本文首先在现存的70余种机型中找出11种机型,并提出7种新机型。这18种机型不仅具有完全对称的结构形式,而且可以采用机架副或与机架相邻的移动副作为驱动副。完全对称的结构形式有助于机构获得近似各向同性的运动学特性。机架副驱动有助于减轻机构的额外负载,提高机构的运行速度。移动副驱动则有助于提高机构的承载能力和加工精度。此外,本文还首次综合出支链结构及安装条件对称的三移两转的并联机构。
     运动学是机构分析的重要组成部分。而谈到运动学又不可避免地涉及到机构的奇异位型。由于约束关系的特殊性,5自由度并联机构施加在运动平台上有效约束一般只能为一。因而,这类机型的奇异可以分为两类,即支链内部发生类似于串联机构的奇异以及锁住驱动副后施加在运动平台上的约束螺旋发生线性相关的奇异。本文在前述的18种机型中,找出在奇异分析中具有代表性的6种机型。对它们的这两类奇异都做了详细的阐述和分析。
     理论上,完全对称的三转两移5自由度并联机构具有一般性的应用。为了研究这类机型的实用性,本文作者研制了一台5-RRR(RR)并联样机,并实现其控制系统。据本文作者了解,这台样机应是世界上首台该类机构的样机。这台样机的出现不仅为黄真教授等人提出基于约束螺旋的型综合理论的正确性提供了有力的佐证,为研究这类机构的运动特性等提供了依据,而且对该类机型的实用化进行了有益的探索。
Recently, the lower-mobility parallel mechanisms have been one of hot topics in fields of international mechanics and robotics. Hence, kinematics of lower-mobility parallel mechanisms received more and more attention. In the kinematics analysis, Jacobian plays as an important role. However, for a lower-mobility parallel mechanism, there is no unify and practical method to build Jacobian matrix only with structure and configuration parameters. This paper proposed a method to build N×N Jacobian matrix and N×N×N Hessian matrix for a class of lower-mobility parallel mechanism whose mobility of limb equals the mobility of mechanism is also given. Meanwhile, the method is developed to be valid for all 14 classes of lower-mobility parallel mechanisms. A build N×N Jacobian matrix is adopted to show the mapping relationship between N input velocity elements and N independent output velocity elements. Furthermore, the 6×N Jacobian is given by transforming the square Jacobian matrix.
     Among the existing lower-mobility parallel mechanisms, the history of 5-DoF parallel mechanism with symmetrical structure is short. Most of them are 3R2T. People realized the existence of this class of mechanisms after some novel mechanism types are synthesized by Prof. Huang and co-workers with the synthesis theory based on constraint screw. However, the essence of one thing cannot be recognized just by inventing. To deepen the cognition on the 5-DoF parallel mechanisms with symmetrical structure, this paper summarized 11 types from more than 70 ones and also proposed 7 ones. The actuators of these 18 mechanisms are symmetrical. Furthermore, they can adopt base-mount-actuator structure or prismatic-actuator-adjacent-to-the-base structure. Symmetrical structure and actuators will be convenient to achieve nearly isotropic kinematics performance. The base-mount-actuator structure could reduce the extra-burden of a mechanism to improve work speed. The prismatic-actuator-adjacent-to- the-base structure will improve the capacity of load and accuracy. Moreover, this paper also synthesized the first 5-DoF 3T2R (three translational and two independent rotational degrees of freedom) with symmetrical structure and assembly condition.
     Recently, the lower-mobility parallel mechanisms have been one of hot topics in fields of international mechanics and robotics. Hence, kinematics of lower-mobility parallel mechanisms received more and more attention. In the kinematics analysis, Jacobian plays as an important role. However, for a lower-mobility parallel mechanism, there is no unify and practical method to build Jacobian matrix only with structure and configuration parameters. This paper proposed a method to build N×N Jacobian matrix and N×N×N Hessian matrix for a class of lower-mobility parallel mechanism whose mobility of limb equals the mobility of mechanism is also given. Meanwhile, the method is developed to be valid for all 14 classes of lower-mobility parallel mechanisms. A build N×N Jacobian matrix is adopted to show the mapping relationship between N input velocity elements and N independent output velocity elements. Furthermore, the 6×N Jacobian is given by transforming the square Jacobian matrix.
     Among the existing lower-mobility parallel mechanisms, the history of 5-DoF parallel mechanism with symmetrical structure is short. Most of them are 3R2T. People realized the existence of this class of mechanisms after some novel mechanism types are synthesized by Prof. Huang and co-workers with the synthesis theory based on constraint screw. However, the essence of one thing cannot be recognized just by inventing. To deepen the cognition on the 5-DoF parallel mechanisms with symmetrical structure, this paper summarized 11 types from more than 70 ones and also proposed 7 ones. The actuators of these 18 mechanisms are symmetrical. Furthermore, they can adopt base-mount-actuator structure or prismatic-actuator-adjacent-to-the-base structure. Symmetrical structure and actuators will be convenient to achieve nearly isotropic kinematics performance. The base-mount-actuator structure could reduce the extra-burden of a mechanism to improve work speed. The prismatic-actuator-adjacent-to- the-base structure will improve the capacity of load and accuracy. Moreover, this paper also synthesized the first 5-DoF 3T2R (three translational and two independent rotational degrees of freedom) with symmetrical structure and assembly condition.
引文
1 IFToMM. IFToMM Terminology. Mechanism and Machine Theory, 2003, 38(7-10):821
    2 J.E. Gwinnett. Amusement Device, United States, 1931, 1789680
    3 W.L.V. Pollard. Spray Painting Machine, United States, 1940, 2213108
    4 K.L. Cappel. Motion Simulator, United States, 1967, 3295224
    5 D. Stewart. A Platform with Six Degrees of Freedom, IMechE, 1965. 180(15):371-386
    6 I. Bonev. The True Origins of Parallel Robots, www.parallemic.org. 2003
    7 K.H. Hunt. Kinematic Geoemtry of Mechanisms, Oxford:Oxford:Claredon Press, 1978:10-18
    8 H. MacCallion, D.T. Pham. The Analysis of A 6-DoF Work Station for Mechanized Assembly, Proceedings of 5rd Congress on TMM, Montreal, Canada, 1979:611-616
    9 E.F. Fichter. A Stewart Platform-Based Manipulator: General Theory and Practical Construction, The International Journal of Robotics Research, 1986, 5(2):157-182
    10 J.-P. Merlet. Parallel Manipulators Part 2: Singular Configurations and Grassmann Geometry. Technology report. INRIA, Sophia Antipols, France, 1988:66-70
    11 杜铁军. 机器人误差补偿器研究. [燕山大学工学硕士学位论文]. 1994:12-65
    12 黄真. 空间机构学. 北京:机械工业出版社, 1989:126-143
    13 黄真, 孔令富, 方跃法. 并联机器人机构学理论及控制. 北京:机械工业出版社, 1997:12-118
    14 黄真, 赵永生, 赵铁石. 高等空间机构学. 北京:机械工业出版社, 2006:2-210
    15 M. Sorli, C. Ferraresi, M. Kolarski. Mechanics of Turin Parallel Robot, Mechanism and Machine Theory, 1997, 32(1):51-57
    16 L.W. Tsai. Robot Analysis: The Mechanics of Serial and Parallel Manipulators, New York:John Wiley & Sons, 1999
    17 J.-P. Merlet. Parallel Robots, Dordrecht: Kluwer Academic Publishers, 2000
    18 R. Ball. A Treatise on the Theory of Screws, Cambridge:Cambridge University Press, 1900
    19 K.H. Hunt. Structural Kinematic of in-Parallel-Actuated Robot Arms, Journal of Mechanisms, Transmissions and Automation in Design, 1983,(105):705-712
    20 R. Clavel. A Fast Robot with Parallel Geometry, Proceedings of 8th International Symposium onIndustrial Robots, 1988, Sydney:91-100
    21 R. E. Stamper, L. W. Tsai, G. C. Walsh. Optimization of A Three DoF Translational Platform for Well-Conditioned Workspace, Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, USA, 1997:3250-3255
    22 L. W. Tsai, G. C. Walsh, R. E. Stamper. Kinematics of a Novel Three DOF Translational Platform, Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, 1996:3446-3451
    23 C. M. Gosselin, é. St-Pierre, M. Gagné. On the Development of the Agile Eye: Mechanical Design, Control Issues and Experimentation, IEEE Robotics and Automation Society Magazine, 1996, 3(4):29-37
    24 C. M. Gosselin, J. Angeles. The Optimum Kinemaic Design of a Spherical 3-DoF Parallel Manipulator, ASME Journal of Mechanisms, Transmissions and Automation in Design, 1989, 111(2):202-207
    25 C. M. Gosselin, J. Sefrioui, M.J. Richard. On the Direct Kinematics of Spherical Three-Degree- of-Freedom Parallel Manipulators with A Coplanar Platform, ASME Journal of Mechanical Design, 1994, 116(2):587-593
    26 C. M. Gosselin, é. St-Pierre. Development and Experimentation of A Fast 3-DoF Camera- Orienting Device, The International Journal of Robotics Research, 1997(16):5
    27 Z. Huang, Y. F. Fang. Kinematic Characteristics Analysis of 3-DoF in-Parallel Actuated Pyramid Mechanisms, Mechanism and Machine Theory, 1996, 31(8):1009-1018
    28 J. M. Hervé. The Lie Group of Rigid Body Displacements, A Fundamental Tool for Mechanism Design, Mechanism and Machine Theory, 1999, 34(5):719-730
    29 汪劲松, 段广洪, 杨向东. 虚拟轴机床的研究进展-兼谈在清华大学研制成功的VAMT1Y型原型样机, 科技导报, 1998, 8:32-34
    30 王知行, 陈辉, 石勇. 用七轴联动并串联机床加工汽轮机叶片, 世界制造技术与装备市场, 2002, 6:31-32
    31 范守文, 徐礼矩, 甘泉. 一种新型虚拟轴机床的结构设计与位置分析, 电子科技大学学报, 2001, 30(5):464-467
    32 蔡光起, 胡明, 郭成. 机器人化三腿磨削机床的研制, 制造技术与机床, 1998, 10:4-6
    33 黄田, 倪雁冰, 王洋, 等 Kinematic Design of 3-HSS Parallel Machine Tool. 制造技术与机床,2000, 3:13-15
    34 邱志成, 张红, 赵明扬. 新型五坐标并联机床的机构学及运动学, 组合机床与自动化加工技术, 1999, 8:1-3
    35 黄玉美, 史文浩, 高峰. 混联式六轴联动数控机床 6PM2 的方案创新, 制造技术与机床, 2003, 6:20-21
    36 赵辉. 五自由度五轴并联机床关键技术研究. [北京航空航天大学工学博士学位论文]. 2004:1-33
    37 江崇民, 王振宇, 王哲元. XNZD2415 型数控龙门并联机床简介, 机械工程师, 2003, 2:53-54
    38 赵永生. 3 维移动 2 维转动 5 轴联动并联机床机构, P.R. China, 2002, 02104943.2
    39 M. Washizu. Manipulation of Biological Objects Mechanical Structures, Proceedings of IEEE Micro Mechanical Systems, Travemunde, Germany,1992:196-201
    40 T. Tanikawa, T. Arai, P. Ojala. Two Finger Micro Hand. Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995:1674-1679
    41 T. Dohi. Computer Aided Surgey and Micro Machine, Proceedings of Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1993:21-24
    42 K. W. Grace, J. E. Colgate. A Six Degree of Freedom Micromanipulator for Ophthalmic Surgey, Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1993:630-635
    43 J.-P. Merlet. Optimal Design for the Micro Parallel Robot MIPS, Proceedings of IEEE International Conference on Robotics and Automation, Washington, 2002:1149-1154
    44 安辉. 压电陶瓷驱动六自由度并联微动机器人的研究. [哈尔滨工业大学工学博士学位论文]. 1995:63-76
    45 毕树生, 王守杰, 宗光华. 串并联微动机构的运动学分析, 机器人, 1997, 19(4):259-264
    46 D. R. Kerr. Analysis Properties and Design of a Stewart-Platform Transducer, Transmissions and Automation in Design, 1989, 111:25-28
    47 C. C. Nguyen. Analysis and Experimentation of A Stewart Platform-Based Force/Torque Sensor. International Journal of Robotics and Automation, 1993, 7(3):133-140
    48 C. Ferraresi. Static and Dynamic Behavior of A High Stiffness Stewart Platform-Based Force/ Torque sensor, Journal of Robotic Systems, 1995, 12(12):883-893
    49 陈滨. 机器人手腕测力装置, 机械工程学报, 1988, 24(2):83-87
    50 熊有伦. 机器人力传感器的各向同性, 自动化学报, 1996, 22(1):10-17
    51 Y. S. Zhao Y. L. Hou, Z. W. Yan, et. al. Research and Design of A Pre-Stressed Six-Component Force/Torque Sensor Based on the Stewart Platform, Proceedings of ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference September 24-28, Long Beach, California, USA, 2005.:DETC84227
    52 H. Bruyninckx. Forward Kinematics for Hunt-Primrose Parallel Manipulators, Mechanism and Machine Theory, 1999, 34(4):657-664
    53 R. D. Gregorio. Kinematics of the 3-UPU Wrist, Mechanism and Machine Theory, 2003, 38(3):253-263
    54 M. Thomas, D. Tesar. Dynamic Modeling of Serial Mechanism Arms, Journal of Dynamic System Measure and Control, 1982, 104(9):218-227
    55 Z. Huang. Modeling Formulation of 6-dof Multi-loop Parallel Mechanisms, Proceedings of 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods. Bucharest, Romania, 1985:155-162
    56 Z. Huang. Modeling Formulation of 6-DOF Multi-loop Parallel Manipulators Part-2:Dynamic Modeling and Example, Proceedings of 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods, Bucharest, Romania, 1985:163-170
    57 R. J. Schilling. Fundamentals of Robotics: Analysis and Control, NJ:Prentice-Hall, Englewoods, 1990
    58 J. Yan, Z. Huang. Kinematical Analysis of Multi-loop Spatial Mechanism, Proceedings of 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods, Bucharest, Romania, 1985
    59 S. A. Joshi, L.W. Tsai. Jacobian Analysis of Mobility-deficient Parallel Mechanisms, Proceedings of ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Montreal, Canada, 2002:MECH-34238
    60 J. K. Satisburg, J. J. Craig. Articulated Hands: Kinematic and Force Control Issues, International Journal of Robotics Research, 1982, 1(2):4-17
    61 T. Yoshikawa. Manipulability of Robotic Mechanisms, International Journal of Robotics Research, 1987, 4(2):3-9
    62 A. Hernández, O Altuzarra, R. Avilés. Kinematic Analysis of Mechanisms via a Velocity EquationBased in a Geometric Matrix, Mechanism and Machine Theory, 2003, 38(12):1413-1429
    63 Y. Lu. Using CAD Variation Geometry for Solving Velocity and Acceleration of Parallel Manipulators with 3~5 Linear Driving Limb, Journal of Mechanical Design, 2006, 128(4):738-746
    64 D. E. Whitney. The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators. Journal of Dynamic Systems, Measurement and Control Trans, 1972, 94(4):303-330
    65 黄真, 曲义远. 空间并联多环机构的特殊位形分析, 第五届全国机构学学术讨论会论文集, 庐山, 1987:1-7
    66 曲义远. 并联机器人特殊位形及位置分析. [燕山大学工学硕士学位论文]. 1988:26-41
    67 J.-P. Merlet. Singular Configurations of Parallel Manipulators and Grassmann Geometry, International Journal of Robotics Research, 1989, 8(5):45-56
    68 J.-P. Merlet. Singular Configurations and Direct Kinematics of A New Parallel Manipulator. Proceedings of IEEE International Conference on Robotics and Automation, Nice, France, 1992:320-325
    69 J.-P. Merlet. On the Infinitesimal Motion of A Parallel Manipulator in Singular Configuration, Proceedings of IEEE International Conference on Robotics and Automation, Nice, France, 1992:338-343
    70 C. L. Collins, J. M. MeCarthy. The Singularity Loci of Two Triangular Parallel Manipulators, Proceedings of IEEE 8th International Conference on Advanced Robotics, Monterey, USA, 1997:473-478
    71 B. Monsarrat, C. M. Gosselin. Singularity Analysis of A Three-Leg Six-Degree-of-Freedom Parallel Platform Mechanism Based on Grassmann Line Geometry, The International Journal of Robotics Research, 2001, 20(4):312-326
    72 D. A. Kumar, I. M. Chen, Y. S. Huat. Singularity-Free Path Planning Of Parallel Manipulators Using Clustering Algorithm and Line Geometry, Proceedings of IEEE International Conference on Robotics and Automation, Taiwan, P. R. China, 2003:761-766
    73 W. Alon, O. Erika, S. Moshe. Application of Line Geometry and Linear Complex Approximation to Singularity Analysis of the 3-DoF CaPaMan Parallel Manipulator, Mechanism and Machine Theory, 2004, 39(1):75-95
    74 P. Ben-Horin, M. Shoham. Singularity Analysis of A Class of Parallel Robots Based onGrassmann-Cayley Algebra, Mechanism and Machine Theory, 2006, 41(8):958-970
    75 Z. Huang, Y. S. Zhao, J. Wang. Kinematic Principle and Geometrical Condition of General-Linear-Complex Special Configuration of Parallel Manipulators, Mechanism and Machine Theory, 1999, 34(8):1171-1186
    76 Z. Huang, X. Du. General-Linear-Complex Special Configuration Analysis of 3/6-SPS Stewart Parallel Manipulator, China Mechanical Engineering, 1999, 10(9):997-1000
    77 Z. Huang, L. H. Chen. Singularity Principle and Distribution of 6-3 Stewart Parallel Manipulator, Proceedings of ASME Design Engineering Technical Conferences, Montreal, Canada, 2002:MECH-34237
    78 Z. Huang, L. H. Chen, Y. W. Li. The Singularity Principle and Property of Stewart Parallel Manipulator, Journal of Robotic System, 2003, 20(4):163-176
    79 Z. Huang, L. H. Chen, Y. W. Li. Singular Loci Analysis of 3/6-Stewart Manipulator by Singularity-Equivalent Mechanism, Proceedings of IEEE International Conference on Robotics and Automation, Taiwan, P. R. China, 2003:1881-1886
    80 李艳文. 几类空间并联机器人的奇异研究. [燕山大学工学博士学位论文]. 2005:33-53
    81 曹毅. 六自由度并联机器人奇异位形的研究. [燕山大学工学博士学位论文]. 2005:30-118
    82 J. Gallardo-Alvarado, J. M. Rico-Martinez, G. Alici. Kinematics and Singularity Analyses of A 4-dof Parallel Manipulator Using Screw Theory, Mechanism and Machine Theory, 2006, 41(9):1048-1061
    83 C. M. Gosselin, J. Angeles. Singularity Analysis of Closed-Loop Kinematic Chains, IEEE Trasactions on Robotics and Automation, 1990, 6(3):281-290
    84 C. M. Gosselin. Kinematic and Static Analysis of A Planar Two-degree-of-freedom Parallel Manipulator. Mechanism and Machine Theory, 1996, 31(2):149-160
    85 H. Li, C. M. Gosselin, M. J. Richard. Determination of the Maximal Singularity-free Zones in the Six-dimensional Workspace of the General Gough-Stewart Platform, Mechanism and Machine Theory, In Press, Corrected Proof
    86 H. Li, C. M. Gosselin, M. J. Richard. Determination of Maximal Singularity-free Zones in the Workspace of Planar Three-degree-of-freedom Parallel Mechanisms, Mechanism and Machine Theory, 2006, 41(10):1157-1167
    87 J. Sefrioui, C. M. Gosselin. Etude et representation des lieux de singularite des manipulateursparallelles spheriques a trois degres de liberte avec actionneurs prismatiques: Determination of the Singularity Loci of Spherical Three-degree-of-freedom Parallel Manipulators, Mechanism and Machine Theory, 1994, 29(4):559-579
    88 J. Sefrioui, C. M. Gosselin. On the Quadratic Nature of the Singularity Curves of Planar Three-degree-of-freedom Parallel Manipulators, Mechanism and Machine Theory, 1995, 30(4):533-551
    89 H. R. Mohammadi Daniali, P. J. Zsombor-Murray, J. Angeles. Singularity Analysis of Planar Parallel Manipulators, Mechanism and Machine Theory, 1995, 30(5):665-678
    90 J. G. Wang, C. M. Gosselin. Kinematic Analysis and Singularity Loci of Spatial Four-Degree-of- Freedom Parallel Manipulators, Proceedings of ASME Design Engineering Technical Conferences, California, USA, 1996:MECH-1006
    91 J. G. Wang, C. M. Gosselin. Kinematic Analysis and Singularity Representation of Spatial Five- Degree-of-Freedom Parallel Mechanisms, Journal of Robotic Systems, 1997, 14(12):851-869
    92 B. M. St-Onge, C. M. Gosselin. Singularity Analysis and Representation of the General Gough- Stewart Platform, The International Journal of Robotics Research, 2000, 19(3):271-288
    93 H. D. Li, C. M. Gosselin, J. R. Marc. Analytic Form of the Six-Dimensional Singularity Locus of the General Gough-Stewart Platform, Proceedings of ASME Design Engineering Technical Conferences, Utah, USA, 2004:MECH-57135
    94 M. L. Husty, P. Zsombor-Murry. A Special Type of Singular Stewart Gough Platform.Kluwer Academic Publishers, 1994:439-449
    95 O. Ma, J. Angeles. Architecture Singularities of Platform Manipulators. Proceedings of IEEE International Conference of Robotics and Automation, Sacramento, California, 1991:1542-1547
    96 Y. Takeda, H. Funabashi, Y. Sasaki. Analysis of Working Space and Motion Transmissibility of Spherical in-Parallel Actuated Mechanism, JSME International Journal Series C, 1995, 39(1):85-93
    97 G. Z. Wang. Singularity Analysis of A Class of the 6/6 Stewart Platforms, Proceedings of ASME Design Engineering Technical Conferences, Atlanta, USA, 1998:389-401
    98 X. W. Kong. Generation of 6-SPS Parallel Manipulators, Proceedings of ASME Design Engineering Technical Conferences, Atlanta, USA, 1998:431-440
    99 X. W. Kong, C. M. Gosselin. Uncertainty Singularity Analysis of Parallel Manipulators Based onthe Instability Analysis of Structure, The International Journal of Robotics Research, 2001, 20(11):847-856
    100 D. G. Raffaele. Forward Problem Singularities of Manipulators which Become PS-2RS or 2PS-RS Structures when the Actuators Are Locked, Proceedings of ASME Design Engineering Technical Conferences, Chicago, USA, 2003:DAC-48821
    101 F. Pierrot, O. Company. H4: A New Family of 4-DoF Parallel Robots, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, 1999:508-513
    102 D. Zlatanov, C. M. Gosselin. A New Parallel Architecture with Four Degrees of Freedom, Proceedings of The 2nd workshop on Computational Kinematics, Seoul, 2001:57-66
    103 M. K. Lee, K. W. Park. Kinematics and Dynamics Analysis of a Double Parallel Manipulator for Enlarging Workspace and Avoiding Singularities, IEEE Transaction on Robotics and Automation, 1999, 15(6):1024-1034
    104 赵铁石. 空间少自由度并联机器人机构分析与综合的理论研究. [燕山大学工学博士学位论文]. 2000:26-32
    105 赵铁石, 黄真. 欠秩空间并联机构机器人输入选取的理论和应用. 机械工程学报, 2000. 36(10):81-85
    106 Q. Jin, T. L. Yang, A. X. Liu. Structure Synthesis of A Class of Five-DoF (Three Translation and Two Rotation) Parallel Robot Mechanisms Based on Single-Opened-Chain Units, Proceedings of ASME Design Engineering Technical Conferences, Pisttsburgh, 2001:DETC/DAC-21153
    107 Z. Huang, Q. C. Li. General Methodology for Type Synthesis of Lower-Mobility Symmetrical Parallel Manipulators and Several Novel manipulators, The International Journal of Robotics Research, 2002, 21(2):131-145
    108 X. W. Kong, C. M. Gosselin. Type Synthesis of Linear Translational Parallel Manipulators, Proceedings of Advances in Robot Kinematics, Spain, 2002:453-462
    109 Z. Huang, Q. C. Li. Some Novel Lower-mobility Parallel Mechanisms, Proceedings of ASME Design Engineering Technical Conferences, Montreal, Canada, 2002:MECH-34299
    110 X. W. Kong, C. M. Gosselin. Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory, Proceedings of ASME Design Engineering Technical Conferences, Montreal, Canada, 2002:MECH34259
    111 Y. F. Fang, L. W. Tsai. Structure Synthesis of a Class of 4-DoF and 5-DoF Parallel Manipulators with Identical Limb Structures, The International Journal of Robotics Research, 2002, 21(9):799-810
    112 L. W. Tsai. The Enumeration of a Class of Three-DoF Parallel Manipulators, Proceedings of The 10th World Congress on the Theory of Machines and Mechanisms, Finland, 1999:1123-1126
    113 J. M. Hervé, F. Sparacino. Structural Synthesis of Parallel Robots Generating Spatial Translation, Proceedings of 5th IEEE International Conference on Advanced Robotics, Pisa, Italian, 1991:808-813
    114 杨廷力. 机器人机构拓补结构学. 北京:机械工业出版社, 2004:83-107
    115 F. Gao, W. M. Li, X. C. Zhao. New Kinematic Structures for 2-, 3-, 4-, and 5-DoF Parallel Manipulator Designs. Mechanism and Machine Theory, 2002, 37(11):1395-1411
    116 M. G. Mohamed, J. Duffy. A Direct Determination of Instantaneous Kinematics of Fully Parallel Robot manipulators. Proceedings of Design Engineering Technology Conference, Cambridge, 1984:DET-114
    117 J.-P. Merlet. Parallel robot: Open Problems, Proceedings of 9th International Symposium of Robotics Research, Snowbird, 1999:9-12
    118 J.-P. Merlet. An Initiative for the Kinematics Study of Parallel Manipulators, Proceedings of Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Quebec, Canada, 2002:2-10
    119 J.-P. Merlet. Still a Long Way to Go on the Road for Parallel Mechanisms, http://www-sop.inria.fr, 2002
    120 Z. Huang, Q. C. Li. General Methodology for Type Synthesis of Lower-Mobility Symmetrical Parallel Manipulators and Several Novel Manipulators, International Journal of Robotics Research, 2002, 21(2):131-145
    121 Q. C. Li, Z. Huang. Type Synthesis of 4-DOF Parallel Manipulators, Proceedings of IEEE International Conference on Robotics & Automation, Taiwan, P. R. China, 2003:WM13
    122 Q. C. Li, Z. Huang. Type Synthesis of 5-DOF Parallel Manipulators, Proceedings of IEEE International Conference on Robotics & Automation, Taiwan, P. R. China, 2003:WP13
    123 Q. C. Li, Z. Huang. Mobility Analysis of Lower-mobility Parallel Manipulators Based on Screw Theory, Proceedings of IEEE International Conference on Robotics & Automation, Taiwan, P. R.China, 2003:WP13
    124 Q. C. Li, Z. Huang, J. M. Hervé. Type Synthesis of 3R2T 5-DoF Parallel Manipulators Using the Lie Group of Displacements. IEEE Transactions on Robotics and Automation, 2004, 20(2):173-180
    125 X. W. Kong, C. M. Gosselin. Type Synthesis of 5-DOF Parallel Manipulators Based on Screw Theory, Journal of Robotic Systems, 2005, 22(10):535-547
    126 Z. Huang, Q. C. Li. Type Synthesis of Symmetrical Lower-mobility Parallel Mechanisms Using the Constraint synthesis Method, International Journal of Robotics Research, 2003, 22(1):59-79
    127 X. W. Kong, C. M. Gosselin. Type Synthesis of 3T1R 4-DOF Parallel Manipulators Based on Screw Theory, IEEE Transactions on Robotics and Automation, 2004, 20(2):181-190
    128 李仕华. 几种空间少自由度并联机器人机构分析与综合的理论研究. [燕山大学工学博士学位论文]. 2004:113-128
    129 Z. Huang. Kinematics and Type Synthesis of Lower-mobility Parallel Robot Manipulators, Proceedings of 11th IFToMM, Tianjin, China, 2004:65-76
    130 J. Duffy. Analysis of Mechanisms and Robot Manipulators. NewYork: John Wiley and Sons, 1980
    131 《数学手册》编写组. 数学手册. 北京:高等教育出版社, 2002:447-451
    132 I. A. Bonev. Delta Parallel Robot-The Story of Success. http://www.parallelmic.org, 2001
    133 PI. M850. http://www.physikinstrumente.com/en/products/prdetail.php?sortnr=700800, 2005
    134 D. Zlatanov, R. G. Fenton, B. Benhabib. Identification and Classification of the Singular Configurations of Mechanisms, Mechanism and Machine Theory, 1998, 33(6):743-760
    135 I. A. Bonev, D. Zlatanov, C. M. Gosselin. Singularity Analysis of 3-DoF Planar Parallel Mechanisms via Screw Theory, Journal of Mechanical Design, 2003, 125(3):573-581
    136 J.-P. Merlet. Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots, Journal of Mechanical Design, 2006, 128(1):199-206
    137 F. C. Park, J. M. Kim. Singularity Analysis of Closed Kinematics Chains, Journal of Mechanical Design, 1999, 121(1):32-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700