GSTA1对结肠癌细胞增殖和凋亡的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经酰胺是细胞内重要的脂质第二信使,可介导多种细胞生物学效应,其最主要的作用是抑制细胞的增殖和诱导细胞凋亡(包括肿瘤细胞)。鉴于神经酰胺可诱导肿瘤细胞凋亡的作用,增加内源性神经酰胺浓度或导入外源性类似物已成为肿瘤治疗研究的新靶点。研究证实外源性具有渗透性的神经酰胺类似物(C2-神经酰胺)可通过多种途径诱导HT-29、Lovo、HCT-116等结肠癌细胞的调亡,关于神经酰胺对Caco-2结肠癌细胞凋亡的影响未见报道。
     应用化疗药物是治疗结肠癌最常用的方法之一,但是化疗耐药性的产生常造成肿瘤治疗的失败。GSTs是一组多功能Ⅱ相药物代谢酶,它的过表达是导致癌细胞产生化疗耐药性的因素之一,肿瘤细胞可通过表达GSTs而保护自身免受抗肿瘤药物的损害,从而降低抗肿瘤药物疗效。有研究表明GSTs家族中GSTA的过表达与氮芥、蒽醌类抗肿瘤药物的耐药性密切相关,GSTA1是GSTA的一个非常重要的亚型,因此对GSTA1表达调节及其在癌细胞中增殖和凋亡作用的研究具有非常重要的意义。
     本研究以结肠癌细胞株Caco-2和HT-29为试验对象,检测了外源性C2-神经酰胺对两种结肠癌细胞系增殖和凋亡的影响,为后续的试验研究GSTA1在细胞增殖抑制和凋亡中的作用奠定了基础。本试验对结肠癌细胞不同生长时期GSTA1表达与活性进行了研究,检测了外源性C2-神经酰胺处理的结肠癌细胞中GSTA1表达与活性的变化。采用基因转染技术使GSTA1沉默或过表达,探讨GSTA1表达对神经酰胺引起的细胞增殖抑制和凋亡的影响,旨在揭示GSTA1能否保护结肠癌细胞免受由神经酰胺引起的增殖抑制和诱导凋亡,对于阐明GSTA1与结肠癌细胞增殖抑制、凋亡及化疗耐药性之间的关系具有重要意义,研究结果可用于指导临床合理用药,提高抗肿瘤药物治疗效果和降低耐药性的产生。
     本研究采用MTS法检测外源性C2-神经酰胺对Caco-2和HT-29细胞增殖的影响,分别采用western blotting和real-time PCR技术检测激活型caspase-3蛋白和Bcl-2家族基因表达情况,以评价神经酰胺对细胞凋亡的影响。然后再以western blotting、real-time PCR和酶活性分析法分别检测两个细胞系不同生长时期GSTAl蛋白、mRNA表达与活性变化以及C2-神经酰胺处理对结肠癌细胞GSTA1蛋白、mRNA表达及活性的影响。采用基因转染的方法来双向验证GSTA1在整个过程的功能,一方面采用RNA干扰技术使Caco-2细胞中GSTA1沉默,检测GSTA1沉默对神经酰胺介导的细胞增殖和凋亡的影响。另一方面将含有GSTA1的质粒转染HT-29细胞,检测GSTA1过表达对神经酰胺介导的细胞增殖和凋亡的影响。
     外源性C2-神经酰胺对结肠癌细胞增殖影响的结果表明,随着神经酰胺浓度升高,两种结肠癌细胞的存活率逐渐降低。对结肠癌细胞凋亡影响的结果表明,神经酰胺不能诱导Caco-2细胞中激活型caspase-3蛋白的表达,同时抗凋亡基因Bcl-2和促凋亡基因BaxmRNA表达均无明显变化(P>0.05),而神经酰胺处理HT-29细胞后,与对照组相比较,处理组激活型caspase-3蛋白表达量增加7.142倍(P<0.01),Bcl-2mRNA表达降低0.466倍(P<0.001),BaxmRNA表达升高5.938倍(P<0.001)。
     对Caco-2和HT-29细胞不同生长时期GSTA1表达及活性检测的结果表明,Caco-2细胞中GSTA1蛋白、mRNA表达与活性随着细胞的汇合程度逐渐升高。与汇合前期相比较,汇合期GSTA1蛋白、mRNA及酶活性分别升高了1.888、3.018和1.994倍(P<0.05或P<0.01),在6d汇合后期GSTA1蛋白、mRNA及活性分别升高了2.988、7.135和6.508倍(P<0.001)。而HT-29细胞的各个生长时期均未检测到GSTA1蛋白和mRNA的表达。
     对外源性C2-神经酰胺处理的Caco-2和HT-29细胞中GSTA1表达及活性检测结果表明,神经酰胺处理的Caco-2细胞中GSTA1蛋白、mRNA表达及活性分别增加了1.850、3.093和1.764倍,与对照组比较差异显著(p<0.01或p<0.001)。而神经酰胺处理HT-29细胞后,仍未能检测到GSTA1蛋白和mRNA的表达。
     采用western blotting方法确定转染剂Lipofectamine2000为3μl/mL、40nM siRNA、转染48h为最佳的siRNA转染条件。在此基础上研究GSTA1沉默对神经酰胺介导的Caco-2细胞增殖和凋亡的影响。结果显示,对照组、siRNA转染组和阴性对照组细胞存活率差异不显著(P>0.05)。神经酰胺处理后,3个组细胞存活率均降低,但各组间并无统计学差异(P>0.05)。对照组、siRNA转染组和阴性对照组均无激活型caspase-3蛋白表达,神经酰胺处理后,3个组的caspase-3蛋白也均未被激活。
     双酶切和序列测定表明本试验成功构建了重组真核表达载体GSTA1-pcDNA3.1/V5-His TOPO并将其瞬时转染至HT-29细胞中。采用western blotting方法确定转染剂Lipofectamine2000为3μl/mL、3μg质粒、转染48h为最佳的质粒转染条件。在此基础上研究GSTA1过表达对神经酰胺介导的HT-29细胞增殖和凋亡的影响。结果表明,对照组、质粒转染组和阴性对照组细胞存活率差异不显著(P>0.05),神经酰胺处理后,3个组细胞存活率均降低,但各组间并无统计学差异(P>0.05)。对照组、质粒转染组和阴性对照组均无激活型caspase-3蛋白表达,神经酰胺处理后,3个组的激活型caspase-3蛋白表达均增加,但各组间差异不显著(P>0.05)。
     外源性C2-神经酰胺可显著抑制Caco-2和HT-29结肠癌细胞的增殖,不能诱导Caco-2凋亡,但可诱导HT-29凋亡。Caco-2细胞中GSTA1蛋白、mRNA表达量与活性随细胞汇合程度逐渐增加,而HT-29细胞各生长时期中GSTA1表达量极低或不表达。外源性C2-神经酰胺处理的Caco-2细胞中GSTA1蛋白、mRNA表达量与活性显著升高,而神经酰胺处理的HT-29细胞仍然检测不到GSTA1的表达。基因转染试验证实了GSTA1的沉默或过表达对神经酰胺介导的结肠癌细胞增殖抑制和凋亡无影响,以上结果提示GSTA1不具有保护结肠癌细胞免受神经酰胺引起的增殖抑制和凋亡的作用。
Ceramide is important second messenger in the cells, take part in modulating multiple biological effects. The most well-known roles of ceramide are proliferation inhibition and apoptosis (including tumour cells). In view of its role in inducing apoptsis, enhancing the concentration of endogenous ceramide or introducing exogenous analogues are the new targets of oncotherapy. Studies have shown that an exogenous ceramide analogue (C2-ceramide) can induce apoptosis in colon cancer cell lines HT-29, Lovo, and HCT-116through multiple pathways; however, there is no reports about the affect of ceramide on apoptosis of Caco-2cells.
     Chemotherapy has been widely used in colon cancer treatment, but the oncotherapy are often failed due to chemoresistance. GSTs are a group of phase Ⅱ drug metabolism enzymes. Overexpression of GSTs is one of the important factor for producing chemoresistance, tumour cells can protect themselves against anti-tumour drugs and reduce curative effect of anti-tumour drugs by express GST. Evidence shows that GSTA expression is strongly related to the resistance of anti-cancer drugs, such as nitrogen mustard and anthraquinone. GSTA1is an important member of the GSTA family. Study in this enzyme will advance our understanding in the proliferation and apoptosis of the cancer cells.
     This study detected the effects of exogenous C2-ceramide on proliferation and apoptosis using Caco-2and HT-29cell lines, this research will provide fundamental knowledge for our future study on GSTA1-associated proliferation inhibition and apoptosis of the cell. This study investigated the expression and activity of GSTA1at different stages of colon cancer cells and determined the change of GSTA1expression and activity during exogenous ceramide-modulated proliferation inhibition and apoptosis of colon cancer cells. Gene transfection techniques were used to silence or overexpress GSTA1, and to explore how ceramides affects cell proliferation and apoptosis. This study will reveal if GSTA1expression in colon cancer cells can protect themselves against the effects of ceramide-modulated cell proliferation inhibition and apoptosis and useful to clarify the relationship between GSTA1, proliferation inhibiton/apoptosis of colon cancer cells and chemoresistance. Results can be translated to guide clinical application, and enhance effects of anti-cancer drugs and reduce the drug resistance in new drug development.
     MTS assay was employed to determine the effects of C2-ceramide on the cell proliferation in in vitro cell lines Caco-2and HT-29. Western blotting and real-time PCR were used to determine the effects of ceramides on apoptosis by measuring the expression levels of actived caspase-3and Bcl-2gene family. Furthermore, Western blotting, real-time PCR, and enzyme activity assay technologies were employed to determine the expression of GSTA1protein, mRNA and activity at different stages of colon cancer cells, effects of ceramide on GSTA1protein expression, mRNA expression, and activity were also detected. In addition, gene transfection techniques were used to confirm the functions of GSTA1in ceramide-modulated cell proliferation and apoptosis. The first approach is to use siRNA technique to knockdown GSTA1gene in Caco-2cells in order to detect the effect of GSTA1silencing on ceramide-mediated proliferation inhibition and apoptosis; and the second was to transfect HT-29cells with plasmid in order to detect the effect of GSTA1overexpression on ceramide-mediated proliferation inhibition and apoptosis.
     The results of effect of exogenous C2-ceramide on proliferation showed that the survival rate of colon cancer cell progressively decreased with the concentration of ceramide. The results of effect of ceramide on apoptosis showed that ceramide did not induce the expression of actived caspase-3protein. The expression of anti-apoptotic Bcl-2mRNA and pro-apoptotic Bax mRNA did not show any significant difference. Treatment with ceramide resulted in7.142-fold increase of the actived caspase-3protein expression in HT-29cells comparing with control group (P<0.01), accompanied with0.466-fold decrease of Bcl-2mRNA (P<0.001)and6.938-fold increase Bax mRNA levels (P<0.001).
     The changes of GSTA1protein levels, mRNA expression and activity in different stages of Caco-2and HT-29were detected. Results showd that GSTA1protein levels, mRNA expression, and enzyme activity in Caco-2cells were progressively increased with the confluency. Compared with preconfluent, GSTA1protein, mRNA levels and activity rose to1.888,3.018,1.994-fold in confluent respectively (P<0.05or P<0.01), and rose to2.988,7.135,6.598-fold in6d postconfluent respectively (P<0.001). There were no expression of GSTA1protein and mRNA of all the stages in HT-29cells.
     The effect on GSTA1protein levels, mRNA expression and activitiy in Caco-2and HT-29cells induced by exogenous C2-ceramide were detected. Results showed that GSTA1protein, mRNA expression and activity induced by ceramide of Caco-2cells increased1.850,3.093,1.764-fold respectively, significant difference comparing with control group (p<0.01or p<0.001), but no expression of GSTA1protein and mRNA expression were seen in HT-29cells.
     The best transfection conditions,3μl/mL Lipofectamine2000,40nM siRNA, transfected48h,were confirmed by western blotting analysis. These GSTA1-silenced Caco-2cells were then used to study the effect of ceramide on cell proliferation and apoptosis in Caco-2cells. Results showed that there was no significant difference in survival rate between control, siRNA transfection, negative control group (P>0.05), the survival rate decreased of the3groups with the ceramide treatment, but no statistics difference between groups (P>0.05). There was no detection of activated caspase-3protein expression in control, siRNA transfection, negative control group, activated caspase-3protein expression was not detected in3groups with ceramide treatment.
     The construction of recombinant plasmid GSTA1-pcDNA3.1/V5-His TOPO was verified by double-enzyme cleavage and gene sequence analysis. Recombinant plasmids were then transiently transfected into HT-29cells. The best transfection conditions,3μl/mL Lipofectamine2000,3μg DNA, transfected48h,were confirmed by western blotting analysis. These GSTAl-overexpressed Caco-2cells were then used to study the effect of ceramide on cell proliferation and apoptosis in HT-29cells. Results showed that there was no significant difference in survival rate between control, plasmid transfection, negative control group (P>0.05), the survival rate decreased of the3groups with the ceramide treatment, but no statistics difference between groups (P>0.05). There was no detection of activated caspase-3protein expression in control, plasmid transfection, negative control group, activated caspase-3protein expression were induced with ceramide treatment, but no statistics difference between groups(P>0.05).
     In conclusion, ceramides inhibits the proliferations of two colon cancer cells. Ceramides can induce apoptosis of HT-29but not Caco-2cells. The protein levels, mRNA expression, and enzymes activities of Caco-2cells are increased in correlation with cell confluency, the GSTA1expression is very low or not existed in HT-29cells. Treatment with ceramides can increase GSTA1protein levels, mRNA expression, and activity in Caco-2cells, but the protein and mRNA expression is not seen in HT-29cells. Gene transfection experiments manifest that GSTA1does not affect the ceramide-modulated proliferation inhibition and anti-apoptosis, these results suggested no protective role for GSTA1in ceramide-modulated proliferation inhibition and apoptosis.
引文
[1]MODARK D E, GOLD D V, GOLDENBERG D M, et al. Sphingolipid targets in cancer therapy[J]. Mol Cancer Ther,2006,5 (2):200-208.
    [2]SCHENCK M, CARPINTEIRO A, GRASSME H, et al. Ceramide:physiological and pathophysiological aspects [J]. Arch Biochem Biophys,2007,462(2):171-175.
    [3]BIEBERICH E. Ceramide signaling in cancer and stem cells[J]. Future Lipidol,2008,3 (3): 273-300.
    [4]RUVOLO P P. Ceramide regulates cellular homeostasis via diverse stress signaling pathways[J]. Leukemia,2001,15 (8):1153-1160.
    [5]FAERGEMAN N J, FEDDERSEN S, CHRISTIANSEN J K, et al. Acyl-CoA-binding protein, Acblp, is required for normal vacuole function and ceramide synthesis in Saccharomyces cerevisiae[J]. Biochem J,2004,380 (Pt3):907-918.
    [6]COLOMBAIONI L, GARCIA-GIIM. Sphingolipid metabolites in neural signaling and function[J]. Brain res Brain Res Rev,2004,46 (3):328-355.
    [7]MERRILL A H, SULL ARDS M C, WANG E, et al. Sphingolipid metabolism:roles in signal transduction and disruption by fumonisins[J]. Environ Health Perspect,2001,109(suppl2): 283-289.
    [8]CHALFANT C E, RATHMAN K, PINKERMAN R L, et al. De novo ceramide regulates the alternative splicing of caspase-9 and Bcl-xl in A549 lung adenocarcinoma cells. Dependent on protein phosphatase-1[J]. J Biol Chem,2002,277:12587-12595.
    [9]樊代明.肿瘤研究前沿:第2卷[M].西安:西安交通大学出版社,2002.
    [10]DBAIBO G S, PUSHKAREVA M Y, JAYADEVS, et al. Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest[J]. Prod Natl acad Sci USA,1995,92:1347-1351.
    [11]KIM D S, KIM S H, SONG J H, et al. Enhancing effects of ceramide derivatives on 1,25-dihydroxyvitamin D (3)-induced differentiation of human HL-60 leukemia cells[J]. Life Sci,2007,81 (25-26):1638-1644.
    [12]YAMAMOTO H. Interrelation of differentiation, proliferation and apoptosis in cancer cells[J]. J Osaka Dent Univ,1995,29 (2):51-60.
    [13]KUMAKURA S, ISHIKURA H, MANIWAY, et al. Activation of protein Kinase C enhances TNF-alpha-induced differentiation by preventing apoptosis via rapid up-regulation of c-Myc protein expression in HL-60 cells[J]. Leuk Lymphoma,2003,44 (3):497-503.
    [14]ZHANG X F, LI B X, ZHANG Y, et al. Ceramide induces release of mitochondrial proapoptotic proteins in caspase-dependent and independent manner in HT-29 cells[J]. Sci China C Life Sci,2008,51 (1):66-71.
    [15]BIRBES H, LUBERTO C, HSU Y T, et al. A mitochondrial pool of sphingomyelin is involved in TNF alpha-induced Bax translocation to mitochondria[J]. Biochem J,2005,386 (Pt3): 445-451.
    [16]CORAZZARI M, LOVAT P E, OLIVERIL S, et al. Fenretinide a p53-independent way to kill cancer cells[J]. Biochem Biophys Res commun,2005,331 (3):810-815.
    [17]TANI M, ITO M, IGARASHI Y. ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space[J]. Cell Signal,2007,19 (2):229-237.
    [18]ALBI E, CATALDI S, ROSSI G, et al. The nuclear ceramide/diacylglycerol balance depends on the physiological state of thyroid cells and changes during UV-C radiation-induced apoptosis[J]. Arch Biochem Biophys,2008,478 (1):52-58.
    [19]OBEIT L M, LINARDIC C M, KAROLAK L A, et al. Programmed cell death induced by ceramide[J]. Science,1993,259 (5102):1769-1771.
    [20]KIM S S, CHAE H S, BACH J H, et al. P53 mediates ceramide-induced apoptosis in SKN-SH cells[J], Oncogene,2002,21 (3):2020-2028.
    [21]汪燕.神经酰胺与细胞凋亡[J].湖北体育科技,2002,21(4)):414-418.
    [22]金朝晖,李薇,潘华珍.神经酰胺与细胞凋亡[J].生物化学与生物物理进展,1999,26(6)):537-541.
    [23]KIM D K, CHO E S, SEONG J K, et al. Adaptive concentrations of hydrogen peroxide suppress cell death by blocking the activation of SAPK/JNK pathway[J], J Cell Sci,2001, 114 (Pt23):4329-4334.
    [24]VERHEIJ M, BOSE R, LIN X H, et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptisis[J]. Nature,1996,380 (6569):75-79.
    [25]KIM S S, CHAE H S, BACH J H, et al. P53 mediates ceramide-induced apoptosis in SKN-SH cells[J]. Oncoqene,2002,21 (13):2020-2028.
    [26]TOUYZ R M, HE G, EIMABROUK M, et al. Differential activation of extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase by ATI receptors in vascular smooth muscle cells from Wistar-Kyoto rats and spontaneously hypertensive rats[J]. J Hypertens,2001,19 (3):553-559.
    [27]KADENBACH B, AMOLD S, LEE I, et al. The possible role of cytochrome C oxidase in stress-induced apoptosis and degenerative disease[J]. Biochim Biophys Acta,2004,1665 (1-3):400-408.
    [28]SELZNER M, BIELAWSKA A, MORSE M A, et al. Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer[J]. Cancer Res,2001,61 (3):1233-1240.
    [29]SCHMELZ E M, BUSHNEV A S, DILLEHAY D L, et al. Ceramide-β-D-glucuronide: synthesis, digestion, and suppression of early markers of colon carcinogenesis[J], Cancer Res, 1999,59 (22):5768-77772.
    [30]PETTUS B J, CHALFANT C E, HANNUN Y A. Ceramide in apoptosis:an overview and current perspectives[J]. Biochim Biophys Acta,2002,1585 (2-3):114-125.
    [31]李百祥,张涛.神经酰胺诱导人结肠癌细胞凋亡的作用[J].中国公共卫生,2004,20(5):526-527.
    [32]WANG J, LV X W, DUYG. Potential mechanisms involved in ceramide-induced apoptosis in human colon cancer HT29 cells [J]. Biomed Environ Sci,2009,22 (1):76-85.
    [33]ZHANG X F, LIBX, DONG C Y, et al. Apoptosis of human colon carcinoma HT-29 cells induced by ceramide[J]. World J Gastroenterol,2006,12 (22):3581-3584.
    [34]AHN EH, SCHROEDER J J. Sphinganine causes early activation of JNK and p38 MAPK and inhibition of AKT activation in HT-29 human colon cancer cells[J]. Anticancere Res,2006, 26 (1A):121-127.
    [35]RENERT A F, LEPRINCE P, DIEU M, et al. The proapoptotic C16-ceramide-dependent pathway requires the death-promoting factor Btf in colon adenocarcinoma cells[J]. J Proteome Res,2009,8 (10):4810-4822.
    [36]WIDERSTEN M, KOLM R H, BJORNESTEDT R, et al. Contribution of five amino acid residues in the glutathione-binding site to the function of human glutathione transferase P1-1[J]. Biochem J,1992,285 (Pt2):377-381.
    [37]HIQQINS L G, HAYES J D. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents [J]. Drug Metab Rev,2011,43 (2):92-137.
    [38]MANNERVIK B, BOARD P G, HAYES J D, et al. Nomenclature for mammalian soluble glutathione transferases[J]. Methods Enzymol,2005,401:1-8.
    [39]TOWNSEND D, TEW K. Cancer drugs, genetic variation and the glutathione-S-transferase gene family [J]. Am J Pharmacogenomics,2003,3 (3):157-172.
    [40]ADDYA S, MULLICK J, FANG J K, et al. Purification and characterization of a hepatic mitochondrial glutathione S-transferase exhibiting immunochemical relationship to the alpha-class of cytosolic isoenzymes[J]. Arch Biochem Biophys,1994,310 (1):82-88.
    [41]JAKOBSSON PJ, MORGENSTERN R, MANCINI J, et al. Membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG). A widespread protein superfamily[J]. Am J Respir Crit Care Med,2000,161 (2Pt2):S20-4.
    [42]HAYES J D, FLANAQAN J U, JOWSEY I R. Glutathione transferases [J]. Annu Rev Pharmacol Toxicol,2005,45:51-88.
    [43]SHEEHAN D, MEADE G, FOLEY V M, et al. Structure, function and evolution of glutathione transferases:implications for classification of non-mammalian members of an ancient enzyme superfamily[J]. Biochem J,2001,360 (Pt1):1-16.
    [44]BOARD P G, COGGAN M, CHELVANAYAGAM G, et al. Identification.charaterization, and crystal structure of the Omega class glutathione transferases [J], J Biol Chem,2000,275 (32): 24798-24806.
    [45]MANNERVIK B, AWASTHI Y C, BOARD P G, et al. Nomenclature for human glutathione transferases[J]. Biochem J,1992,282 (Pt1):305-306.
    [46]AWASTHI Y C, SHARMA R, SINGHAL S S. Human glutathione S-transferases [J]. Int J Biochem,1994,26 (3):295-308.
    [47]COMSTOCK K E, JOHNSON K J, RIFENBERY D, et al. Isolation and analysis of the gene cDNA for a human mu class glutathione S-transferase, GSTM4[J]. J Biol Chem.,1993,268 (23):16958-16965.
    [48]WHALEN R, BOYER T. Human glutathione S-transferase[J]. Semin Liver Dis,1998,18 (4):345-358.
    [49]HAYES P C, MAYL, HAYES J D, et al. Glutathione S-transferases in human liver cancer [J]. Gut,1991,32 (12):1546-1549.
    [50]BLACKER K L, OLSON E, VESSEY D A, et al. Characterization of glutathione S-transferase in cultured human keratinocytes [J]. J Invest Dermatol,1991,97(3):442-446.
    [51]SINGHAL S S, SAXENA M, AWASTHI S, et al. Gender related differences in the expression and characteristics of glutathione S-transferases of human colon[J]. Biochim Biophys Acta, 1992,1171 (1):19-26.
    [52]BOYER T D. The glutathione S-transferases:an update [J]. Hepatology,1989,9(3):486-496.
    [53]OAKLEY A. Glutathione transferases:a structural perspective[J]. Drug Metab Rev,2011, 43 (2):138-151.
    [54]HAYES J D, FLANAGAN J U, JOWSEY I R. Glutathione transferases [J]. Annu rev Pharmacol Toxicol,2005,45:51-88.
    [55]PETTERSSON P L, MANNERVIK B. The role of glutathione in the isomerzation of 5-androstene-3,17-dione catalyzed by human glutathione transferase A1-1[J]. J Biol Che, 2001,276:11698-11704.
    [56]STRANGE R C, SPITERI M A, RAMACHANDRAN S, et al. Glutathione-S-transferase family of enzymes[J]. Mutat Res,2001,482 (1-2):21-26.
    [57]聂立红,王声涌,胡毅玲.谷胱甘肽硫-转移酶研究进展[J].中国病理生理杂志,2000,16(11):1240-1243.
    [58]BURGESS J R, CHOW N W, REDDY C C, et al. Amino acid substitutions in the human glutathione S-transferases confer different specificities in the prostaglandin endoperoxide conversion pathway[J]. Biochem Biophys res Commun,1989,158:497-502.
    [59]WANG T, ARIFOGLU P, TEWKD, et al. Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the c-terminus [J]. J Biol Chem,2001,276:20999-21003.
    [60]GATE L, MAJUMDAR R S, LUNK A, et al. Increased myeloproliferation in glutathione S-transferase pi-deficient mice is associated with a deregulation of JNK and Janus kinase/STAT pathways[J]. J Biol Chem,2004,279 (10):8608-8616.
    [61]RUSCOE J E, ROSARIO L A, WANG T, et al. Pharmacologic or genetic manipulation of glutathione S-transferase P1-1 (GSTpi) influences cell proliferation pathways[J]. J Pharmacol Exp Ther,2001,298 (1):339-345.
    [62]CHO S G, LEE Y H, PARK H S, et al. Glutathione S-transferase Mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1 [J]. J Biol Chem., 2000,276:12749-12755.
    [63]SHEEHAN D, MEADE G, FOLEY V M, et al. Structure,function and evolution of glutathione transferases:Implications for classification of non-mammalian members of an ancient enzyme superfamily [J]. Biochem J,2001,360 (Pt1):1-16.
    [64]NG L. Role of hepatic nuclear factor 1 in the repression of human glutathione S-transferase alpha by interleukin-1 beta[D]. Guelph:University of Guelph,2006.
    [65]MOREL F, SCHULZ W A, SIES H. Gene structure and regulation of expression of human glutathione S-transferases alpha [J]. Biol Chem Hoppe Seyler,1994,375 (10):641-649.
    [66]PRABHU K S, REDDY P V, JONES E C, et al. Characterization of a class alpha glutathione-S-transferase with glutathione peroxidase activity in human liver microsomes [J]. Arch Biochem Biophys,2004,424 (1):72-80.
    [67]BRUNS C M, HUBATSCH I, RIDDERSTROM M, et al. Human glutathione transferase A4-4 crystal structures and mutagenesis relveal the basis of high catalytic efficiency with toxic lipid peroxidation products [J]. J Mol Biol,1999,288 (3):427-439.
    [68]BALOGH L M, ATKINS WM. Interactions of glutathione transferases with 4-hydroxynonenal [J]. Drug Metab Rev,2011,43 (2):165-178.
    [69]CHENG J Z, SINGHALS S, SHARMA A, et al. Transfection of mGSTA4 in HL-60 cells protects against 4-hydroxynonenal-induced apoptosis by inhibiting JNK-mediated signaling[J]. Arch Biochem Biophys,2001,392 (2):197-207.
    [70]GALLAGHER E P, HUISDEN C M, GARDNER J L. Transfection of HepG2 cells with hGSTA4 provides protection against 4-hydroxynonenal-mediated oxidative injury [J]. Toxicol In Vitro,2007,21 (8):1365-1372.
    [71]YANG Y, SHARMA R, ZIMNIAK P, et al. Role of alpha class glutathione S-transferases as antioxidant enzymes in rodent tissues[J]. Toxicol Appl Pharmacol,2002,182(2):105-115.
    [72]MOREL F, RAUCH C, COLES B, et al. The human glutathione transferase alpha locus: genomic organization of the gene cluster and functional characterization of the genetic polymorphism in the hGSTA1 promoter [J]. Pharmacogenetics,2002,12, (4):277-186.
    [73]COLES B F, ANDERSON K E, DOERGE D R, et al. Quantitative analysis of interindividual variation of glutathione S-transferase expression in human pancreas and the ambiguity of correlating genotype with phenotype [J]. Cancer Res,2000,60 (3):573-579.
    [74]COLES B F, KADLUBAR F F. Human alpha class glutathione S-transferases:genetic polymorphism, expression, and susceptibility to disease [J]. Methods Enzymol,2005,401: 9-42.
    [75]HOLMES E W, YONG S L, EIZNHAMER D, et al. Glutathione content of colonic mucosa: Evidence for oxidative damage in active ulcerative colitis[J]. Dig Dis Sci,1998,43: 1088-1095.
    [76]MANNERVIK B, DANIELSON U H. Glutathione transferases-structure and catalytic activity[J]. CRC Crit Rev Biochem,1988,23:283-337.
    [77]BOOTH J, BOYLAND E, SIMS P. An enzyme from rat liver catalysing conjugations with glutathione[J]. Biochem J,1961,79 (3):516-524.
    [78]EICKELMANN P, MOREL F, SCHULZ W A, et al. Turnover of glutathione S-transferase alpha mRNA is accelerated by 12-O-tetradecanoyl phorbol-13-acetate in human hepatoma and colon carcinoma cell line [J]. Eur J Biochem,1995,229(1):21-26.
    [79]WHALEN R, BOYER T D. Human glutathione S-transferases[J]. Semin Liver Dis,1998, 18 (4):345-358.
    [80]张飚,李永清,高轩.谷胱甘肽S-转移酶综述[J].吉林畜牧兽医,2006,6:11-13.
    [81]LONG X D, MA Y, WEI Y P, et al. A studey about the association of detoxication gene GSTM1 polymorphism and the susceptibility to aflatoxin B1-related hepatocellular carcinoma[J]. Zhonghua Gan ZangBing Za Zhi,2005,13 (9):668-670.
    [82]KIHARA M, NODA K, KIHARA M. Distribution of GSTM1 null genotype in relation to gender,age and smoking status in Japanese lung cancer patients[J]. Pharmacogenetics,1995, No:S94-79.
    [83]SKULADOTTIR H, AUTRUP H, AUTRUPJ, et al. Polymorphisms in genes involved in xenobiotic metabolism and lung cancer risk under the age of 60 years.A pooled study of lung cancer patients in Denmark and Norway [J]. Lung Cancer,2005,48 (2):187-199.
    [84]LANDI S. mammalian class theta GST and differential susceptibility to carcinogens:a review[J]. Mutat Res,2000,463 (3):247-283.
    [85]WANG A L, TEW K D. Increased glutathione S-transferase activity in a cell line with acquired resistance to nitrogen mustards [J]. Cancer Treat Rep,1985,69 (5):677-682.
    [86]HOUR T C, CHEN J, HUANG C Y, et al. Characterization of chemoresistance mechanisms in a series of cisplatin-resistant transitional carcinoma cell lines [J]. Anticancer Res,2000 (5A):3221-3226.
    [87]XIE J, SHULTS K, FLYE L, et al. Overexpression of GSTA2 protects against cell cycle arrest and apoptosis induced by the DNA inter-strand crosslinking nitrogen mustard, mechlorethamine[J]. J Cell Biochem,2005,95 (2):339-351.
    [88]FAN M, CHAMBERS T C. Role of mitogen activated protein kinases in the response of tumor cells to chemotherap[J]. Drug Resist Updat,2001,4 (4):253-267.
    [89]胡野.细胞凋亡的分子医学[M]. 北京:军事医学科学出版社,2002.
    [90]SUZUKI A, IWSAAKI M, WAGAI N. Involvement of cytoplasmic serine proteinase and cpp32 subfamily in the molecular machinery of caspase-3 activation during Fas-mediated apoptosis [J]. Exp Cell Res,1997,233 (1):48-55.
    [91]KUMARS. The apoptotic cysteine protease CPP32[J]. Int J Biochem Cell biol,1997,29 (3):393-396.
    [92]STENNICKE H R, SALVESEN G S. Properties of the caspases [J]. Biochim Biophys Acta, 1998,1387 (1-2):17-31.
    [93]BUDIHARDJO I, OLIVER H, LUTTER M, et al. Biochemical pathways of caspase activation during apoptosis [J].1999, Annu Rev Cell Dev Biol,15:269-290.
    [94]GRUTTER M G. Caspases:key players in programmed cell death [J]. Curr Opin Struct Biol, 2000,10 (6):649-655.
    [95]PORTER A G, JANICKE R U. Emerging roles of caspase-3 in apoptosis [J]. Cell Death Differ,1999,6 (2) 99-104.
    [96]COHEN G M. Caspases:the executioners of apoptosis [J]. Biochem J,1997,326 (Pt1): 1-16.
    [97]SAIKUMAR P, DONG Z, MIKHAILOV V, et al. Apoptosis:definition, mechanism, and relevance to disease [J]. Am J Med,1999,107 (5):489-506.
    [98]DENAULT J B, SALVESEN G S. Apoptotic caspase activation and activity [J]. Methods Mol Biol,2008,414:191-220.
    [99]MAZUMDER S, PLESCA D, ALMASAN A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis [J]. methods Mol Biol,2008,414:13-21.
    [100]叶鑫生.细胞调控的探索:细胞信号转导、细胞凋亡和基因调控[M].北京:军事医科出版社,1999.
    [101]ZHANG Y, GOODYER C, BLANC A L. Selective and protracted apoptosis in human primary neurons microinjection with active caspase-3,-6,-7 and-8 [J]. J Neurosci,2000,20: 8384-8389.
    [102]BURLACU A. Regulation of apoptosis by Bcl-2 family protein] [J]. J Cell Mol Med,2003, 7:249-257.
    [103]ZAMZAMI N, BRENNEER C, MARZO1, et al. Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins [J]. Oncongene,1998,16 (17):2265-2282.
    [104]COULTAS L, STRASSER A. The role of the Bcl-2 protein family in cancer [J]. Semin Cancer Biol,2003,13:115-123.
    [105]KORSMEYER S J. Bcl-2 initiates a new category of oncogenes:Regulators of cell death [J]. Blood,1997,80:879.
    [106]KATOH S, MITSUI Y, KITANI K, et al. Nerve growth factor rescues PC12 cells from apoptosis by increasing amout of bcl-2 [J]. Biochem Biophys Res Commun,1996,229(2): 653-657.
    [107]杨长春,王林源,梁计魁等.Bcl-2基因家族与细胞凋亡[J].武警医学,2001,12(10):617-619.
    [108]CRISTOFANON S, NUCCITELLI S, D'ALESSIO M, et al. Oxidation-dependent maturation and survival of explanted blood monocytes via Bcl-2 up-regulatin[J]. Biochem Pharmacol,2008,76 (11):1533-1543.
    [109]SAWADA M, NAKASHIMA S, BANNO YE, et al. Ordering of ceramide formation, caspase activation, and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells[J]. Cell Death Differ,2000,7 (9):761-772.
    [110]齐玲,杨宁江,杨淑艳等. bcl-2家族蛋白和信号传导通路[J]. 吉林医药学院学报,2011,32(1):31-33.
    [111]OLTVAI Z N, MILLIMAN C L, KORSMEYER S J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death [J]. Cell,1993,74 (4) 609-619.
    [112]RENAULT T T, MANON S. Bax:Addressed to kill [J]. Biochimie,2011,93 (9): 1379-1391.
    [113]LALIER K, CARTRON P F, JUIN P, et al. Bax activation and mitochondrial insertion during apoptosis [J]. Apoptosis,2007,12 (5):887-896.
    [114]ER E, LALIER L, CARTRON P F, et al. Control of Bax homodimerization by its carboxyl terminus [J]. J Biol Chem,2007,282 (34):24938-24947.
    [115]SHINN C, WASELENKO J K, FUCHS E J, et al. Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of Caspase-3 without evidence of Bcl-2 modulation or dependence on functional p53[J]. Blood,1998,92 (10):3804.
    [116]OLA M S, NAWAZ M, AHSAN H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis [J]. Mol Cell Biochem,2011,351 (1-2):41-58.
    [117]SWANTON E, SAVORY P, COSULICH S, et al. Bcl-2 regulates a Caspase-3/Caspase-2 apoptotic cascade in cytosolic extracts [J]. Oncogene,1999,18 (10):1781.
    [118]CHENG E H Y, KIRSCH D G, CLEM R J, et al. Conversion of Bcl-2 to a Bax like death effector by caspases [J]. Science,1997,278 (5345):1966-1968.
    [119]KIRSCH D G, DOSEFF A, CHAU B N, et al. Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome C mitochondrial cytochrome release[J]. J Biol Chem,1999, 274:21155-21161.
    [120]FUJITA N, TSURUO T. Involvement of Bcl-2 cleavage in the acceleration of VP-16-induced U937 cell apoptosis [J]. Biochem Biophys res Commun,1998,246 (2):484.
    [121]詹启敏.分子肿瘤学[M].北京:人民卫生出版社,2005.
    [122]LU S, SHI R, TSAO C C, et al. RNA silencing in plants by the expression of siRNA duplexes [J]. Nucleic Acids Res,2004,32 (12):171.
    [123]JORGENSEN R. Altered gene expression in plants due to transinteractions between homologous genes [J]. Trends Biotechnol,1990,8 (12):340-344.
    [124]GUO S, KEMPHUES K J. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed [J]. Cell,1995, 81 (4):611-620.
    [125]FIRE A, XU S, MONTGOMERY M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391 (6669):806-811.
    [126]ELBASHIR S M, HARBORTH J, LENDECKEL W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J]. Nature,2001,411 (6836): 494-498.
    [127]VERMAN K. RNA interference is mediated by 21-and 22-nucleotide RNAs [J]. Genes Dev, 2004,15 (2):188-200.
    [128]FIRE A Z. Gene silencing by double-stranded RNA [J]. Cell Death Differ,2007,14(12): 1998-2012.
    [129]METTE M F, MATZKE A J, MATZKE M A. Resistance of RNA-mediated TGS to HC-Pro, a viral suppressor of PTGS, suggests alternative pathways for dsRNA processing [J]. Curr Biol,2001,11 (14):1119-1123.
    [130]HUTVAGNER G, MCLACHLANJ, PASQUINELLI A E, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA [J]. Science,2001,293:834-838.
    [131]HAMILTON A J, BAULCOMBE D C. A species of small antisense RNA in post-transcriptional gene silencing in plants [J]. Science,1999,286(54441):950-952.
    [132]BERNSTEIN E, CAUDY AA, HAMMOND S M, et al. Role for a bidentate ribonuclease in the initation step of RNA interference [J]. Nature,2001,409:363-366.
    [133]ELABASHIR S M, MARTINEZ J, PATKANIOWSKA A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate [J]. EMBO J,2001,20:6877-6888.
    [134]HONG J, WEI N, CHALK A, et al. Focusing on RISC assembly in mammalian cells [J]. Biochem Biophys Res Commun,2008,368:703-708.
    [135]秦玉新,蒙凌华,丁健. RNA干扰技术的研究进展[J].中国药理学通报,2007,23(4):421-424.
    [136]SHARP P A. RNAi and double-strand RNA [J]. Genes Dev,1999,13 (2):139-141.
    [137]LIPARDI C, WEI Q, PATERSONB M. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs[J]. Cell,2011,107 (3):297-307.
    [138]FIRE AFire A. Nucleic acid structure and intracellular immunity:some recent ideas from the world of RNAi [J]. Q Rev Biophys,2005,38 (4):303-309.
    [139]ELBASHIR S M, LENDECKEL W, TUSCHL T, et al. RNA interference is mediated by 21-and-22-nucleotide RNAs[J]. Gene Dev,2001,15 (2):188.
    [140]宋尔卫.RNA干扰的生物学原理与应用[D].北京:高等教育出版社,2005.
    [141]陈莉,秦婧,朱远源.在医药领域中RNA干扰研究进展[J].药物生物技术,2009,16(1):83-89.
    [142]AMARZGUIOUI M, ROSSI J J, KIM D. Approaches for chemically synthesized siRNA and vector-mediated RNAi[J]. FEBS Lett,2005,579:5974-5881.
    [143]DONZ O, PICARD D. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. [J]. Nucl Acid Res,2002,30 (10):e46.
    [144]YANG D, BUCHHOLZ F, HUANG Z, et al. Short duplexes produced by hydrolysis with Escherichoa coli Rnase mediate effective RNA interference in mammalian cells [J]. Proc Natl Acad Sci USA,2002,99 (15):9942-9947.
    [145]BRUMMELKAMP T R, BERNARDS R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science,2002,296:550-553.
    [146]BRUMMELKAMP T R, BERNARDS R. New tools for functional mammalian cancer genetics[J]. Nat Rev Cancer,2003,3:781-789.
    [147]LIU C M, LIU D P, DONG W J, et al. Retrovirus vector-mediated stable gene silencing in human cell [J]. Biochem Biophy Res Commun,2004,313:716-720.
    [148]CASTANOTTO D, LI H, ROSSI J J, et al. Functional siRNA expression from transfected PCR products [J]. RNA,2002,8:1454-1460.
    [149]CASTANOTTO D, ROSSI J J. Construction and transfection of PCR products expression siRNAs or shRNAs in mammalian cells [J]. Methods Mol Biol,2004,252:509-514.
    [150]王磊.RNA干扰抑制人结肠癌HT-29细胞COX-2基因表达的实验研究[D].苏州:苏州大学,2008.
    [151]LIN S L, SUKASWEANGS, CHUONG C M, et al. D-RNAi (messenger RNA-antisense DNA interference) as a novel defense system against cancer and viral infections[J]. Curr Cancer Drug Targets,2001,1 (3):241-247.
    [152]UCHIDA H, TANAKA T, SASAKI K, et al. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo [J]. Mol Ther,2004,10 (1):162-171.
    [153]ZHANG X, GE Y L, TIAN R H. The knockdown of c-myc expression by RNAi inhibits cell proliferatin in human colon cancer HT-29 in vitro and in vivo [J]. Cell Mol Biol Lett,2009, 14 (2):305-318.
    [154]NIETH C, PRIEBSCH A, STEQE A, et al. Modulation of the classical multidrug reistance (MDR)phenotype by Rna interference (RNAi)[J]. FEBS Lett,2003,545(2-3):144-150.
    [155]SALV1 A, ARICI B, DE P G, et al. Small interfering RNA uro-kinase silencing inhibits invasion and migratin of human hepatocellular carcinoma cells [J]. Mol Cancer Ther,2004, 3 (6):671-678.
    [156]曾德二,胡展育,游春梅.RNAi及其在生命科学研究中的应用[J].文山师范高等专科学校学报,2007,20(1):108-111.
    [156]ZHENG L, LIU J, BATALOVS, et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells [J]. Proc Natl Acad Sci USA,2004,101 (1): 135-140.
    [157]ZHANG I, YANG N. MOHAMED H A, et al. Vector based RNAi, a novel tool for isoform-specific knockdown of VEGF and antiangiogenesis gene therapy of cancer [J]. Biochem Biophys Res Commun,2003,303 (4):1169.
    [158]HARBORTH J, ELBASHIR S M, BECHERT K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs [J]. J Cell Sci,2001,114 (Pt 24): 4557-4565.
    [159]CAPODICI J, KARIKO K, WEISSMAN D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference [J]. J Immunol,2002,169 (9):5196-5201.
    [160]HAMASAKI B M. Evaluation of serum cystatin C concent ration as a marker of renal function in patients with cirrhosis of the liver [J]. Gut,2004,50 (1):106-110.
    [161]SHEN C, BUCK A K, RESKE S N, et al. Gene silencing by adenovirus-delivered siRNA[J]. FEBS Lett,2003,539 (1-3):111-114.
    [162]LEA J S, SUNAGA N, SATO M, et al. Silencing of HPV 18 oncoproteins with RNA interference causes growth inhibition of cervical cancer cells [J]. Reprod Sci,2007,14(1): 20-28.
    [163]KAPADIA S B, BRIDEAU-ANDERSEN A, CHISARI F V. Interference of hepatitis C virus RNA replication by short interfering RNAs [J]. Proc Natl Acad Sci US A,2003,100 (4): 2014-2018.
    [164]O'NEIL N J, MARTIN R L, TOMLINSON M L, et al. RNA-mediated interference as a tool for identifying drug targets [J]. Am J Pharmacogenomics,2001,1 (1):45-53.
    [165]HANNON G J, ROSSI J J. Unlocking the potential of the human genome with RNA interference [J]. Nature,2004,431 (7006):371-378.
    [166]LEUNG R K, WHITTAKER P A. RNA interference:from gene silencing to gene-specific therapeutics [J]. Pharmacol Ther,2005,107 (2):222-239.
    [167]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T))Method[J]. Methods,2001,25 (4):402-408.
    [168]PAR L P, BENGT M. The role of Glutathione in the isomerization of A 5-androstene-3,17-dione catalyzed by human glutathione transferase A1-1 [J]. J Bio Chem, 2001,276 (15):11698-11704.
    [169]FOGH J, FOGH J M, ORFEO T, et al. One hundred and twenty-seven cultured human tumor cell lines producing tumors in mude mice [J]. J Natl Cancer Inst,1977,59 (1):221-226.
    [170]ANDERBERG E K, ARTURSSON P. Epithelial transport of drugs in cell culture.Ⅷ:Effects of sodium dodecyl sulfate on cell membrane and tight junction permeability in human intestinal epithelial (Caco-2) cells [J]. J Pharm Sci,1993,82 (4): 392-398.
    [171]BRISKE-ANDERSON M J, FINLEY J W, NEWMAN S M. The influence of culture time and passage number on the morphological and physiological development of caco-2 cells [J]. Proc Soc Exp Biol Med,1997,214:248-257.
    [172]PETERS W H,ROELOFS H M. Time-dependent activity and expression of glutathione S-transferases in the human colon adenocarcinoma cell line caco-2 [J]. Biochem J,1989,264: 613-616.
    [173]SCHARMACH E, HESSEL S, NIEMANN B, et al. Gluthione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells[J]. Toxicology,2009,265 (3):122-126.
    [174]ROMERO L, ANDREWS K, KIRBY G M, et al. Human GSTA1-1 reduces c-Jun N-terminal kinase signalling and apoptosis in Caco-2 cells [J]. Biochem J,2006,400:135-141.
    [175]SVEHLIKOVA V, WANG S, JAKUBIKOVA J, et al. Interaction s between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in Caco-2 cells [J]. Carcinogenesis,2004, 25 (9):1629-1637.
    [176]TRUANT S, BRUYNEEL E, GOUYER V, et al. Requirement of both mucins and proteoglycans in cell-cell dissociation and invasiveness of colon carcinoma HT-29 cells[J]. Int J Cancer,2003,104 (6):683-694.
    [177]BASTEN G P, BAO Y, WILLIAMSON G. Sulforaphane and its glutathione conjugate but not sulforaphane nitrile induce UDP-glucuronosly transferase (UGT1A1) and glutathione transferase(GSTA1) in culltured cells [J]. Carcinogenesis,2002,23 (8):1399-1404.
    [178]GIENI R S, LI Y, HAYGLASS K T. Comparison of 3H thymidine incorporation with MTT-and MTS-based bioassays for human and murine IL-2 and IL-4 analysis. Tetrazolium assays provide markedly enhanced sensitivity [J]. J Immunol Methods,1995,187 (1):85-93.
    [179]BUTTKE T U, MC-CUBRGY J A, OWEN T C. Use of an aqeous tetraxolium/formazan assay to measure viability and proliferation of lymphokine dependent cell lines [J]. J Immunol Methods,1993,157:233.
    [180]GOODWIN C J, HOLT S J, DOWNES S, et al. Microculture tetrazolium assays:a comparison bewteen two new tetrazolium salts, MTT and MTS[J]. J Immunol Methods,1995, 179 (1):95-103.
    [181]ROLLINO C, BORSA S, BELLONE G, et al. False positive results with MTT assay [J]. J Immunol Methods,1995,185 (1):141-143.
    [182]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,1999,312-333.
    [183]TOWBIN H, STAEHELIN T, GORDON GTowbin H, Staehelin T, Gordon G. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets procedure and same applications[J]. Proc Natl Acal Sci USA,1979,76:4350-4354.
    [184]RUAN W, LAI M. Actin, a reliable marker of internal control?[J]. clin Chim Acta,2007, 385 (1-2):1-5.
    [185]BOATRIGHT K M, SALVESEN G S. Mechanisms of caspase activation [J]. Curr Opin Cell Biol,2003,15 (6):725-731.
    [186]PORTER A G, JANICKE R U. Emerging roles of caspase-3 in apoptosis [J]. Cell Death Differ,1999,6 (2):99-104.
    [187]COHEN G M. Caspases:the executioners of apoptosis [J]. Biochem J,1997,326 (Pt1): 1-16.
    [188]YU T, LI J, SUN H. C6 ceramide potentiates curcumin-induced cell death and apoptosis in melanoma cell lines in vitro [J]. Cancer Chemother Pharmacol,2010,66 (5):999-1003.
    [189]ZHANG T H, LIU J F, ZHANG Y, et al. Ceramide induces apoptosis in human lung adenocarcinoma A549 cells through mitogen-activated protein kinases [J]. Acta Pharmacol Sin,2007,28 (3):439-445.
    [190]袁亚男,刘文忠.实时荧光定量PCR技术的类型、特点与应用[J].中国畜牧兽医,2008,35(3):27-30.
    [191]WALKER N J. Real-time and quantitative PCR:applications to mechanism basesd toxicology[J]. J Biochem Mol Toxicol,2001,15 (3):121-127
    [192]AROCHO A, CHEN B, LADANVYI M, et al. Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts [J]. Diaqn Mol Pathol,2006,15 (1):56-61.
    [193]KORSMEYER S J. Bcl-2 initiates a new sategory of oncogenes regulator of cell death [J]. Blood,1992,80:879.
    [194]段序梅.bcl-2基因与肿瘤相关性及在细胞凋亡中的作用[J].临床肿瘤学杂志,2002,7(4):314-316.
    [195]K.RAJEWSKI S, KRAJEWSKA M, SHABAIK A, et al. Immunohistochemical determination of in vivo distribition of Bax, a dominant inhibitor of Bcl-2 [J]. Am J Pathol,1994,145: 1323-1336.
    [196]DE FALCO M, LAFORGIA V, FEDELE V. Vasoactive intestinal peptide stimulation modulates the expression of Bcl-2 family members in the adrenal gland of the llizard podarcis sicula[J]. Histochem J,2001,33 (11-12):639-645.
    [197]RAISOVA M, HOSSINI A M, EBERLE J. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis [J]. J Invest Dermatol,2001,117 (2):333-340.
    [198]GUO B, CAO S, TOTH K, et al. Overexpression of Bax enhances antitumor activity of chemotherapeutic agents in human head and neck squamous cell carcinoma[J]. Clin Cancer Res,2000,6 (2):718-724.
    [199]PETTUS B J, CHALFANT C E, HANNUN Y A, et al. Ceramide inapoptosis:an overview and current perspecties [J]. Biochim BiophysActa,2002,1585 (2-3):114-125.
    [200]STRUCKHOFF A P, PATEL B, BECKMANB S, et al. Inhibition of p53 sensitizes MCF-7 cells to ceramide treatment [J]. Int J Oncol,2010,37 (1):21-30.
    [201]AHN E H, SCHROEDER J J. Induction of apoptosis by sphingosine, sphinganine and C(2)-ceramide inhuman colon cancer cells.but not by C(2)-dihydroceramide [J]. Anticancer Res,2010,30 (7):2881-2884.
    [202]EUN H A, JOSEPH J S. Sphingoid bases and ceramide induce apoptosis in HT-29 and HCT-116 human colon cancer cells [J]. Exp Biol Med,2002,227:345-353.
    [203]ZHANG X, LI B, ZHANG Y, et al. Ceramide induces release of mitochondrial proapoptotic proteins in caspase-dependent and independent manner in HT-29 cells [J]. Sci China C Life Sci,2008,51 (1):66-71.
    [204]ZHU X F, ZHANG X S, LI Z M, et al. Apoptosis induced by ceramide in hepatocellular carcinoma Bel7402 cells [J]. Acta Pharmacol Sin.,2000,21 (3):225-228.
    [205]MINANO A, CABALLERO-BENITEZ A, LIUCH M, et al. C2-ceramide mediates cerebellar granule cells apoptosis by activation of caspase-2,-9, and-3[J]. J Neurosci Res,2008,86 (8):1734-1747.
    [206]POPPE M, REIMERTZ C, MUNSTERMANN G, et al. Ceramide-induced apoptosis of D283 medulloblastoma cells requires mitochondrial respiratory chain activity but occurs independently of caspases and is not sensitive to Bcl-xl overexpression [J]. J Neurochem, 2002,82:482-494.
    [207]VON H C, WIEDER T, GILLISSEN B, et al. Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells [J]. Oncogene,2002, 21:4009-4019.
    [208]ITO A, HORIGOME K. Ceramide prevents neuronal programmed cell death induced by nerve grouwth factor deprivation. [J]. J Neurochem,1995,65 (1):463-466.
    [209]KIM W H, CHOI C H, KANG S K, et al. Ceramide induces non-apoptotic cell death in human glioma cells [J]. Neurochem Res,2005,30 (8):969-979.
    [210]LOPEZ-MARURE R, GUTIERREZ G, MENDOZA C, et al. Ceramide promotes the death of human cervical tumor cells in the absence of biochemical and morphological markers of apoptosis [J]. Biochem Biophys Res Commun,2002,293 (3):1028-1036.
    [211]AWASTHI Y C, SHARMA R, SINGHAL S S. Human glutathione S-transferases [J]. Int J Biochem,1994,26(3):295-308.
    [212]HOLMES J, WAREING C, JACOBS A, et al. Glutathione-s-transferase pi expression in leukaemia:acomparative analysis with mdr-1 data [J]. Br J Cancer,1990,62(2):209-212.
    [213]ROMERO L, HIGGINS M A, GILMORE J, et al. Down-regulation of alpha class glutathione S-transferase by interleukin-1β in human intestinal epithelial cells (Caco-2) in culture [J]. Drug Metab Dispo,2006,30 (11):1186-1193.
    [214]NG L, NICHOLS K, O'ROURKE K, et al. Repression of human GSTA1 by interleukin-1β is mediated by variant hepatic nuclear factor-1C [J]. Mol Pharmacol,2007,71:201-208.
    [215]PSHEZHETSKY A V, FEDJAEV M, ASHMARINA L, et al. Subcellular proteomics of cell differentiation:quantitative analysis of the plasma membrane proteome of Caco-2 cells [J]. Proteomics,2007,7 (13):2201-2215.
    [216]MARTINEZ-LARA E, SILES E, HERANDEZ R, et al. Glutathione S-transferase isoenzymatic response to aging in rat cerebral cortex and cerebellum [J]. Neurobiol Aqinq, 2003,24 (3):501-509.
    [217]HABIG W H, PABST M J, JACOBY W B. Glutathione S-transferase:the first enzymatic tep in mercapturic acid formation [J]. J Biol Chem,1974,249:7130-7139.
    [218]HAYES J D, PULFORD D J. The glutathione S-transferase supergene family:regulation of GST and the contributionof the isoenzymes to cancer chemoprotection and drug resistance [J]. Crit RevBiochem Mol Biol,1995,30:445-600.
    [219]ROMERO L, HIGGINS M A, GILMORE J, et al. Down-regulation of alpha class glutathione S-transferase by interleukin-1 beta in human intestinal epithelial cells (Caco-2) in culture[J]. Drug Metab Dispos,2002,30 (11):1186-1193.
    [220]DI P G, MAGNO L A, RIOS-SANTOS F. Glutathione S-transferases:an overview in cancer research [J]. Expert Opin Drug Metab Toxicol,2010,6 (2):153-170.
    [221]COLES B F, KADLUBAR F F. Human alpha class glutathione S-transferases:genetic polymorphism, expression and susceptibility to disease [J]. Methods enzymol.2005,401: 9-42.
    [222]RUSSO I, LUCIANI A, DE C P, et al. Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and crohn's mucosa through modulation of antioxidant defense machinery [J]. PloS One,2012,7 (3):e32841.
    [223]APPIAH-OPONQ R, COMMANDEUR J N, ISTYASTONO E, et al. Inhibition of human glutathione S-transferase by curcumin and analogues [J]. Xenobiotica,2009,39(4):302-311.
    [224]MEDINA-DIAZ I M, RUBIO-ORTIZ M, MARTINEZ-GUZMAN M C, et al. Organophosphate pesticides increase the expression of alpha glutathione S-transferase in HepG2 cells [J]. Toxicol In Vitro,2011,25 (8):2074-2079.
    [225]KIM S K, ABDELMEGEED M A, NOVAK R F. Glutathione S-transferase expression in primary cultured rat hepatocytes [J]. J Pharmacol Exp Thera,2006,316 (3):1255-1261.
    [226]LANGOUET S, CORCOS L, ABDEL-RAZZAK Z, et al. Up-regulation of glutathione S-transferases alpha by interleukin 4 in human hepatocytes in primary culture [J]. Biochem Biophys Res Commun,1995,216 (3):793-800.
    [227]PARK IN, CHO I J, KIM S G. Ceramide negatively regulates glutathione S-transferase gene transactivation via repression of hepatic nuclear factor-1 that is degraded by the ubiquitin proteasome system [J]. Mol Pharmacol,2004,65 (6):1475-1484.
    [228]ROMERO L, NG L, KIRBY G M. Chemical inducers of rodent glutathione S-transferases down-regulate human GSTA1 transcription throught a mechanism involving variant hepatic nuclear factor 1-C[J]. Mol Pharmacol,2006,70:277-286.
    [229]AOKI Y, CIOCA D P, OIDAIRA H, et al. RNA interference may be more potent than antisense RNA in human cancer cell lines [J]. Clin Exp Pharmacol Physiol,2003,30:96-102.
    [230]DALBY B, CATES S, HARRIS A, et al. Advanced transfection with lipofectamine 2000 reagentprimary neurons, siRNA, and high-througuput applications [J]. Methods,2004,33: 95-103.
    [231]MARUCCIG, LAMMI C, BUCCIONI M, et al. Comparison and optimization of transient transfection methods at human astrocytoma cell line 1321N1 [J]. Anal Biochem,2011,414 (2):300-302.
    [232]钟英强,黄花荣,刘娟等.siRNA沉默COX-2基因对人胰腺癌Capan-2细胞增殖、细 胞周期、凋亡和成瘤能力的影响[J].中国病理生理杂志,2011,27(7):1290-1296.
    [233]CHULAROJMONTRI L, IHARA Y, MUROIE, et al. Cytoprotective role of phyllanthus urinaria L. and glutathione-S transferase Pi in doxorubicin-induced toxicity in H9c2 cells [J]. J Med Assoc Thai,2009,3:S43-51.
    [234]MULLER J, SIDLER D, NACHBUR U, et al. Thiazolides inhibit growth and induce glutathione-S-transferase Pi (GSTP1)-dependent cell death in human colon cancer cells [J]. Int J Cancer,2008,123 (8):1797-1806.
    [235]HOKAIWADO N, TAKESHITA F, NAIKI-ITO A, et al. Glutathione S-transferase Pi mediates proliferation of androgen-independent prostate cancer cells[J]. Carcinogenesis, 2008,29 (6):1134-1138.
    [236]KELLY O'R. The influence of glutathione S-transferase A1 on proliferation of the human colon adenocarcinoma cell line, Caco-2 [D]. Guelph:university of Guelph,2010.
    [237]SHARMA A, PATRICK B, LI J, et al. Glutathione S-transferases as antioxidant enzymes:small cell lung cancer (H69) cells transfected with hGSTAl resist doxorubicin-induced apoptosis [J]. Arch Biochem Biophys,2006,452 (2):165-173.
    [238]CHENQ J Z, SINGHAL S S, SAINI M, et al. Effects of mGST A4 transfection on 4-hydroxynonenal-mediated apoptosis and differentiation of K562 human erythroleukemia cells [J]. Arch Biochem Biophys,1999,371 (1) 29-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700