数控液压伺服系统研究及在机床改造中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文作者认为:随着液压伺服控制技术的发展,液压伺服系统的应用越来越厂泛,随之液压伺服控制也出现了一些新的特点,例如环境和任务复杂,普遍存在较大程度的参数变化和外负载干扰及交联耦合的影响;非线性的影响,特别是阀控动力机构流量非线性的影响;有高的频宽要求及静动态精度的要求,需优化系统的性能;计算机控制与数字化及离散化带来的问题;如何通过“软件伺服”达到简化系统及部件结构的目的;针对这些特点,新的环境对液压伺服控制策略提出了下述要求:
     应尽量满足系统的静、动态精度要求,严格的优化设计使系统做到快速而无超调;对时变、外负载干扰和交联耦合以及非线性因素引起的不定性,控制系统应呈现较强的鲁棒性。控制策略应具有较强的智能;控制律、控制算法应力求简单可行;系统应有较高的效率。
     本文通过对传统的液压伺服系统的优缺点进行分析,针对在新的环境对液压伺服控制策略提出了新的要求,设计出一种数控液压伺服系统,以此来代替了传统的液压伺服系统,在研制过程中着重对系统从下四个方面进行分析。
     数控液压伺服阀的结构和工作原理;数控液压伺服油缸的性能分析;数控液压伺服油缸的精度分析;数控液压伺服油缸的快速性和稳定性。
     本文所设计的数控液压伺服系统技术成熟后,我们分别和上海会如机械制造公司和咸阳风机厂进行了合作,在机床的调速系统改造和风机制造专用设备制造中进行了应用。
     分析和应用结果表明以数控液压伺服系统代替传统液压伺服系统后,体现出三个优点;体积小,重量轻,惯性小,可靠性好,输出功率大,快速性好;刚度大(即输出位移受外负载影响小),定位准确;抗污染能力强,易维护和使用。此外,利用本套数控液压伺服系统对机床的调速系统进行改造,简化了控制方式和液压系统,提高精度和工作效率。
The author of this paper think that the range of application of hydraulic servo system is wider and wider with the development of hydraulic servo control technology, and some new characteristics appears Immediately. for example, the environment and mission are complicated, the influence to system of wider range of parameter variety、greater degree of external load interference and Cross link bonding appears; the Nonlinearity influence also exist, especially the influence of VRLA actuating unit Nonlinear Flow rate; high standard of bandwidth and dynamic static accuracy is needed to optimize the performance of the system; Computer control, digitization and discretization cause some new problems; how to reach the goals of simplifying the system and subunit construction through "software servo". According to the peculiarities, the following requirements is proposed about control policy of hydraulic servo:
     The strict Optimized design to acquire the static and dynamic accuracy of the system to the most degree without overshoot. Strong robustness should be presented in the control system, and it is to fit the ambiguity caused by time-varying, external load interference, cross link banding and non-linear factors; The control system should be more intelligent; Control law and control algorithm can be as simple and feasible as possible; The control system should be highly efficient
     A kind of numerical control hydraulic servo control system is presented and developed in the paper according to new demand of new environment to hydraulic servo control system strategy and through analyzing the advantages and disadvantages of the conditional hydraulic servo control system. in the same time, the following four aspects of system in the developing progress is analyzed.
     The structure and principle of numerical control hydraulic servo valve; The performance analysis of numerical control hydraulic servo cylinder; The precision analysis of numerical control hydraulic servo cylinder; The rapidity and stability of numerical control hydraulic servo cylinder.
     After the technology of numerical control hydraulic servo system designed by this paper is mature, we cooperate respectively with SHANGHAI HUIRU Machinery Manufacture Company and XIANYANG Fan Factory and apply the new technology into the speed control system transformation of machine tool and manufacturing of fan manufacturing equipment
     The result of analysis and application indicated that numerical control hydraulic servo system have three merits instead of traditional hydraulic servo system: small volume light weight small inertia high reliability big output power good rapidity; big stiffness(namely small influence of output displacement to outer loading) accurate location; high anti-pollution capacity easy to maintain and use; in addition, the kind of numerical control hydraulic servo system is used to reconstruct the speed-adjusting system of plane grinding machine. and simplified its control method and hydraulic system, increased its accuracy and efficiency.
引文
1.赵升吨等.液压伺服控制系统研究现状的分析[J].伺服控制,2006,(6)1:26-29
    2.张利平.液压控制系统及设计[M].北京:化学工业出版,2006:103-106
    3.刘长年.液压伺服系统分析与设计[M].北京:科学出版社,1995:167-184
    4.俞新陆.液压机[M].北京:机械工业出版社,1982:156-135
    5.张利平.液压传动系统及设计[M].北京:化学工业出版社,2006:26-34
    6.关肇勋.实用液压回路[M].上海:上海科学技术出版社,1982:58-71
    7.王占林.近代液压控制[M].北京:机械工业出版社,1997:24-26
    8.马长水.液压伺服控制系统[M].北京:煤炭工业出版社,1990:136-149
    9.燕春南.液压半自动车床的数控化改造[J].机械制造,2007,24(2):54-56
    10.李芝.液压传动[M].北京:机械工业出版社,2000,13(11):68-69
    11.马群力等.数字式液压缸和数字式液压系统[J].液压与气动,2008,1(8):87-92
    12.王宣银等.广义脉码调制液压伺服控制的研究[J].机械工程学报,2000,13(12):51-56
    13.阮健等.2D数字换向阀[J].机械工程学报,2000,5(3):13-18
    14.刘忠等.恒压变量泵系统的电液数字控制研究[J].中国机械工程,2000,16(3):21-26
    15.阮健等.液压及气动阀直接数字控制的新途径[J].中国机械工程,2000,19(3):45-47
    16.吴辊章.自动控制理论基础[M].西安:西安交通大学出版社,1999,24(5):134-159
    17.董景新.控制工程基础[M].北京:清华大学出版社,1992,50(4):67-83
    18.王春行.液压控制系统[M].北京:机械工业出版社,2002:97-106
    19.左键民.液压与气压传动[M].北京.机械工业出版社,2007,21(10):201-209
    20.许福玲.液压与气压传动[M].北京.机械工业出版社,2006,31(7):106-112
    21.王积伟.液压传动[M].北京:机械工业出版社,2006,26(3):166-185
    22.裴翔.2D数字伺服阀的频响特性分析[J].机床与液压,2001,30(4):74-86
    23.Jose R.Valdes,Mario J.Miana,Jose L.Nunez,Thomas Putz Reduced order model for estimation of fluid flow and flow forces in hydraulic proportional valves Energy Conversion and Management[J],2008,6(49):1517-1529
    24.RuanJ,UkrainetzP,BurtonR,Frequeney Domain Modeling and Identification of ZD Digital Servo Valve[J],International Journal of Fluid Power,2000,53(2):1027-1054
    25.RuanJ,XuYM,YuCY.TeChniqueof pressure regulation with aeapillary Dam Pertube[J],Proeeedings of international eonfereneeon fluidPower eontroland.roboties Chendu,1990,24(1):13-36
    26.孙如军.数控液压伺服阀组成与伺服油缸的性能分析[J].机床与液压,2007,48(8):87-90
    27.Bernard K.Ee,Simon R.Clarke Weakly dispersive hydraulic flows in a contraction-Nonlinear stability analysis Wave Motion[J],In Press Accepted Manuscript,2008,34(7):256-264
    28.雷大觉.液压工程手册[M].北京:机械工业出版社,1990:26-35
    29.花克勤.数控液压伺服缸设计制造中的几点思考[J].液压气动与密封,2002,24(5):36-38
    30.胡应曦.步进液压缸的参数设计[J].机床与液压,2001,10(6):26-29
    31.赵应越.常用液压缸与其修理[M].上海:上海交通大学出版社,1996:106-113
    32.夏廷栋.液压传动的密封与密封装置[M].北京:中国农业出版社,1982:64-69
    33.杨培元.液压系统设计简明手册[M].北京:机械工业山版社,1994:58-73
    34.彭国君.液压缸密封装置的分析与研究[J].煤矿机械,2001,15(1):81-85
    35.何凤英.浅谈液压缸的密封[J].中国矿业,2001,31(1):72-76
    36.刘能宏.液压系统动态特性数字仿真[M].大连:大连理工大学出版社,1993:137-142
    37.Cheng Guan,Shuangxia Pan.Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters Control Engineering Practice[J].In Press Corrected Proof,2008,56(1):206-213
    38.雷秀.高效液压传动技术研究[J].机床与液压,2005,21(8):34-39
    39.王懋瑶.液压传动与控制敦程[M].天津:天津大学出版社,1987:205-211
    40.米智学.微机控制的节能液压系统[J].工程机械与维修,1997,35(8):91-96
    41.唐中一.流体动力节能与数字控制技术[J].机床与液压,1990,26(2):54-57
    42.杨尔庄.二十一世纪液压技术现状与发展趋势[J].液压与气动,2001,36(3):56-61
    43.黄昕.液压系统的节能措施[J].贵州.工业大学学报,2001,11(6):78-82
    44.罗国超.步进梁液压系统的PLC控制及其在线监测[M].武汉:武汉科技大学硕士学位论文,2004:21-28
    45.朱钒等.国内外液压机技术现状及发展趋势[J].机床与液压,2000,35(2):6-9
    46.Doyle L E.Manufacturing Processes and Materials for Engineers[J].Prentice Hall of India,New Delhi,1975,45(8):56-61
    47.Chih-Ching Lo.Real-time Generation and Control of Cutter Path for 5-Axis CNC Machining[J].International Journal of Machine Tools &Manufacture,1999,12(17):471-488.
    48.Jones W P,Launder B E.The Calculation of low-reynolds-number Phenomena with a two-equation Model of Turbulence[J].International JournalHeatMassTransfer,1973,5(16):1119-1130
    49.Lee Kok-Meng,Pei Jianfa.Kinematic analysis of a three degree-of-freedom spherical wrist actuator[J].Mechatronics,1994,4(6):581-605.
    50.Chirikjian G S,Stein D.Kinematic Design and Commu-tation of a spherical Stepper Motor[J].IEEE/ASME Transactions on Mechatronics,1999,4(4):342-353.
    51.Trostmann E.Water Hydraulics Control Technology[M].New York:Marcel Dekker Inc,1996:25-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700