毒死蜱降解菌Sphingopyxis terrae R17的分离鉴定及其luxAB基因标记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.采用摇瓶富集法和土壤富集法,对农药厂排污沟污泥和土壤进行驯化培养,从中分离得到24株菌,其中有6株菌对毒死蜱的降解效果较好,命名为E30、R17、P5、B1、Z5、T15,在48h对10 mg-L~(-1)毒死蜱的降解效率分别达55.47%、32.27%、58.15%。34.76%、27.10%、42.01%。
     2.采用三亲本结合法将发光酶基因luxAB成功导入R17菌株得到标记菌株LuxR17,在暗室里可以观察到明显的荧光现象,连续转代20次均无质粒丢失现象。
     3.对R17菌株进行生理生化和16S rDNA序列同源性分析,发现该菌株能以毒死蜱为唯一碳源进行生长,鉴定为Sphingopyxis terrae。
     4. R17、LuxR17菌株的最适生长温度为35℃、最适pH为7~8。在此条件下R17培养28h后到达稳定期,菌落浓度达9.18×10~8 cfu-mL~(-1)。LuxR17菌株培养32h达稳定期,菌落浓度达1.04×10~9 cfu-mL~(-1)。
     5. R17、LuxR17菌株在不同时间对10 mg-L~(-1)毒死蜱的降解特性研究结果表明,在1d、2d、3d和4d内,当R17菌株的接种量为9.18×10~7 cfu-mL~(-1)时,毒死蜱降解率分别达到18.59%、31.23%、36.55%和47.69%;LuxR17菌株的接种量为1.04×10~8 cfu-mL~(-1)时,毒死蜱的降解效率分别为17.72%、24.14%、35.06%和48.48%。
     6. R17、LuxR17菌株对不同浓度毒死蜱的降解特性研究结果表明,对1 mg-L~(-1)、5 mg-L~(-1)和10 mg-L~(-1)的毒死蜱降解2d,R17对毒死蜱的降解率分别达到50.21%、43.46%和31.23%;LuxR17菌株对毒死蜱的降解效率分别为41.64%、35.20%和24.14%。
     7. LuxR17菌株在自然土壤中和灭菌土壤中的存活状况研究结果表明,LuxR17菌株在土壤中的变化总的来说呈下降趋势,但在不同处理土壤中其下降的速度有所不同;在灭菌土壤中LuxR17的活菌数要比自然土壤中的多,在加有毒死蜱的土壤中LuxR17的活菌数要高于未加毒死蜱的土壤。
     8.毒死蜱在不同处理土壤中的降解动态研究结果表明,自然土壤中毒死蜱的降解速率较灭菌土壤中的快,在加LuxR17菌液的土壤中毒死蜱的降解速率要显著高于未加LuxR17菌液的土壤。将LuxR17加入含20 mg-L~(-1)毒死蜱的灭菌土壤和自然土壤中降解3、6、9、12d后,灭菌土壤中毒死蜱的降解率分别达到42.37%、70.92%、80.04%和94.70%,自然土壤中毒死蜱的降解率分别达到55.92%、72.27%、89.13%和98.31%。
1. 24 strains were isolated from the sludge and soil of pesicide factory through shaking culture and soil enrichment method, among whcih six strain have better degrading efficiency of chlorpyrifos that are named as E30, R17, P5, B1, Z5, T15and the degrading rate were55.47%、32.27%、58.15%。34.76%、27.10%、42.01% respectively in 2d.
     2. By the method of tri-parental mating, the marker gene luxAB was successfully transferred into R17 strain, and a marked strain, LuxR17, was successfully obtained. The plasmid with luxAB did not lose after 20 transfers, and the strain was genetically stable.
     3. Strain R17 was identified preliminarily as Sphingopyxis terrae based on its physiological and biochemical characters and its 16 S rDNA homologue sequence analysis.
     4. Under the optimal growth condition, 35℃and pH 7-8, Strain R17 could reach 9.18×10~8 cfu-mL~(-1) after 28h and LuxR17 strain reach 1.04×10~9 cfu-mL~(-1) after 32h.
     5. The chlorpyrifos degradation characteristics of R17 strain and LuxR17 strain were studied at different times under the initial concentration of 10 mg-L~(-1). The results showed that the degradation rate of chlorpyrifos by strain R17 with the inoculation of 9.18×10~7 cfu-mL~(-1) were18.59%, 31.23%, 36.55% and 47.69%, and that by LuxR17 with the inoculation of 1.04×10~8 cfu-mL~(-1) were 17.72%, 24.14%, 35.06% and 48.48% respectively in 1d, 2d, 3d and 4d.
     6. The chlorpyrifos degradation characteristics of R17 strain and LuxR17 strain were studied with different initial chlorpyrifos. The results showed that with initial concentration of 1 mg-L~(-1), 5 mg-L~(-1), 10 mg-L~(-1), the chlorpyrifos degradation rate by R17 strain reached 50.21%, 43.46% and 31.23% and that by LuxR17 strain reached 41.64%, 35.20% and 24.14% after 2d respectively.
     7. Experiments were conducted to investigate the distribution of LuxR17 strain in different soil. The results showed that the trends of LuxR17 strain in different treatments of soils were generally declined, but the dicline speeds were different in different treatments of soils. The cell number of LuxR17 strain in sterilized soil was higher than that in non-sterilized soils and the cell number in soil with chlorpyrifos was higher than that in soil without chlorpyrifos.
     8. Biodegradation kinetics of chlorpyrifos in different treatments of soil was studied. The results showed that the degradation rate of chlorpyrifos in no-sterilized soil was higher than that in sterilized soils and the degradation rate in soil with LuxR17 strain was obviously higher than that in soil without LuxR17strain. With initial concentration of 20 mg-L~(-1) chlorpyrifos, the degradation rates of chlorpyrifos by LuxR17 strain were 55.92%, 72.27%, 89.13% and 98.31% in no-sterilized soil and were 42.37%, 70.92%, 80.04% and 94.70% in sterilized soil respectively in 3d, 6d, 9d and 12d.
引文
[1]陈亚丽.有机磷农药高效降解菌株的分离及其性能的研究.[硕士学位论文].湖北武汉:中国科学院武汉病毒研究所. 2001
    [2]韩熹莱,钱传范,陈馥衡,等.中国农业百科全书(农药卷.北京:农业出版社,1993
    [3]沈齐英.农药的使用现状及发展趋势.北京石油化工学院学报, 2003, 11(1): 56~60
    [4]刘建亲. D3菌株在土壤和番茄根部的存活及毒死蟀原位修复研究.[硕士学位论文].安徽合肥:安徽农业大学. 2008
    [5]华小梅,单正军.我国农药的生产使用状况及其污染环境因子分析.环境科学进展,1996,4(2):33~45
    [6]徐晓白.典型化学污染物在环境中的变化及生态效应.化学工业出版社,1998,81~92
    [7]蔡道基.农药与环境.安徽化工,2000, 13(1): 13~18
    [8] Louise C. Rossite, Robin V. Gunning and Harley A. Rose. The Use of Polyacrylamide Gel Electrophoresis for the Investigation and Detection of Fenitrothion and Chlorpyrifos methyl Resistance in oryzaephilus surinamentsis (Coleoptera: Silvanidae). Pestieide Biochemistry and Physiology, 2001, 69(1): 27~34.
    [9]张大弟.我国农用农药环境影响评价.上海交通大学学报(农业科学版), 2002, 12: 1~5
    [10] http://news.xinhuanet.com/politics/2009-06/05/content_11493292.htm
    [11] Richardson M. Pesticides-friend or foe? Wat.sci.Tech, 1998, 37(8): 19~25
    [12] Pezeshki S R, Hesetr M W, Lin Q, et al. The effects of oil spill and clean up on dominant US Gulf coast mash macrophytes: review. Environmental Pollution, 2000, 107(2):129~139
    [13] Herkovits J. Perez-coll C. Herkovits F D. Ecotoxicological studies of environmental samples from Buenos Aires area using a standardized amphibian embryo toxicity test (AMPHITOX). Environmental Pollution, 2002, 16(l):177~183
    [14] Haimi J. Decomposer animals and bioremediation of soils. Environmental Pollution, 2000,107 (2): 233~238
    [15] Horne I, Harcourt R L, Sutherland T D, et al. Isolation of a Pseudomonas monteilli strain with a novel phosphotriesterase. FEMS Microbiology Letters, 2006, 206(1): 51~55.
    [16] Bhadbhade B J, Sarnaik S S, Kanekar P P. Biomineralization of an organophosphoruspesticide, Monocrotophos, by soil bacteria. Journal of Applied Microbiology, 2002, 93(2): 224~234.
    [17]汪立刚,蒋新,颜冬云,等.土壤中残留毒死蜱的作物效应.环境科学, 2006, 27(2): 366~370.
    [18]杨小红,李俊,葛诚,沈德龙.微生物降解农药的研究新进展.微生物学通报,2003, 30(6):93~96
    [19]尤民生,刘新.农药污染的生物降解与生物修复.生态学杂志. 2004, 23(l):73~77
    [20]段海明,王开运,乔康,等.两株毒死蜱降解细菌的分离鉴定及其降解特性环境科学学报,2009, 29(4): 723~731
    [21]莫汉宏.农药环境化学行为论文集.中国科学技术出版社,2002, 54~55
    [22] Adus L J. Biological detoxication of hormone herbicides in soil. Plant and soil, 1951, (2):170~192
    [23] Zhang Q., Tong M. Y., Li Y. S., et al. Extensive desulfurization of diesel by Rhodococcus erythropolis. Biotechnol Lett, 2007, 29(1):123~127
    [24]孙兰英.有机磷农药毒死蜱降解菌玫瑰红红球菌mpd基因的克隆.[硕士学位论文].安徽合肥.安徽农业大学.2009
    [25] Smith J E. Biotechnology 3rd ed. Cambridge: Cambridge University Press, 1996
    [26]李淑彬,周仁超、刘玉焕,等.曲霉M2降解有机磷农药甲胺磷的研究.微生物学通报,1999, 6(1): 7~30
    [27] Sabaté, Grifool M , ViňM , etal. Isolation and charaeterization of a 2-methylphenantherene utilizing bacterium: Identification of ring cleavage metabolites. Appl Microbil Biotechnol, 1999, 52(5):704~712
    [28]钞亚鹏,赵永芳,刘斌斌,等.甲基营养菌WB-1甲胺磷降解酶的产生、部分纯化及性质.微生物学报,2000, 40(5): 523~527
    [29]阮少江,刘洁,王银善,等.微生物酶催化甲胺磷降解机理初探.武汉大学学报(自然科学版),2000, 46(4): 471~474
    [30]张素琴.微生物分子生态学.北京:科学出版社,2006
    [31]吴红萍,郑服丛.微生物降解有机磷农药研究进展.广西农业科学,2007, 38 (6): 637~642
    [32] Mester Z, Woller A. Detemination for arsenic speciation by HPLC-Ultrasonic Nebulizer AFS Analytical Atomic Spectrometry, 1995, 10(9): 609~613
    [33] Bello-Ramirez A M, Carreon-Garabito B Y, Nava-Ocampo A A. A theoretical approach to the mechanism of biological oxidation of organophosphorus pesticide. Toxicology, 2000, 149(2-3): 63~68
    [34] Mageong Y C, Joseph F P. Sererospecifc enzymetic hydrolysis of phosphorus - sulfur bond in chiral organophosphate trimesters. Biocrganic & Med Chem Lett, 1994, 4 (2): 1473~1478
    [35]朱南文,闵航,陈美慈等.甲胺磷对土壤中磷酸酶和脱氢酶活性的影响.农村生态环境,1996, 12(2) : 22~24
    [36]刘玉焕,钟英长.真菌有机磷农药降解酶产酶条件和一般性质.微生物学通报,2000, 27(3):162~165
    [37]王永杰,李顺鹏.原生质体转化构建有机磷农药降解工程菌.应用与环境生物学报,1999, 5: 162~165.
    [38] Douglas M, Munnecke D P, Hsieh H. Pathways of microbial metabolism of parathion. Appl Environ Microbiol, 1976, 31 (1): 63~69
    [39]吴祥为,花日茂,操海群等.毒死蜱降解菌的分离鉴定与降解效能测定.环境科学学报,2006, 26(9):1433~1439
    [40]李莹莹,李文,张琛.甲基对硫磷降解菌L1的分离、鉴定及降解酶基因的克隆.生物技术通报,2008, 6:128~131
    [41]张德咏,谭新球,罗香文,等.一株能降解有机磷农药甲胺磷的光合细菌HP-1的分离及生物学特性的研究.生命科学研究,2005, 9 (3): 247~253
    [42]陈巧莲.降解甲胺磷菌株的筛选及其特性的研究.[硕士学位论文].北京:中国农业大学.2003.
    [43]杨丽,赵宇华,张炳欣,等.一株毒死蜱降解细菌的分离鉴定及其在土壤修复中的应用.微生物学报,2005, 456: 905~909.
    [44]王永杰,李顺鹏.有机磷农药降解菌的紫外诱变育种.应用与环境生物学报,1999, 5(6):635~637
    [45]刘玉焕,钟英长.真菌降解有机磷农药乐果的研究.环境科学学报,2000, 20(l): 95~99
    [46]刘智,洪青,张晓舟,等.甲基对硫磷降解菌DLL-E4降解对硝基苯酚特性.中国环境科学,2003, 23(4): 435~439
    [47]车可舒,王相晶,向志丹.多杀菌素高产菌株的选育.东北农业大学学报报,2008, 39(8): 74~76.
    [48]吕聪,马久彤.紫外诱变选育优势好氧反硝化菌株.环境科学学报,2008, 28(10):1976~1980.
    [49]闫文明.不同诱变方法对毒死蜱降解菌O6降解效果的研究. [硕士学位论文].安徽合肥:安徽农业大学,2009
    [50]吕泽勋.1993.杀草剂2,4—D降解菌BR316的分离及其质粒的初步研究.工业微生物,23(3):17~19
    [51] Shao ZQ,Behk jR. Characterization of the expression of the B gene,coding for a pesticide-degrdaing cytochorme P-450 in Rhodococcu srtains. Applicated and Environmental Micobiology, 1996, 2(2): 403~407
    [52] Shmazu M, Mulchandan I A, Chen W. Simultaneous Degradation of Organophosphorus Pesticides and p-Nitrophenol by A Genetically Engineered Moraxella sp. with Surfaceexpressed Organophosphorus Hydrolase. Biotechnol Bioeng, 2001, 76(4): 318~324.
    [53] Walker AW, Keasling J D. Metabolic Engineering of Pseudomonas Putida for the Utilization of Parathion as a Carbon and Energy Source. Biotechnol Bioeng, 2002, 78(7): 715~721.
    [54] Lan W S, Gu J D, Zang J L, et al. Coexpression of Two Detoxifying Pesticide-degrading Enzymes in a Genetically Engineered Bacterium. Int Biodeterior Biodegrad, 2006, 58(2): 70~76.
    [55]崔中利,张瑞福,何建,等.对硝基苯酚降解菌P3的分离、降解特性及基因工程菌的构建.微生物学报, 2002, 42(1): 19~26.
    [56]蒋建东,顾立锋,孙纪全,等.同源重组法构建多功能农药降解基因工程菌研究.生物工程学报,2005, 21(6): 884~891.
    [57] Prosser J. Molecular Marker systems for detection of genetically engineered micro-organisms in the Environment. Microbiology ,1994, 140 :5~17
    [58] Kyu-Ho Lee, Ruby E G. Detection of the light organ symbiont, Vibrio sischeri in Hawaiian seawater by using lux gene probes. Appl Environ Microbiol, 1992, 58 (3):942~947
    [59] Buriage RS, Sayler GS, Larimer F. Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions. J Bacteriology ,1990 ,172 (9) :4729~4757
    [60]王平,王绩,胡正嘉,等.发光酶基因标记荧光假单胞菌X16L2的发光研究.土壤学报,1998, 35(4): 545~552
    [61]何琳燕,黄为一.发光酶基因luxAB标记硅酸盐细菌NBT菌株的研究.应用生态学报,2004, 15(7): 1241~1244
    [62]齐飞飞,夏觅真,唐欣昀,等.LuxAB基因标记的K2116L菌株在棉花根际中的定殖.生态学杂志,2008, 27 (2): 192~196
    [63]韦兵,唐欣昀.假单胞菌JK45菌株lux基因标记及在土壤中的存活.农业环境科学学报,2006, 25(6):1524~1528
    [64]沈标,洪青,李顺鹏.甲基对硫磷降解菌DLL-1的发光酶基因标记及在土壤中的变化.农村生态环境,2002, 18 (1): 16~21
    [65]孙洁梅,崔中利,邱珊莲,等. luxAB基因标记甲基对硫磷降解菌DLL - 1在土壤和植株根部的生态行为研究.农村生态环境,2003,19 (1):43~46
    [66]刘新,尤民生,魏英智,等.木霉Y对毒死蜱和甲胺磷的降解作用.福建农林大学学报(自然科学版) 2002, 3(4): 455~458
    [67]虞云龙,樊德方,陈鹤鑫.农药微生物降解的研究现状与发展策略.环境科学进展,1996, 4(3): 29~36.
    [68]吴红萍,郑服丛.微生物降解有机磷农药研究进展.广东农业科学,2008, 1: 48~52.
    [69]张超,李冀新.微生物降解有机磷农药残留机理及菌种筛选研究进展.农药科学与管理,2006, 27(4): 29~32.
    [70]李晓慧,贾开志,何健,等.一株毒死蜱降解菌Sphingomonas sp.Dsp-2的分离鉴定及降解特性.土壤学报,2007, 44(4): 734~739.
    [71]张利,刘红玉,曾光明,等.一株毒死蜱降解菌的分离鉴定及降解性能研究.环境工程学,2008, 2(10): 1421~1424.
    [72]刘新,尤民生,魏英智,等.降解毒死蜱曲霉Y的分离和降解效能测定.应用与环境生物学,2003 ,9 (1) :78~80
    [73]王金花,朱鲁生,王军等. 3株真菌对毒死蜱的降解特性.应用与环境生物学报, 2005, 11(2): 211~214.
    [74]王晓,楚小强,虞云龙等.毒死蜱降解菌Bacillus latersprorus DSP的降解特性及其功能定位.土壤学报, 2006, 43(4): 649~654.
    [75] Li Xiaohui, He Jian, Li Shunpeng. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol, 2007, 158(2): 143~149.
    [76]李荣,贾开志,蒋建东,等.敌敌畏、敌百虫高效降解菌株DDB-1的分离鉴定及降解特性研究.农业环境科学学报,2007, 26(2): 554~558.
    [77]郑永良,刘德立,刘世旺等.甲胺磷农药降解菌的筛选鉴定及其降解效能研究.华中师范大学学报(自然科学版),2007, 41(1): 95~98.
    [78]马丽娜,官雪芳,朱育菁,等.乐果降解菌的分离、筛选和鉴定.中国农学通报,2008, 24(7): 441~444.
    [79] Cuha A, Kumari B, Bora TC, Roy MK, Possible involvement of plasmids in degradation of malathion and cmorpyriphos and cmorpyriphes by Micromccus sp. Folia Microbial, 1977, 42(6): 574~576
    [80]邓敏捷.来源于Pseudomonas pseudocaligenes有机磷降解酶基因oph2的克隆与表达..北京:中国农业科学院,2004
    [81]王华.有机磷农药降解菌的筛选及其特性的初步研究. [硕士学位论文].中国海南:华南热带农业大学,2005
    [82]王焕民,张子明.新农药手册.北京:中国农业出版社,1989.3
    [83]秦钮慧,王以燕.美国关于毒死蜱的最新决定.农药,2000, 39(8):45
    [84]胡云平摘,薛寿征较.毒死蜱的神经发育毒性.细胞学机制,国外医学卫生分册,1996,23(5):307~309
    [85] Gonzalez RH. Management of kiwifruit pests in chile: Degradation of residues of the insecticides Chlorpyrifos and phosmet.Revista Fruticola, 1989, 10(2):35~43
    [86]石利利,林玉锁,徐亦钢,等.毒死蚌农药环境行为研究.土壤与环境,2000, 9(l):73~74
    [87] Yen J H,Law F H, WangY S,et al. Dissipation of Organophosphorus Insecticide Chlorpyrifos in Soil. Journal of the chineses Agricultural Chemical Society, 1997, 35(3):310~318
    [88] Sundaram B,Kodana RS,Rawendra N,et al. Degradation of bifenthrin,chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates. Pestic Sci, 1999, 55(12):1222~1228
    [89] Sun F, Lin F Y, Wong S S, et al. Accumulation of Chlorpyrifos by the Cyprinus carpio in different aquaria. Plant Protection Bulletin Taipei, 1999, 41(3): 155~164
    [90] Serrano R., Hernández F., López F J, et al. Bioconcentration and Depuration of Chlorpyrifos in the Marine Mollusc Mytilus edulis. Arch of Environ Contam and Toxicol, 1997, 33(1): 47~52
    [91] Bian Q L.The safety of Chlorpyrifos. China Agri Sci Bull, 1997, 13 (6): 7l
    [92] Santerre C. R., Ingram R, Lewis G.W.,et al. Organochlorines, oraganophosphates and pyrethroids in Channel Catfish ,rainbow Trout, and a Red Swamp Crayfish from Aquaculture Facilities.Journal of Food Sci. 2008, 65(2): 231~235
    [93] Brenda E, Bradman A, Castorina R. Exposurea of children to organophosphate pesticides and their potential adverse healt effects. Environ Heath Persp, 1999, 107(3): 409~419
    [94] Meeker J D, Singh N P, Ryan L. Urinary levels of insecticide metabolites and DNA damage in human sperm. Hum Reprod, 2004, 19(11): 2573~2580
    [95] Racke K D, Robbins S T. Factors affecting the degradation of 3,5, 6-tricmopyridinol in soil .ACS Symposium Series.1991,459:93~107
    [96] Sikora L J. Kaufrman D. Hornog I C. Enzyme, activity in soils showed degradation of organophosphate insecticides. Biology and Fertility of Soils. 1990, 9(l):14~18;
    [97] Omar S A. Availability of Phosphorus and sulfur of insecticide origin by fungi. Biodegradation,1998, 9: 327~336.
    [98] Bending G D, Friloux M, Walker A. Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential.FEMS Microbiol Let, 2002, 212: 59~63.
    [99]王金花,朱鲁生,王军,等. 3株真菌对毒死蜱的降解特性.应用与环境生物学报, 2005, 11(2): 211~214.
    [100] Singh BK, Walker A, Morgan JAW, et al. Effects of soil pH on the biodeg K, Walker A, Morgradation of Chlorpyrifos and isolation of a Chlorpyrifos degrading bacterium. Applied and Environmental Microbiology, 2003, 69 : 5198~5206.
    [101] Singh Ban J A W, et al. Biodegradation of Chlorpyrifos by Enterobacter strain B-14 and its use in bioremediationof contaminated soils. Applied and Environmental Microbiology ,2004 , 70 : 4855~4863.
    [102] Cho C M H, Mulchandani A, Chen W. Altering the substratespecificity of organophosphorus hydrolase for enhanced hydrolysis ofChlorpyrifos. Applied and Environmental Microbiology, 2004, 70(8): 4681~4685.
    [103]吴慧明,朱国念.毒死蜱在灭菌和未灭菌土壤中的降解研究.农药学学报, 2003, 5(4): 65~69
    [104]张利,刘红玉,曾光明,等.一株毒死蜱降解菌的分离鉴定及降解性能研究.环境工程学,2008, 10(4): 1673~9108
    [105] Bhadbhade B J, Sarnaik S S, Kanekar P P. Biomineralization of an Organophsphorus Pesticide, Monocrotophos, by Soil Bacteria. Journal of Applied Microbiology, 2002, 93(2): 224~234.
    [106] Horne I, Harcourt R L, Sutherland T D, et al. Isolation of a Pseudomonas monteilli strain with a Novel Phosphotriesterase. FENS Microbiology Letters, 2002, 206: 51~55.
    [107]汪立刚,蒋新,颜冬云,等.土壤中残留毒死蜱的作物效应[J].环境科学,2006, 27(2): 366~370.
    [108] Al-mihanna A A, Salama A K, Abdalla M Y. Biodegradation of Chlorpyrifos by either Single or Combined Cultures of Some Soil Borne Plant Pathogenic Fungi. Eniviron Sci Health, 1998, 33(6): 693~704.
    [109] Robertson L N, Chandle K J, Sticmey B D A. Enhanced Microbial DegradationImplicated in Rapid Loss of Chlorpyrifos from the Controlled Release Formulation Su SCO on R Blue in Soil. Crop Prot, 1998, 17(1): 29~33.
    [110] Singh B K, Walker A, Morgan J A W, et al. Biodegradation of Chlorpyrifos by Enterobacter Strain B214 and its Use in Bioremediation of Contaminated Soils. Applied and Environmental Microbiology, 2004, 70: 4855~4863.
    [111]崔明学,张成刚.XYlE基因用于监测根瘤菌在土壤中存活的研究.应用生态学报,1996, 7(3): 287~292
    [112] Drahos D J. Field testing of genetically engineered microorganisms. Biotechnol Adv, 1991, 9:157~171
    [113] Green H, Jensen D F. 1995. A tool for monitoring Trichoderma harzianum: the use of a Gus transforment for ecological studies in the rhizosphere. Phytopathology, 85:1436~1440
    [114]蔺继尚,崔明学,靳素英,等.以转座子Tn5作弗氏中华根瘤菌的可识别生态学标记的研究.应用生态学报,1994, 5(3): 292~298
    [115]孟颂东,张忠泽.应用GUS基因研究弗氏中华根瘤菌的结瘤及效果[J].应用生态学报, 1997. 8 (6) :595~598
    [116] Steenhoudt O., Zhu P., Vande B A., et al. A spontaneous Cmorate-resistant mutant of Azospi rill umbrasilense Sp 245 displays defects innitrate reduction and plant root colonization. Biol Fert Soils , 2001,33 :317~322
    [117] Stewart GSAB., Williams P. lux genes and the applications of bacterial bioluminescence. J Gen Microbiol, 1992, 138: 1289~1300
    [118] Beauchamp C J, Kloepper J W, Lemke P A. Luminometric analyses of plant root colonization by bioluminesecent pseudomonads. Can J Microbiol, 1993, 39: 434~441
    [119]李友国,周俊初.费氏中华根瘤菌HN01DL在大豆根圈能定殖动态与结瘤研究.应用生态学报,2003, 14(8): 1283~1286
    [120]刘健,李俊等.巨大芽胞杆菌luxAB标记菌株的根际定殖研究.微生物学通报,28(6) :1~4
    [121] Molina L, Ramos C, Duque E, et al . Survival of Pseudomonas putida KT 2440 in soil and in the rhizosphere of plants. Soil Biol Biochem, 2000, 32: 315~321
    [122]王平,冯新梅,李阜棣.发光酶基因标记的华癸根瘤菌JS5A16L在紫云英根圈的定殖动态.土壤学报,2001, 38(2): 265~269
    [123]安千里,杨学健,董越梅,等.用共聚焦激光扫描显微镜观测GFP标记的内生固氮菌Klebsiella oxytoca SA_2侵染水稻根.植物学报,2001, 43(6):558~564
    [124] [日]土壤微生物研究会编.土壤微生物实验法.北京:科学出版社,1983, 267~293.
    [125]陈绍铭,郑福寿.水生微生物学实验法.北京:海洋出版社,1985: 43~46.
    [126]沈萍,范秀容,李广武.微生物学实验.北京:高等教育出版社,1999: 69~74.
    [127] Sneath P.H.A. et al. Bergey’s Manual of Systematic Bacteriology. 1986, 2.
    [128]东秀珠,蔡妙英,等主编.常见细菌系统鉴定手册.北京:科学出版社,2001.
    [129] http://www.huayueco.com/forum.php?lanmuid=4&parentid=1
    [130] http://www.bioon.com.cn/
    [131]张忠辉,洪青,张国顺,等.杀螟硫磷降解菌FDS21的分离鉴定及其降解特性.中国环境科学,2005, 25(1): 52~56.
    [132]钱博,朱鲁生,谢慧.毒死蜱降解细菌XZ-3的分离及降解特性研究.环境科学,2007, 28(12): 2817~2832.
    [133]吴祥为.毒死蜱在水中降解动态研究.硕士学位论.合肥.安徽农业大学.2004
    [134]邱珊莲,崔中利,王英,等.甲基对硫磷降解菌DLLBR在青菜及根际土壤中的定殖研究.土壤.2005, 37 (1): 100~104
    [135]王平,胡正嘉,李阜棣.土壤因子对发光酶基因标记的荧光假单胞菌X1612在小麦根圈定殖的影响[J」.微生物学报,2000, 40(3):312~317
    [136] Takeuchi M., Hamana K. and Hiraishi A. Proposal of the Genus Sphingomonas sensu stricto and Three New Genera, Sphingobium, Novosphingobium and Sphingopyxis, on the Basis of Phylogenetic and Chemotaxonomic Analyses. IJSEM, 2001, 51:1405~1417.
    [137]袁军,赖其良,郑天凌,等.深海多环芳烃降解菌新鞘氨醇杆菌H25的降解特性及降解基.微生物学报,2008, 48(9): 1208~1213
    [138]苟敏,曲媛媛,杨桦,等.鞘氨醇单胞菌:降解芳香化合物的新型微生物资源.应用与环境生物学报,2008, 14(2): 276~282.
    [139]马爱芝,武俊,汪婷,等.六六六(HCH)降解菌Sphingomonas sp.BHC.A的分离与降解特性的研究.微生物学报,2005, 45(5):728~732.
    [140]张明星,洪青,何健,等. BHC.A与降解菌对六六六、呋喃丹污染土壤的原位生物修复.土壤学报,2006, 43(4): 693~696.
    [141] Romine M F, Stillwell L C, Saffer J D, et al. Complete Sequence of a 1842 Kilobase Catabolic Plasmid from Sphingomonas aromaticivorans F199. Journal of Bacteriology, 1999, 181:1585~1602.
    [142] Willison J. C. Isolation and characterization of a novel sphingomonad capable of growth with chrysene as sole carbon and energy source. FEMS Microbiology Letters,2004, 241:143~150.
    [143] Demaneche S, Meyer C, Jouanneau Y, et al. Identification and Functional Analysis of Two Aromatic-ring-hydroxylating Dioxygenases from a Sphingomonas strain that Degrades Various Polycyclic Aromatic Hydrocarbons. Applied and Environmental Microbiology. 2004, 70: 6714~6725.
    [144] Sohn J H, Kwon K K, Kim S J. Novosphingobium pentaromativorans sp. Nov., a High Molecular Mass Polycyclic Aromatic Hydro-carbon-degrading Bacterium Isolated from Estuarine Sediment. International Journal of Systematic and Evolutionary Microbiology, 2004, 54: 1483~1487.
    [145] Pinyakong O, Habe H, Omori T, et al. Isolation and Characterization of Acenaphthene and Acenaphthylene Degrading Sphingomonas sp. Strain A4. FEMS Microbiology Letters, 2004, 238: 297~305
    [146] Miller H J , Liljeroth E , Henken G , et al. Fluctuations in the Fluorescent pseudomonad and actinomycete populations of rhizosphere and rhizoplane during the growth of spring wheat .Can J microbiol ,1990 ,36 :254~258
    [147] Postma J,Van Elsas JD. Govaert JMI. The dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil as determined by immunofluorescence and selecting plating techniques.FEMS Microbiol Ecol, 1988, 53: 251~260
    [148] Dupler M, baker R. Survival of Pseudomonas putida, a biological control agent , in soil . Phytopathology, 1984, 74: 195~200
    [149] Heijnen CE, van Elsas JD, Kuikman PJ, et al. Dynamics of Rhizobium leguminosarum biovartrifplii introduced in soil :the effect of bentonite clay on predation by protoa . Soil Biol Biochem, 1988, 20: 483~488

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700