杀菌剂多菌灵高频投入对土壤微生物群落的影响及其生物修复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多菌灵作为一种高效低毒的广谱内吸性杀菌剂,在我国大棚蔬菜以及中药材生产中频繁施用,对环境造成一定程度污染。为评价多菌灵施用的安全性及其对土壤质量的影响,本文研究了多菌灵重复施药对土壤微生物群落功能和结构的影响以及在多菌灵胁迫下土壤微生物功能的抗性和结构稳定性。在此基础上,进行了多菌灵高效降解菌的分离、土壤中多菌灵降解的生物强化、生物强化对土壤微生物群落功能以及结构的影响等方面的研究。主要研究结果如下:
     1.以浙江大学华家池校区蔬菜田土为材料,采用BIOLOG方法系统研究了多菌灵重复施用对土壤微生物群落功能多样性的影响以及多菌灵胁迫下土壤微生物功能的抗性。研究结果表明,多菌灵使用初期,对土壤微生物群落多样性会产生抑制作用,Simpson指数和McIntosh指数显著降低,说明优势种群和物种均一性受到一定程度的影响。随着施药频率的增加,多菌灵对土壤微生物群落多样性的抑制作用逐步减弱。在第四次喷药后15 d,0.94和1.88 kg a.i.ha~(-1)多菌灵处理土壤微生物多样性已经超过对照水平,而4.70kg a.i.ha~(-1)多菌灵处理土壤微生物多样性与对照没有显著性差异。
     AWCD值、Simpson指数、McIntosh指数和Shannon指数的变化能够很好的表征多菌灵胁迫下土壤微生物的功能抗性。AWCD值和Simpson指数的表征效果最好。在田间第二次施药后土壤微生物对多菌灵的胁迫已经具有一定的抗性。在第三次施药后,土壤微生物功能对多菌灵的抗性完全形成,后续投入的多菌灵对土壤微生物功能基本不产生负面影响。
     2.在BIOLOG研究基础上,采用温度梯度凝胶电泳(TGGE)方法,对多菌灵重复施用后土壤细菌群落结构变化及其结构稳定性进行了系统的研究。研究发现,单次施药对微生物群落结构不会产生明显影响,而重复施药对土壤微生物群落结构会产生一定程度的影响,并且随着施药频率、施药浓度的增加,影响越来越明显。在第二次施药后,处理土壤样品中出现了一条对照土壤中没有的新增条带,说明土壤中存在能够在多菌灵浓度下生长良好的微生物种群,经序列测定及与GenBank中核酸数据进行网上比对分析,与一株uncultured gamma proteobacterium clone,CRE-PA17具有98%的相似率,初步确定为一不可培养细菌种。
     在第二次喷药后,土壤微生物群落结构稳定性较差,容易受外界胁迫的影响而发生改变。随着施药频率的增加,结构稳定性又有所增强。在第三次和第四次喷药后,土壤微生物群落结构均比较稳定,但该结构与对照不同。经过1年后,处理土壤微生物群落结构能够恢复到对照水平。
     土壤微生物群落结构稳定性与多菌灵施药频率关系的结果证实多菌灵施药次数的增加会改变土壤微生物结构,而这一变化并未准确、及时反映在土壤整体功能上(BIOLOG)。因此,分子生物学方法的应用有助于更加深入解析农药对生态系统的影响。
     3.从浙江大学华家池校区土壤筛选到能够以多菌灵作为唯一碳源和能源进行生长的混合菌。该混合菌主要由Bacillus subtilis、Paracoccus sp.、Flavobacterium omnivorum和Pseudomonas sp.四个优势菌组成。培养1 d后,1、10、100 mg l~(-1)多菌灵的降解率分别为64.25%、20.59%和17.47%。该混合菌在不同pH值和温度下对多菌灵的降解效果为pH 9.0>pH 7.0>pH 5.0,35℃>25℃>15℃。
     在本地的气候条件下,可以通过生物强化的手段治理生态系统中的多菌灵残留污染。多菌灵施用后11 d,在喷菌一次、两次和三次土壤中的降解速率分别为0.16、0.20和0.23 mgd~(-1) kg~(-1),比对照土壤快1.07、1.33和1.53倍。随着时间的推移,接种降解菌土壤中多菌灵的降解速率逐渐降低,在多菌灵施用后18 d,其降解速率接近于对照土壤中多菌灵的降解速率。
     4.采用BIOLOG方法监测土壤中多菌灵降解生物强化过程中微生物群落功能多样性的变化。研究发现,在未施用多菌灵的情况下,接种降解菌对土壤微生物多样性不会产生明显影响;而多菌灵施用后,降解菌的添加能缓解多菌灵对土壤微生物抑制影响的负面效应。多菌灵施用后11 d,接种降解菌,尤其是接种3次降解菌的土壤微生物整体活性、Simpson指数显著高于对照土壤,而Shannon指数与对照相差不大。多菌灵施用后18 d,降解菌处理土壤微生物多样性逐渐恢复到对照水平。
     5.采用PCR-TGGE方法对生物强化过程中降解菌以及土著微生物的变化动态进行了研究。研究发现,接种降解菌对未施用多菌灵的土壤微生物群落结构不会产生明显影响。施用多菌灵后11d,接种降解菌的土壤微生物群落结构受到明显影响。随着时间的推移,接种降解菌土壤的微生物群落结构得到一定程度的恢复,尤其是接种一次的土壤微生物群落结构在多菌灵施用后18 d恢复到对照水平。
Carbendazim is a broad-spectrum fungicide widely used for the control of plant fungal diseases on arable crops, fruits, vegetables and ornamentals which results in potential environmental contamination. To evaluate the safety of carbendazim applications, studies were conducted concerning its influences on soil microbial functional diversity and genetic structure. The soil functional resilience and structural stability exposed to carbendazim were also investigated. One bacterial consortium capable of degrading carbendazim was isolated. The bioaugmentation of carbendazim in soil by this bacterial consortium, its effect on microbial functional diversity and genetic structure were further studied. The results were summarized as follows:
     1. Microbial functional diversity and functional resilience in soil after repeated carbendazim applications were estimated with BIOLOG Ecoplates. An obvious inhibitory effect was observed in microbial utilization of carbon substrates and diversity after the first introduction of carbendazim. With subsequent carbendazim applications, this effect disappeared gradually. Soil bacterial diversity in all treatments recovered to the control level 15 d after the fourth applications. AWCD and diversity index, such as Simpson, McIntosh and Shannon indexes can be used to indicate the soil functional resilience to carbendazim. The best results can be obtained by using AWCD and Simpson index to indicate the functional resilience. Soil functional resilience to carbendazim appeared after the second application and formed completely after the third application.
     2. The effects of repeated applications of carbendazim on bacterial community structure as well as the structural stability exposed to carbendazim was studied under field conditions using TGGE and partial sequence analysis of PCR-amplified 16S rRNA genes. The results showed that bacterial community structure was not changed after the first carbendazim application, but gradually altered after the second application. With the application frequency and carbendazim concentration increased, the effect on bacterial community structure became much more obvious. At the same time, an application-responsive band from the carbendazim treatments was sequenced and aligned. The sequence of this band was related to members of theγsubdivision, showing 98% similarity with an uncultured gamma proteobacterium clone, CRE-PA17.
     Soil microbial structural stability was weak after the second carbendazim application and became stronger after the third and fourth applications. However, the microbial community structure in the carbendazim-treated soil was different from that in the control soil after the third and fourth applications. After one year, the bacterial community in carbendazim-treated soil recovered to that in the control.
     3. A bacterial consortium capable of utilizing carbendazim as sole carbon and energy sources was isolated from Huajiachi campus, Zhejiang University, Hangzhou, China. This bacterial consortium was mainly composed of Bacillus subtilis、Paracoccus sp.、Flavobacterium omnivorum and Pseudomonas sp. The ability of the bacterial consortium to degrade carbendazim in pure cultures depends on pesticide concentration, pH and temperature. The degradation of carbendazim at concentrations of 1, 10 and 100 mg l~(-1) within 1 d by this consortium were measured to be 64.25%、20.59% and 17.47%, respectively. The degradation rates of carbendazim were affected by pH and temperature following an order of pH 9.0 > pH 7.0 > pH 5.0 and 35℃> 25℃> 15℃, respectively.
     Degradation of carbendazim in soil was significantly accelerated by the inoculation with the carbendazim-degrading bacterial consortium. Compared with the uninoculated soil, the degradation rates of carbendazim in the soil inoculated one, two and three times 11d after the carbendazim application were accelerated by 1.07, 1.33 and 1.53 times, respectively.
     4. The effect of repeatedly inoculating a soil with the carbendazim-degrading bacterial consortium on the soil microbial functional diversity was studied by BIOLOG method. The results showed that soil microbial functional diversity was not affected by the inoculation with the carbendazim-degrading bacterial consortium before carbendazim application, but influenced after carbendazim application. Microbial utilization of carbon substrates and Simpson index were stimulated in inoculated soil, especially in the soil inoculated three times with the carbendazim-degrading bacterial consortium 11d after carbendazim application. After initial variations, soil microbial diversity recovered to similar levels of the controls 18 d after carbendazim application.
     5. TGGE method was applied to determine the relative genetic complexity of microbial communities in uninoculated and inoculated soils. The result showed that soil microbial community structure was not changed by the inoculation with the carbendazim-degrading bacterial consortium before carbendazim application, but was altered 11 d after carbendazim application. Microbial community structure of inoculated soil, especially the soil inoculated only one time recoverd to the control level 18 d after carbendazim application.
引文
1 Aharonson N. and Katan J. Delayed and enhanced biodegradation of soil-applied diphenamid, carbendazim, and aldicarb [J]. Archives of Insect Biochemistry and Physiology, 1993, 22 (3-4): 451-466.
    2 Akbarsha M.A., Kadalmani B., Girija R., Faridha A. and Hamid K.S. Spermatotoxic effect of carbendazim [J]. Indian Journal of Experimental Biology, 2001, 39 (9): 921-924.
    3 Anastassiades M. and Schwack W. Analysis of carbendazim, benomyl, thiophanate methyl and 2,4-dichlorophenoxyacetic acid in fruits and vegetables after supercritical fluid extraction [J]. Journal of Chromatography A, 1998, 825 (1):45-54.
    4 Arcangeli J. and Arvin E. Biodegradation rates of aromatic contaminants in biofilm reactors [J]. Water Science and Technology, 1995, 31 117-128.
    5 Atlas R., Horowitz A., Krichevsky M. and Bej A. Response of microbial populations to environmental disturbance [J]. Microbial Ecology, 1991, 22 (1): 249-256.
    6 B(?)nemann E.K., Smithson P.C., Jama B., Frossard E. and Oberson A. Maize productivity and nutrient dynamics in maize-fallow rotations in western Kenya [J]. Plant and Soil, 2004, 264 (1): 195-208.
    7 Banerjee A. and Banerjee A. Influence of Captan on some microorganisms and microbial processes related to the nitrogen cycle [J]. Plant and Soil, 1987, 102 (2): 239-245.
    8 Baxter J. and Cummings S.P. The degradation of the herbicide bromoxynil and its impact on bacterial diversity in a top soil [J]. Journal of Applied Microbiology,2008, 0 (0): 1-12.
    9 Bellinaso M.D., Greer C.W., Peralba M.D., Henriques J.A.P. and Gaylarde C.C.Biodegradation of the herbicide trifluralin by bacteria isolated from soil [J].FEMS Microbiology Ecology, 2003, 43 (2): 191-194.
    10 Bending G.D., Rodriguez-Cruz M.S. and Lincoln S.D. Fungicide impacts on microbial communities in soils with contrasting management histories [J]. Chemosphere, 2007, 69 (1): 82-88.
    11 Benitez E., Melgar R. and Nogales R. Estimating soil resilience to a toxic organic waste by measuring enzyme activities [J]. Soil Biology and Biochemistry,2004.36(10): 1615-1623.
    12 Bischoff M., Lee L.S. and Turco R.F. Accelerated degradation of N, N' (DBU) upon repeated application [J]. Biodegradation, 2005, 16 (3): 265-273.
    13 Bossio D.A., Scow K.M., Gunapala N. and Graham K.J. Determinants of Soil Microbial Communities: Effects of Agricultural Management, Season, and Soil Type on Phospholipid Fatty Acid Profiles [J]. Microbial Ecology, 1998,36(1): 1-12.
    14 Burrows L.A. and Edwards C.A. The Use of Integrated Soil Microcosms to Assess the Impact of Carbendazim on Soil Ecosystems [J]. Ecotoxicology, 2004, 13 (1): 143-161.
    15 Buyer J.S. and Drinkwater L.E. Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities [J]. Journal of Microbiological Methods, 1997, 30(1): 3-11.
    16 Chalam A.V., Sasikala C, Ramana C.V. and Rao P.R. Effect of pesticides on hydrogen metabolism of Rhodobacter sphaeroides and Rhodopseudomonas palustris [J]. FEMS Microbiology Ecology, 1996, 19 (1): 1-4.
    17 Chen S.-K., Edwards C.A. and Subler S. Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations [J]. Soil Biology and Biochemistry, 2001, 33 (14):1971-1980.
    18 Chirnside A.E.M., Ritter W.F. and Radosevich M. Isolation of a selected microbial consortium from a pesticide-contaminated mix-load site soil capable of degrading the herbicides atrazine and alachlor [J]. Soil Biology and Biochemistry, 2007, 39 (12): 3056-3065.
    19 Choi K.-H. and Dobbs F.C. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities[J]. Journal of Microbiological Methods, 1999, 36 (3): 203-213.
    20 Dejonghe W., Berteloot E., Goris J., Boon N., Crul K., Maertens S., Hofte M., De Vos P., Verstraete W. and Top E.M. Synergistic Degradation of Linuron by a Bacterial Consortium and Isolation of a Single Linuron-Degrading Variovorax Strain [J]. Applied and Environmental Microbiology, 2003, 69 (3): 1532-1541.
    21 Derk R., Karns J. and Sexstone A. Detection of a methylcarbamate degradation gene in agricultural soils using PCR amplification of bacterial community DNA [J]. Communications in Soil Science and Plant Analysis, 2003, 34 (3-4):393-406.
    22 Dick R.P. A review: long-term effects of agricultural systems on soil biochemical and microbial parameters [J]. Agriculture, Ecosystems and Environment, 1992,40 (1-4): 25-36.
    23 Doran J.W. and Parkin T.B. Defining and assessing soil quality. In : Doran J.W., et al.(ed.) Defining soil quality for a sustainable environment [M] . SSSA Spec.Publ. 35 , Am. Soc. Agron., Madison , WI, 1994, 3-21.
    24 el Fantroussi S., Verschuere L., Verstraete W. and Top E.M. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles [J]. Applied and Environmental Microbiology, 1999, 65 (3): 982-8.
    25 Engel A.S., Lichtenberg H., Prange A. and Hormes J. Speciation of sulfur from filamentous microbial mats from sulfidic cave springs using X-ray absorption near-edge spectroscopy [J]. FEMS Microbiology Letters, 2007, 269 (1):54-62.
    26 Enwall K., Philippot L. and Hallin S. Activity and Composition of the Denitrifying Bacterial Community Respond Differently to Long-Term Fertilization [J].Applied and Environmental Microbiology, 2005, 71: 8335-8343.
    27 Felske A. and Akkermans A.D.L. Spatial Homogeneity of Abundant Bacterial 16S rRNA Molecules in Grassland Soils [J]. Microbial Ecology, 1998, 36 (1):31-36.
    28 Felske A., de Vos W.M. and Akkermans A.D. Spatial distribution of 16S rRNA levels from uncultured acidobacteria in soil [J]. Letters in Applied Microbiology, 2000, 31 (2): 118-22.
    29 Felske A., Wolterink A., Van Lis R. and Akkermans A.D. Phylogeny of the main bacterial 16S rRN A sequences in Drentse A grassland soils (The Netherlands)[J]. Applied and Environmental Microbiology, 1998, 64 (3): 871-9.
    30 Fischer S.G. and Lerman L.S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proceedings of the National Academy of Sciences, 1983, 80:1579-1583.
    31 Franco I., Contin M., Bragato G. and De Nobili M. Microbiological resilience of soils contaminated with crude oil [J]. Geoderma, 2004, 121 (1-2): 17-30.
    32 Franzluebbers A.J. Soil organic matter stratification ratio as an indicator of soil quality [J]. Soil and Tillage Research, 2002, 66 (2): 95-106.
    33 Fulthorpe R.R., Rhodes A.N. and Tiedje J.M. Pristine soils mineralize 3-chlorobenzoate and 2,4- dichlorophenoxyacetate via different microbial populations [J]. Applied and Environmental Microbiology, 1996, 62:1159-1166.
    34 Gagliardi J.V., Buyer J.S., Angle J.S. and Russek-Cohen E. Structural and functional analysis of whole-soil microbial communities for risk and efficacy testing following microbial inoculation of wheat roots in diverse soils [J]. Soil Biology and Biochemistry, 2001, 33 (1): 25-40.
    35 Garland J.L. Patterns of potential C source utilization by rhizosphere communities[J]. Soil Biology and Biochemistry, 1996, 28 (2): 223-230.
    36 Garland J.L. and Mills A.L. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization [J]. Applied and Environmental Microbiology,1991, 57 (8): 2351-2359.
    37 Gon(?)alves C. and Alpendurada M.F. Assessment of pesticide contamination in soil samples from an intensive horticulture area, using ultrasonic extraction and gas chromatography-mass spectrometry [J]. Talanta, 2005, 65 (5): 1179-1189.
    38 Griffiths B.S., Ritz K., Bardgett R.D., Cook R., Christensen S., Ekelund F., Sorensen S.J., Baath E., Bloem J., de Ruiter P.C., Dolfing J. and Nicolardot B.Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship [J]. OIKOS, 2000, 90 (2): 279-294.
    39 Grigg B.C., Assaf N.A. and Turco R.F. Removal of Atrazine Contamination in Soil and Liquid Systems Using Bioaugmentation. Pesticide Science, 1997, 50:211-220.
    40 Haack S.K., Garchow H., Klug M.J. and Forney L.J. Analysis of Factors Affecting the Accuracy, Reproducibility, and Interpretation of Microbial Community Carbon Source Utilization Patterns [J]. Applied and Environmental Microbiology, 1995,61 (4): 1458-1468.
    41 Hackett C.A. and Griffiths B.S. Statistical analysis of the time-course of Biolog substrate utilization [J]. Journal of Microbiological Methods, 1997, 30 (1):63-69.
    42 Holtman M.A. and Kobayashi D.Y. Identification of Rhodococcuserythropolis isolates capable of degrading the fungicide carbendazim [J]. Applied Microbiology and Biotechnology, 1997, 47 (5): 578-582.
    43 Hong Q., Zhang Z., Hong Y. and Li S. A microcosm study on bioremediation of fenitrothi on-contaminated soil using Burkholderia sp. FDS-1 [J]. International Biodeterioration and Biodegradation, 2007, 59 (1): 55-61.
    44 Howard P.J.A. Analysis of data from BIOLOG plates: Comments on the method of Garland and Mills [J]. Soil Biology and Biochemistry, 1997, 29 (11-12):1755-1757.
    45 Ibekwe A.M., Papiernik S.K., Gan J., Yates S.R., Yang C.H. and Crowley D.E. Impact of fumigants on soil microbial communities [J]. Applied and Environmental Microbiology, 2001, 67 (7): 3245-57.
    46 Jay L.G. Analysis and interpretation of community-level physiological profiles in microbial ecology [J]. FEMS Microbiology Ecology, 1997, 24 (4): 289-300.
    47 Johnsen K., Jacobsen C, Torsvik V. and Sorensen J. Pesticide effects on bacterial diversity in agricultural soils-a review [J]. Biology and Fertility of Soils, 2001, 33 (6): 443-453.
    48 Kaare Johnsen P.N. Diversity of Pseudomonas strains isolated with King's B and Gould's S1 agar determined by repetitive extragenic palindromic-polymerase chain reaction, 16S rDNA sequencing and Fourier transform infrared spectroscopy characterisation [J]. FEMS Microbiology Letters, 1999, 173:155-162.
    49 Karlen D.L., Mausbach M.J., Doran J.W., Cline R.G., Harris R.F. and Schuman G.E. Soil Quality: A Concept, Definition, and Framework for Evaluation [J].Soil Science Society of America Journal, 1997, 61: 4-10.
    50 Karpouzas D.G., Morgan J.A.W. and Walker A. Isolation and characterisation of ethoprophos-degrading bacteria [J]. FEMS Microbiology Ecology, 2000, 33 (3): 209-218.
    51 Kelly J.J., H(?)ggblom M. and TateIii R.L. Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study [J]. Soil Biology and Biochemistry, 1999, 31 (10): 1455-1465.
    52 Kennedy A. and Smith K. Soil microbial diversity and the sustainability of agricultural soils [J]. Plant and Soil, 1995, 170 (1): 75-86.
    53 Kim A.A., Pestsov G.V., Yadgarov K.T., Dzhumaniyazova G.I., Zinov'ev P.V.,Dzhuraeva G.T., Abdukarimov A.A. and Gins V.K. Microorganisms degrading polychlorinated biphenyls [J]. Applied Biochemistry and Microbiology, 2004,40(1): 60-62.
    54 Kim K.D., Ahn J.H., Kim T., Park S.C., Seong C.N., Song H.G. and Ka J.O.Genetic and Phenotypic Diversity of Fenitrothion-Degrading Bacteria Isolated from Soils [J]. Journal of Microbiology and Biotechnology, 2009, 19 (2):113-120.
    55 Kurola J., Salkinoja-Salonen M., Aarnio T., Hultman J. and Romantschuk M.Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil [J]. FEMS Microbiology Letters, 2005, 250 (1): 33-38.
    56 Lopez L., Pozo C, Rodelas B., Calvo C, Juarez B., Martinez-Toledo M.V. and Gonz(?)lez-L(?)pez J. Identification of Bacteria Isolated from an Oligotrophic Lake with Pesticide Removal Capacities [J]. Ecotoxicology, 2005, 14 (3):299-312.
    57 Lal R., Dadhwal M., Kumari K., Sharma P., Singh A., Kumari H., Jit S., Gupta S.K., Nigam A., Lal D., Verma M., Kaur J., Bala K. and Jindal S.Pseudomonas sp to Sphingobium indicum: a journey of microbial degradation and bioremediation of Hexachlorocyclohexane [J]. Indian Journal of Microbiology, 2008, 48 (1): 3-18.
    58 Langworthy D.E., Stapleton R.D., Sayler G.S. and Findlay R.H. Lipid Analysis of the Response of a Sedimentary Microbial Community to Polycyclic Aromatic Hydrocarbons [J]. Microbial Ecology, 2002, 43 (2): 189-198.
    59 Li X.H., Jiang J.D., Gu L.F., Ali S.W., He J. and Li S.P. Diversity of chlorpyrifos-degrading bacteria isolated from chlorpyrifos-contaminated samples [J]. International Biodeterioration and Biodegradation, 2008, 62 (4):331-335.
    60 Lipson D.A. and Schmidt S.K. Seasonal Changes in an Alpine Soil Bacterial Community in the Colorado Rocky Mountains [J]. Applied and Environmental Microbiology, 2004, 70: 2867-2879.
    61 Liu X., Lindemann W.C., Whitford W.G. and Steiner R.L. Microbial diversity and activity of disturbed soil in the northern Chihuahuan Desert [J]. Biology and Fertility of Soils, 2000, 32 (3): 243-249.
    62 Lucia Cox A.W.SJ.W. Evidence for the Accelerated Degradation of Isoproturon in Soils [J]. Pesticide Science, 1996, 48 (3): 253-260.
    63 Lupwayi N.Z., Arshad M.A., Rice W.A. and Clayton G.W. Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management [J]. Applied Soil Ecology, 2001, 16 (3): 251-261.
    64 Macalady J.L., Fuller M.E. and Scow K.M. Effects of Metam Sodium Fumigation on Soil Microbial Activity and Community Structure [J]. Journal of Environmental Quality, 1998, 27: 54-63.
    65 Mahmood S., Paton G.I. and Prosser J.I. Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil [J].Environmental Microbiology. 2005, 7 (9): 1349-1360.
    66 Massoud A.H., Derbalah A.S. and Belal E.S.B. Microbial detoxification of metalaxyl in aquatic system [J]. Journal of Environmental Sciences-China,2008, 20 (3): 262-267.
    67 Mulbry W. Characterization of a novel organophosphorus hydrolase from Nocardiodes simplex NRRL B-24074 [J]. Microbiological Research, 2000,154 (4): 285-288.
    68 Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems [J]. Current Opinion in Microbiology, 1999, 2 (3): 317-322.
    69 Muyzer G. Genetic fingerprinting of microbial communities - present status and future perspectives [J]. Methods of Microbial Community Analysis, 1999,
    70 Muyzer G. de Waal E.C. and Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993, 59 (3): 695-700.
    71 Muyzer G. and Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology [J]. Antonie van Leeuwenhoek, 1998, 73 (1): 127-141.
    72 Myers R.M., Fischer S.G., Lerman L.S. and Maniatis T. (1985). Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis [J]. Nucleic Acids Research, 1985, 13:3131-3145.
    73 Myers R.M., Fischer S.G., Maniatis T. and Lerman L.S. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis [J]. Nucleic Acids Research, 1985, 13:3111-3129.
    74 Nakai M., Hess R.A., Moore B.J., Guttroff R.F., Strader L.F. and Linder R.E.Acute and long-term effects of a single dose of the fungicide carbendazim (methyl 2-benzimidazole carbamate) on the male reproductive system in the rat. Journal of Andrology [J]. 1992, 13: 507-518.
    75 Norris T.B., Wraith J.M., Castenholz R.W. and McDermott T.R. Soil Microbial Community Structure across a Thermal Gradient following a Geothermal Heating Event [J]. Applied and Environmental Microbiology, 2002, 68:6300-6309.
    76 O'Donnell A.G., Seasman M., Macrae A., Waite I. and Davies J.T. Plants and fertilisers as drivers of change in microbial community structure and function in soils [J]. Plant and Soil, 2001, 232 (1): 135-145.
    77 Ou L.T. and Sharma A. Degradation of Methyl Parathion by a Mixed Bacterial Culture and a Bacillus sp. Isolated from Different Soils [J]. Journal of Agricultural Food Chemistry, 1989, 37 1514-1518.
    78 Ovreas L. Population and community level approaches for analysing microbial diversity in natural environments [J]. Ecology Letters, 2000, 3 (3): 236-251.
    79 Pattanasupong A., Nagase H., Sugimoto E., Hori Y., Hirata K., Tani K., Nasu M.and Miyamoto K. Degradation of carbendazim and 2,4-dichlorophenoxyacetic acid by immobilized consortium on loofa sponge [J]. Journal of Bioscience and Bioengineering, 2004, 98 (1): 28-33.
    80 Paulo Sousa J., Rodrigues J.M.L., Loureiro S., Soares A.M.V.M., Jones S.E.,F(?)rster B. and Van Gestel C.A.M. Ring-Testing and Field-validation of a Terrestrial Model Ecosystem (TME) - An Instrument for Testing Potentially Harmful Substances: Effects of Carbendazim on Soil Microbial Parameters [J].Ecotoxicology, 2004, 13 (1): 43-60.
    81 Pelz O., Tesar M., Wittich R.M., Moore E.R., Timmis K.N. and Abraham W.R.Towards elucidation of microbial community metabolic pathways: unravelling the network of carbon sharing in a pollutant-degrading bacterial consortium by immunocapture and isotopic ratio mass spectrometry. [J]. Environmental Microbiology, 1999, 1 167-174.
    82 Pietrzak U. and McPhail D.C. Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia [J]. Geoderma, 2004, 122 (2-4):151-166.
    83 Preston-Mafham J., Boddy L. and Randerson P.F. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles - a critique [J]. FEMS Microbiology Ecology, 2002, 42 (1): 1-14.
    84 Pu X.C. and Cutright T.J. Degradation of pentachlorophenol by pure and mixed cultures in two different soils. 17th Annual Meeting of the SETAC Europe,Oporto, PORTUGAL. 2007.
    85 R(?)ling W.F.M., van Breukelen B.M., Braster M. and van Verseveld H.W. Linking microbial community structure to pollution: BIOLOG-substrate utilization in and near a landfill leachate plume [J]. Water Science and Technology, 2000, 41 (12): 47-53
    86 Rani M.S., Lakshmi K.V., Devi PS., Madhuri R.J., Aruna S., Jyothi K., Narasimha G. and Venkateswarlu K. Isolation and characterization of a chlorpyrifos-degrading bacterium from agricultural soil and its growth response [J]. African Journal of Microbiology Research, 2008, 2 (2): 26-31.
    87 Rigot J. and Matsumura F. Assessment of the rhizosphere competency and pentachlorophenol-metabolizing activity of a pesticide-degrading strain of Trichoderma harzianum introduced into the root zone of corn seedlings [J].Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2002, 37 (3): 201-210.
    88 Ritchie N.J., Schutter M.E., Dick R.P. and Myrold D.D. Use of Length Heterogeneity PCR and Fatty Acid Methyl Ester Profiles To Characterize Microbial Communities in Soil [J]. Applied and Environmental Microbiology,2000,66: 1668-1675.
    89 Roth J.R. and Andersson D.I. Amplification-mutagenesis--how growth under selection contributes to the origin of genetic diversity and explains the phenomenon of adaptive mutation [J]. Research in Microbiology, 2004, 155 (5): 342-351.
    90 Runes, Runes H., Jenkins, Jenkins J., Bottomley and Bottomley P. Atrazine degradation by bioaugmented sediment from constructed wetlands [J]. Applied Microbiology and Biotechnology, 2001, 57 (3): 427-432.
    91 Sanguinetti C.J., Dias Neto E. and Simpson A.J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels [J]. Biotechniques, 1994,17(5): 914-21.
    92 Sannino A. Investigation into contamination of processed fruit products by carbendazim, methyl thiophanate and thiabendazole [J]. Food Chemistry, 1995,52(1): 57-61.
    93 Sarrif A.M., Arce G.T., Krahn D.F., O'Neil R.M. and Reynolds V.L. Evaluation of carbendazim for gene mutations in the Salmonella/Ames plate-incorporation assay: the role of aminophenazine impurities [J]. Mutation research, 1994, 321(1-2): 43-56.
    94 Seghers D., Verthe K., Reheul D., Bulcke R., Siciliano S.D., Verstraete W. and Top E.M. Effect of long-term herbicide applications on the bacterial community structure and function in an agricultural soil [J]. FEMS Microbiology Ecology,2003,46(2): 139-146.
    95 Sessitsch A., Weilharter A., Gerzabek M.H., Kirchmann H. and Kandeler E. (2001).Microbial Population Structures in Soil Particle Size Fractions of a Long-Term Fertilizer Field Experiment. 67: 4215-4224.
    96 Sette L.D., de Oliveira V.M. and Manfio G.P. Isolation and characterization of alachlor-degrading actinomycetes from soil [J].Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2005, 87 (2):81-89.
    97 Shi H.Y. 20 vegetable diseases and their control [J]. Pesticide Market News, 2007,(8): 36-36.
    98 Sigler W.V. and Turco R.F. The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis [J]. Applied Soil Ecology, 2002, 21 (2): 107-118.
    99 Silva C, De Melo I.S., Maia A.D.N. and Abakerli R.B. Isolation of carbendazim degrading fungi [J]. Pesquisa Agropecuaria Brasileira, 1999, 34 (7):1255-1264.
    100 Sims J.T., Cunningham S.D. and Sumner M.E. (1997). Assessing Soil Quality for Environmental Purposes: Roles and Challenges for Soil Scientists. 26: 20-25.
    101 Smalla K., Wachtendorf U., Heuer H., Liu W.-t. and Forney L. Analysis of BIOLOG GN Substrate Utilization Patterns by Microbial Communities [J].Applied and Environmental Microbiology, 1998, 64 (4): 1220-1225.
    102 Smalla K., Wieland G, Buchner A., Zock A., Parzy J., Kaiser S., Roskot N.,Heuer H. and Berg G. Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed [J]. Applied and Environmental Microbiology, 2001, 67 (10): 4742-4751.
    103 Smith D., Alvey S. and Crowley D.E. Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil [J]. FMES Microbiology Ecology, 2005, 53 (2): 265-273.
    104 Solbrig O.T. From genes to ecosystems: a research agenda for biodiversity [M].Cambridge: IUBS, 1991
    105 Staddon W.J., Duchesne L.C. and Trevors J.T. Microbial Diversity and Community Structure of Postdisturbance Forest Soils as Determined by Sole-Carbon-Source Utilization Patterns [J]. Microbial Ecology, 1997, 34 (2):125-130.
    106 Staddon W.J., Trevors J.T., Duchesne L.C. and Colombo C.a. Soil microbial diversity and community structure across a climatic gradient in western Canada [J]. Biodiversity and Conservation, 1998, 7 (8): 1081-1092.
    107 Strong L.C, McTavish H., Sadowsky M.J. and Wackett L.P. Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase [J]. Environmental Microbiology, 2000, 2 (1):91-98.
    108 Struthers J.K., Jayachandran K. and Moorman T.B. Biodegradation of Atrazine by Agrobacterium radiobacter J14 and Use of This Strain in Bioremediation of Contaminated Soil [J]. Applied and Environmental Microbiology, 1998, 64:3368-3375.
    109 Tamura K. Microbial pesticide degradations and evolutionary analysis of degrading enzymes [J]. Journal of Pesticide Science, 2001, 26 (3): 309-317.
    110 Tang J., Liu L.X., Hu S.F., Chen YP. and Chen J. Improved degradation of organophosphate dichlorvos by Trichoderma atroviride transformants generated by restriction enzyme-mediated integration (REMI) [J]. Bioresource Technology, 2009, 100 (1): 480-483.
    111 Thirup L., Johnsen K., Torsvik V., Spliid N.H. and Jacobsen C.S. Effects of fenpropimorph on bacteria and fungi during decomposition of barley roots [J].Soil Biology and Biochemistry, 2001, 33 (11): 1517-1524.
    112 Torstenssen L. and Wessen B. Interactions between the fungicide benomyl and soil microorganisms [J]. Soil Biology and Biochemistry, 1984, 16 (55):445-452.
    113 Turnbull G.A., Ousley M., Walker A., Shaw E. and Morgan J.A.W. Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA [J].Applied and Environmental Microbiology, 2001, 67 (5): 2270-2275.
    114 Waid J.S. Does soil biodiversity depend upon metabiotic activity and influences? [J]. Applied Soil Ecology, 1999, 13 (2): 151-158.
    115 Wang Y.-S., Wen C.-Y, Chiu T.-C. and Yen J.-H. Effect of fungicide iprodione on soil bacterial community [J]. Ecotoxicology and Environmental Safety, 2004,59(1): 127-132.
    116 Ward D.M., Bateson M.M., Weller R., Ruff-Roberts A.L. Ribosomal RNA analysis of microorganisms as they occur in nature [J]. Advances in microbial ecology, 1992,12 219-286.
    117 Westergaard K., Muller A.K., Christensen S., Bloem J. and Sorensen S.J. Effects of tylosin as a disturbance on the soil microbial community [J]. Soil Biology and Biochemistry, 2001, 33 (15): 2061-2071.
    118 Wolfgang Hitzl A.R.S.S.H.I. Separation power of the 95 substrates of the BIOLOG system determined in various soils [J]. FEMS Microbiology Ecology,1997,22(3): 167-174.
    119 Xu B.W., Wild J.R. and Kenerley CM. Enhanced expression of a bacterial gene for pesticide degradation in a common soil fungus [J]. Journal of Fermentation and Bioengineering, 1996, 81 (6): 473-481.
    120 Xu J.L., Gu X.Y., Shen B., Wang Z.C., Wang K. and Li S.P. Isolation and Characterization of a Carbendazim-Degrading Rhodococcus sp. djl-6 [J].Current Microbiology, 2006, 53 (1): 72-76.
    121 Yachi S. and Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96 (4):1463-1468.
    122 Yan F., McBratney A.B. and Copeland L. Functional substrate biodiversity of cultivated and uncultivated A horizons of vertisols in NW New South Wales [J]. Geoderma, 2000, 96 (4): 321-343.
    123 Yang Y.H., Yao J., Hu S. and Qi Y. Effects of Agricultural Chemicals on DNA Sequence Diversity of Soil Microbial Community: A Study with RAPD Marker [J]. Microbial Ecology, 2000, 39 (1): 72-79.
    124 Zhang R.F., Cui Z.L., Jiang J.D., He J., Gu X.Y. and Li S.P. Diversity of organophosphorus pesticide-degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes [J]. Canadian Journal of Microbiology, 2005, 51 (4): 337-343.
    125 Zhang X., Yan X., Gao P., Wang L., Zhou Z. and Zhao L. Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system [J].Journal of Microbiological Methods, 2005, 60 (1): 1-11.
    126 Zhang Z.H., Hong Q., Xu J.H., Zhang X.Z. and Li S.P. Isolation of fenitrothion-degrading strain Burkholderia sp FDS-1 and cloning of mpd gene [J]. Biodegradation, 2006, 17 (3): 275-283.
    127 Zhao Y., Li W., Zhou Z., Wang L., Pan Y. and Zhao L. Dynamics of microbial community structure and cellulolytic activity in agricultural soil amended with two biofertilizers [J]. European Journal of Soil Biology, 2005, 41 (1-2): 21-29.
    128 安淼,周琪,李晖.土壤污染生物修复的影响因素[J].土壤与环境,2002,11(4):397-400.
    129 常学秀,张汉波,袁嘉丽.环境污染微生物[M].高等教育出版社,2006
    130 东秀珠,洪俊华.原核微生物的多样性[J].生物多样性,2001,9(1):18-24.
    131 华小梅,朱忠林.涕灭威在土壤中的降解特性[J].农村生态环境,1995,11(4):9-13,27.
    132 宫曼丽,任南琪,邢德峰.DGGE/TGGE技术及其在微生物分子生态学中的应用[J].微生物学报,2004,44(6):746-748.
    133 郭明,龚明福,闫志顺,甘凌燕,张沁.土壤农药残留的生物修复初探[J].农业环境科学学报,2003,22(2):228-231.
    134 郭荣君,李世东,章力建,李正.土壤农药污染与生物修复研究进展[J].中国生物防治,2005,21(3):129-135.
    135 李法云,臧树良,罗义.污染土壤生物修复技术研究[J].生态学杂志,2003,22(1):35-39.
    136 李顺鹏,蒋建东.农药污染土壤的微生物修复研究进展[J].土壤,2004,36(6):577-583.
    137 刘建亲,花日茂.微生物降解农药的研究进展[J].安徽农业科学,2008,36(24):10663-10664,10667.
    138 刘惠君,刘维屏.农药污染土壤的生物修复技术[J].环境污染治理技术与设备,2001,2(2):74-79.
    139 卢莉琼,徐亚同,梁俊.分子生物学方法在微生物多样性及微生物生态研究中的应用[J].应用与环境生物学报,2004,10(6):826-830.
    140 瞿晓苍.设施蔬菜面临的污染问题及对策[J].农业科技通讯,2005,(7):28-29.
    141 沈定华,许昭怡,于鑫,胡文勇.土壤有机污染生物修复技术影响因素的研究进展[J].土壤,2004,36(5):463-467.
    142 田耀华,冯玉龙.微生物研究在土壤质量评估中的应用[J].应用与环境生物学报,2008,14(1):132-137.
    143 滕应,骆永明,李振高.污染土壤的微生物多样性研究[J].土壤学报,2006,43(6):1018-1026.
    144 王莹,万欢,吴根福.环境微生态研究中的分子生物学新技术[J].环境污染与防治,2006,28(6):457-460.
    145 席劲瑛,胡洪营,钱易.Biolog方法在环境微生物群落研究中的应用[J].微生物学报,2003,43(1):138-141.
    146 仪美芹,王开运,姜兴印,王怀训.微生物降解农药的研究进展[J].山东农业大学学报(自然科学版),2002,33(4):519-524.
    147 颜春荣,张晓强,高巍,刘贤进.土壤微生物对化学农药的生态效应及其适应机制[J].江苏农业科学,2005,(2):82-85.
    148 颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J].土壤学报,2006,43(5):851-859.
    149 杨小红,李俊,葛诚,沈德龙.微生物降解农药的研究新进展[J].微生物学通报,2003,30(6):93-96.
    150 杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2000,20(2):23-25.
    151 姚晓华.新杀虫剂啶虫脒对旱地土壤微生物生态影响及其降解研究.博士学位论文.杭州,浙江大学,2005:57-75.
    152 尤民生,刘新.农药污染的生物降解与生物修复[J].生态学杂志,2004,23(1):73-77.
    153 虞云龙,樊德方,陈鹤鑫.农药微生物降解的研究现状与发展策略[J].环境科学进展,1996,4(3):28-36.
    154 张秋芳,叶华仙,雷锦桂,黄东风.有机农药的微生物降解研究[J].福建环境,2000,(3):34-35,37.
    155 张桂山,贾小明,马晓航,周宏斌,程天凡.一株多菌灵降解细菌的分离、鉴定及系统发育分析[J].微生物学报,2004,44(4):417-421.
    156 张薇,魏海雷,高洪文,胡跃高.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(1):48-52.
    157 郑和辉,叶常明.甲草胺和丁草胺等除草剂在多介质环境中环境行为综述[J].环境污染治理技术与设备,1999,7(3):1-10.
    158 郑华,欧阳志云,方治国,赵同谦.BIOLOG在土壤微生物群落功能多样性研 究中的应用[J].土壤学报,2004,41(3):456-461.
    159 钟文辉,蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报,2004,15(05):899-904.
    160 钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性影响研究进展[J].生物多样性,2004,12(4):456-465.
    161 朱福兴,王沫,李建洪.降解农药的微生物[J].微生物学通报,2004,31(5):120-123.
    162 朱鲁生,王军,林爱军,张俊,赵秉强.二甲戊乐灵的土壤微生物生态效应[J].环境科学,2002,23(3):88-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700