蓝光诱导拟南芥(Arabidopsis thaliana L.)花色素苷积累及CHS基因表达的信号转导研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高等植物花色素苷积累和CHS基因表达受光调控,蓝光是最有效光谱之一。尽管对蓝光诱导的反应机理和信号转导途径已有一些研究,但对胞外钙离子和钙调素(CaM)是否参与反应仍不清楚。本文以拟南芥(Arabidopsis thaliana,Lansberg生态型)的野生型(WT)和hy4突变体为材料,在研究蓝光诱导花色素苷积累和CHS基因表达的基础上,对参与蓝光反应的信号转导途径组分进行了研究,主要结果如下:
     1 蓝光诱导拟南芥花色素苷积累和CHS基因表达
     在20 μ mol·m~(-2)·s~(-1)白光下生长13d龄的幼苗,经不同光强和不同时间的蓝光处理后,叶片花色素苷积累显著增加。蓝光诱导花色素苷积累的作用具有对光强的依赖性,随着光强的升高,其花色素苷的含量增加;同一光强下照光时间延长,含量增加。蓝光对拟南芥叶片花色素苷积累的诱导是高辐照反应。蓝光处理后,hy4叶片的花色素苷含量明显低于WT中的花色素苷含量,说明cry1是蓝光诱导花色素苷积累的主要光受体。
     蓝光诱导拟南芥WT中CHS基因的表达,蓝光处理4小时即有表达,8小时达到最高的表达,之后表达量逐渐下降;在突变体hy4中,蓝光诱导CHS基因几乎不表达。说明cry1介导蓝光诱导CHS基因的表达。
     2 蓝光诱导花色素苷积累和CHS表达的信号转导组分研究
     1)Ca~(2+)和CaM的作用
     蓝光诱导叶片花色素苷的积累需要培养基中Ca~(2+)的存在,无Ca~(2+)条件下蓝光反应受阻;培养基中加入Ca~(2+)载体A23187,促进蓝光诱导的花色素苷积累;EGTA和质膜Ca~(2+)通道抑制剂异博定(verapamil)、尼群地平(nifedipine,Nif)处理则抑制蓝光诱导的花色素苷积累。
     A23187对蓝光诱导的CHS基因表达有一定的促进作用,EGTA和异博定则
    
    有抑制作用;尼群地平(Nif)对花色素着积累和基因表达的作用不一致,需要
    进一步研究。上述实验表明蓝光反应需要胞外C/”的参与。
     IP3与 CS>通道受体结合抑制剂肝素处理可促进蓝光诱导的花色素苦积累,
    但抑制CHS基因表达;IP3分解抑制剂LIC13则抑制花色素着积累而促进基因表
    达;施加肌醇既促进蓝光诱导花色素着积累又促进基因的表达。看来,IP3敏感
    的CaZ”通道对蓝光诱导的CHS基因表达起正调节的作用。
     钙调素KaM)桔抗剂Tfo和W7对花色素昔的积累和CHS基因表达的作用
    有抑制也有促进。
     lP3敏感的胞内钙库 CaZ”通道和 CaM是否参与 cry介导的特异蓝光反应的
    信号转导还需深入研究。蓝光诱导的花色素音积累和CHS基因表达可能存在着
    精细的CaZ”/CaM信号途径。
     对冲 突变体的研究表明,大部分影响蓝光诱导WT花色素苦积累和CHS
    表达的o’”相关药物女 A23 87、EGm、Nif、veraplllllll、肝素、肌醇等处理到
    对你4没有明显影响,说明CaU参与的蓝光反应是由cryl介导的特异蓝光反应。
    2)质膜组分的作用
     运用黄素蛋白括抗剂DPI进行的实验表明,质膜氧化还原参与蓝光诱导的
    拟南芥花色素着积累及 M基因表达的信号转导过程,这一过程是 cry介导的;
    质膜H”一ATPase和 C/一ATPase在蓝光诱导的 CHS表达及花色素着积累的信
    号途径中起着负调节的作用;H”一 ATPase的作用与 Cyl介导的特异蓝光反应有
    关。
     G蛋白抑制剂PTX促进蓝光诱导的花色素苦积累,G蛋白激活剂CTX有相
    反的作用;但二、者都抑制 CHS基因的表达。G蛋白的作用并非与 Cry介导的特
    异蓝光反应相关。
    3)其它组分的作用
     蛋白激酶抑制剂星形抱菌素(staurosporine)和磷酸酶抑制剂斑鳌素
    *antheddin)的实验表明,staurosporine敏感的蛋白激酶是蓝光诱导的花色素
    
    苦积累和基因表达的负调节因子;而cantheddin敏感的磷酸酶是蓝光诱导CHS
    表达的正调节团于。蛋白质的可逆磷酸化可能参与了 Cry介导的特异蓝光反应。
     蛋白质合成抑制剂放线菌酮*,Chx)明显抑制蓝光诱导的花色
    素着积累和CHS的表达,合成新的蛋白质是Cry回介导的特异蓝光反应所必需的。
    4)糖的作用
     糖不仅作为碳源参与花色素音的积累,还可能作为信号分子参与蓝光诱导的
    CHS表达。
Numerous experiments have indicated that anthocyanin biosynthesis in higher plants is regulated by light and blue light is one of the most effective factors to stimulate anthocyanin accumulation in seedlings. Although several reports have been published for the components involved in signaling pathway of light-controlled pigmentation, evidence of extracellular Ca2+and CaM involved in blue light induced anthocyanin accumulation and CHS expression is still limited.
    WT and hy4 of Arabidopsis thaliana (Landsberg) were used in the experiments. The components involved in the signaling pathway of blue-light-induced anthocyanin accumulation and CHS expression were investigated by pharmacological approach. The main results are as follows:
    1. Blue-light-induced anthocyanin accumulation and CHS expression in
    Arabidopsis
    13-d-old seedlings of WT and hy4 Arabidopsis grown under white light (WL) with the light fluence rate of 20μmol·m-2·s-1 were transferred into blue light (BL) and irradiated for period of time with different fluence rates before harvesting. The leaves isolated from the seedlings showed an increase in the anthocyanin content. The BL response was fluence dependent and the anthocyanin content increased with the irradiating time under the same fluence rate. Our results supplied another evidence that blue-light-induced anthocyanin accumulation was a high irradiance response (HIR) in plant photomorphogenesis. Anthocyanin content in hy4 mutant was lower than that in WT Arabidopsis after BL treatment and it was demonstrated that cryptochrome 1 (cry1) mediated the BL response in anthocyanin accumulation.
    Chalcone synthase (CHS) gene expression in the WT leaves was induced by BL and it could be detected at 4 h and reached a peak at 8 h in BL. And then the gene expression declined. Blue light could not induce any gene expression in hy4 mutant indicating cryl is the photoreceptor mediating the blue-light-induced CHS gene expression.
    2. Components involved in blue-light-induced anthocyanin accumulation and
    CHS expression in Arabidopsis
    
    
    
    1) Ca2+/ CaM
    The Ca2+ in the medium was essential for the blue-light-induced anthocyanin accumulation. BL response was blocked without Ca2+ and could be enhanced by the application of A23187, a calcium ionophore. The anthocyanin accumulation induced by BL was inhibited by EGTA and two nonpermeable L-type channel blocker verapamil and nifedipine (Nif). CHS gene expression induced by BL was enhanced by A23187 and inhibited by EGTA and verapamil. But the effect of another Ca2+ channel blocker Nif on the gene expression was opposite to its role in the inhibition of anthocyanin accumulation. Our data demonstrated that extracellular Ca2+ was required for blue-light-induced anthocyanin accumulation and CHS gene expression and verapamil sensitive plasma membrane Ca2+ channel played a positive effector on BL response.
    Heparin, an antagonist of IP3 receptor increased the anthocyanin content induced by BL but inhibited CHS gene expression. LiCl3, an inhibitor of IP3 pathway, showed an inhibition of the pigmentation but had a positive effect on gene expression. Inositol supplied in the medium enhanced both blue-light-induced pigmentation and gene expression.
    Antagonists of CaM trifluoperazine (Tfp) and W7 were used for detecting the role of CaM in BL response. It was showed that the former had a positive and the later had a negative effect on BL response.
    There is still a question to be addressed whether intracellular IP3 sensitive calcium store and CaM are involved in BL response mediated by cry 1. There should be a fine regulating process of Ca2+/CaM in the blue-light-induced anthocyanin accumulation and CHS gene expression in Arabidopsis.
    Application of most pharmacological chemicals such as A23187, EGTA, Nif, verapamil, heparin and inositol did not show significant effect on athocyanin accumulation after BL treatment in hy4 mutant. This indicated that the Ca2+ play an important role in cryl specific signaling.
    2) Components in plasma membrane
    E
引文
陈大清,2002 不同光质和激动素对拟南芥(Arabidopsis thaliana L.)幼苗光形态建成影响的研究 华南师范大学博士研究生学位论文
    邓江明,宾金华,潘瑞炽,2000 光质对水稻幼苗初级碳同化的影响 植物学报,42:234-238
    洪宇,童哲,1998.光敏色素在植物个体发育中的作用 植物生理学通讯,34:417-422
    李韶山,潘瑞炽,1994b 蓝光对水稻幼苗叶绿体发育的影响 中国水稻科学,8:185-188
    李韶山,潘瑞炽,1994a 蓝光对水稻幼苗生长效应的研究 中国水稻科学,8:115-118
    李韶山,潘瑞炽,1995 蓝光对水稻幼苗碳水化合物和蛋白质代谢的调节 植物生理学报,21:22-28
    潘瑞炽,陈方毅,1992 蓝光延缓绿豆离体叶片衰老的研究 华南植物学报,试刊Ⅰ:66—71
    潘瑞炽,王小菁,李娘辉,植物生理学 北京:高等教育出版社,2001年6月,第四版
    孙大业,郭艳林,马力耕,崔素娟 细胞信号转导 北京:科学出版社,2001年10月,第三版
    王小菁,2001.植物光敏色素信号转导研究进展 植物科学进展,高等教育施普林格出版社 vol 3:137-145
    王晓明,潘瑞炽,1997 蓝光对绿豆下胚轴愈伤组织生长和呼吸的影响 植物学报,39:49-54
    王晓明,王小菁,潘瑞炽,1999 蓝光对绿豆下胚轴愈伤组织形成和生长过程中蛋白质代谢的影响 植物生理学报,25:321-326
    文彬,2002.茉莉酸甲酯(MeJA)对绿豆(Vigna radiata L.)下胚轴质膜水解活力影响的研究 华南师范大学博士研究生学位论文
    余让才,潘瑞炽,1996b 蓝光对水稻幼苗光合作用的影响 华南农业大学学报,17:88-92
    余让才,潘瑞炽,1996c 蓝光对水稻幼苗呼吸代谢的影响 中国水稻科学,10:159-162
    余让才,潘瑞炽,1996a 蓝光对水稻幼苗生长及干物质积累的影响 华南师范大学学报(自然科学版),2:93-95
    余让才,潘瑞炽,1996d 蓝光对水稻幼苗生长及内源激素水平的影响 植物生理学报,23:175-180
    Ahmad M, Jarillo J A and Cashmore A R, 1998a. Chimeric proteins between cryl and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein
    
    stability. Plant Cell, 10: 197-208
    Ahmad M and Cashmore A R, 1996. Seeing blue: The discovery of cryptochrome. Plant Mol Biol, 30:851-861
    Ahmad M and Cashmore A R, 1993. HY4 gene of A. thaliana encodes a protein with the characteristics of a blue-light photoreceptor. Nature, 366:162-166
    Ahmad M and Cashmore A R, 1997. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J,11:421-427
    Ahmad M, Jarillo J A, Smirnova O and Cashmore A R, 1998b. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature, 392:720-723
    Ahmad M, Lin C and Cashmore, A R, 1995. Mutations throughout an Arabidopsis blue-light-photorecrptor impair blue ligtht-respinsive anthocyanin accumulation and inhibition of hypcotyl extension. Plant J, 8:653-658
    Anil V S and Rao K S, 2001. Calcium-mediated signal transduction in plants: A perspective on the role of Ca~(2+) and CDPKs during early plant development. J. Plant Physiol., 158:1237-1256
    Arthur J M, 1936. Radiation and anthcyanin pigments. In: Biological Effects of Radiation 2, Duggan B M(ed.), McGraw-Hill, New York, pp:1109~1118
    Asard H, Horemans N, Briggs W R and Caubergs R J, 1995. Blue light perception by endogenous redox components of the plant plasma membrane. Photochem. Photobiol, 61:518-522
    Askerlund P and Sommarin M, 1996. Calcium efflux transporters in higher plant. In Membranes: Specialized Functions in Plants. M Smallwood, J P Knox and D J Bowler, eds(oxford, UK:BIOS),pp:281-299
    Assmann S M, Simoncini L and Schroeder J I, 1985. Blue light activates electrogenic ion pumping in guard cell protoplasis of Vicia faba. Nature, 318:285-287
    Babourina O, Newman I and Shabala S, 2002. Blue-light-induced kinetics of H~+ and Ca~(2+) fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings. Proc Natl Acad Sci USA, 99:2433-2438
    Batschauer A, 1998. Photoreceptors of higher plants. Planta, 206:479-492
    
    
    Batschauer A, Ehmann B and Schfer E, 1991. Cloning and characterization of a chalcone synthase gene from mustard and its light-dependent expression. Plant Mol Biol., 16:175-185
    Batschauer A, Rocholl M, Kaiser T, Nagatani A, Furuya M and Schfer E, 1996. Blue and UV-A light-regulated CHS expression in Arabidopsis independent of phytochrome A and phytochrome B. Plant J, 9:63-69
    Baum G, Long J C, Jenkins G I and Trewavas A J, 1999. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca~(+2) Proc Natl Acad Sci USA, 96:13554-13559
    Beggs C J and Wellmann E, 1994. Photocontrol of flavonoid biosynthesis. In: Photomorphogenesis in Plants-2nd Edition, Kendrick R E & Kronenberg G H M(eds.), Kluwer Academi Publishers, Printed in the Netherlands,pp:7337-511
    Beggs C J, Schneider-Ziebert U and Wellmann E, 1986. In: Stratospheric Ozone Reduction. Solar Radiation and Plant Life, Worrest R C and Caldwell M M(eds.) Springer, Berlin., pp,235-250
    Berger F and Brownlee C, 1994. Photopolarization of the Fucus sp. Zygote by blue light involves a plasma membrane redox chain. Plant Physiol.,105:519-527
    Borthwick H A, 1972. History of Phytochrome. In: Phytochrome, Mitrakos K and Shropshire Jr W (eds) Academic Prss, London. pp3-22
    Borthwick H A, Hendricks S B, Parker M W, Toole E H and Toole V K, 1952. A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA, 38:662-666
    Bowler C, Yamagata H, Neuhaus G and Chua N H, 1994. Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Cev., 8:2188-2202
    Briggs W R and Huala E, 1999. Blue-light photoreceptors in high plants. Annu Rev Cell Dev Biol, 15:33-62
    Briggs W R and Liscum E, 1996. Blue light-activated signal transduction in higher plants. In P Aduui, ed, Signal Transduction in Plants. Birkhauserverlag, Based, Switearland,pp: 107-135
    Briggs W R and Liscum E, 1997. The role of mutants in the search for the photoreceptor for phototropism in higher plants. Plant Cell Environ, 20:768-772
    Briggs W R and Olney M A, 2001. Photoreceptors in plant photomorphogenesis to date: five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol,
    
    25:85-88
    Briggs W R, Beck C E Cashmore A R, Christie J M, Hughes J, Jarillo J A, Kagawa T, Kanegae H, Liscum E, Nagatani A, Okada K, Salomon M, Rüdiger W, Sakai T, Takano M, Wada M and Watson J C, 2001. The phototropin family of photoreceptors. Plant Cell 13:993-997
    Brouillard R, 1988. Flavonoids and flower colour. In the flavonoids: advances in research since 1980. J.B.Harborne. ed (London: Chapman and Hall), pp: 525-538
    Bruggemann E, Handwerger K C E and Storz G, 1996. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana locus. Plant J.,10:755-760
    Bush D S, 1995. Calcium regulation in plant calls and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol.,46:95-122
    Butler W L, Norris K H, Siegelman H W and Hendricks S B, 1959. Detection assay, and prelinary purification of the pigment controlling photoresponsive development of plants. Proc Natl Acad Sci USA, 45:1706-1708
    Casal J J and Mazzella M A, 1998. Conditional synergism between cryptochromel and phytochromeB is shown by the analysis of phyA,phyB,and hy4 simple,double, and triple mutants in Arbidopsis. Plant Physiol., 118:19-25
    Cashmore A R, 1997. The cryptochrome family of photoreceptors. Plant Cell Enveron., 20:764-767
    Cashmore A R, Jarillo J A, Wu Y J and Liu D, 1999. Cryptochromes: blue light receptors for plants and animals. Science, 284:760-765
    Chamovitz D A and Deng X W, 1996. Light signaling in plants. Crit. Rev. Plant Sci., 15:455-478
    Chappell J and Hahlvrock K, 1984. Transcription of plant defense genes in response to UV light or fungal elicitor. Nature,311:76-78
    Cho M H and Spalding E P, 1996. An anion channel in Arabidopsis hypocotyls activated by blue ligt. Proc. Natl. Acad. Sci. USA 93:8134~8138 Firn R D, 1994. Photorrppism. In Photomorphogenesis in Plants, 2nd ed.,R E Kendrick and G H M Kronenberg, eds., Kluwer, Dordrecht, Netherlands,pp659-681
    Chory J, 1992. A genetic model for light-regulated seedling development in Arabidopsis. Development, 115:337-354
    
    
    Christie J M and Briggs W R, 2001. Blue light sensing in higher plants. J. Biol. Chem.,11457-11460
    Christie J M and Jenkins G I, 1996. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis call. Plant Cell, 8:1555-1567
    Christie J M, Reymond P, Powell G K, Bernasconi P, Raibedas A A, Liscum E and Briggs W R, 1998. Arabidopsis NPHI: A flavoprotein with the properties of a photoreceptor for phototropism. Science, 282:1698-1701
    Christie J M, Salomon M, Nozue K, Wada M and Briggs W R, 1999. LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin(nph1):Binding sites for the chromophore flavin mononucleotide. Proc. Natl. Acad. Sci. USA, 96:8779-8783
    Cosgrove D J, 1994. Photomodulation of growth. In Photomorphogenesis in Plants, 2nd ed., R E Kendrick and G H M Kronenberg, eds., Kluwer, Dordrecht, Netherlands,pp631-658
    Deikman J and Hammer P E, 1995. Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol.,108:47-57
    Deng X W and Quail P H, 1999. Signalling in light-controlled development. Semin. Cell Dev. Biol.,10:121-129
    Dharmawardhane S, Rubinstein B and Stem A I, 1989. Regulation of transplamalemma electron transport in oat mesophyll cells by sphingoid bases and blue light. Plant Physiol., 89:1345-1350
    Dixon R A, 1986. The phytoalexin response: Eiciting, signaling and control of host gene expression. Biol. Rev. 619:239-291
    Dong X, Mindrinos M, Daves K R and Ausubel F M, 1991. Enduction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell, 3:61-72
    Downs R J and Siegelman H W, 1963. Photocontrol of anthocyanin synthesis in milo seedlings. Plant Physiol., 38:25-30
    Evans N H, McAinsh M R and Hetherington A M, 2001. Calcium oscillations in higher plants. Curr. Opin. Plant Biol., 4: 415-420.
    Fairley-Grenot K A and Assmann S M, 1991. Evidence for G-protein regulation of inward K~+
    
    channel current in guard cells of fava bean. Plant Cell, 3:1037-1044
    Fankhauser C and Chory J, 1997. Light control of plant development. Annu. Rev. Cell Dev. Biol., 13:203-229
    Fankhauser C, Yeh K C, and Lagarias J C, 1999. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Nature, 284:1539-1541
    Feinbaum R L and Ausubel F M, 1988. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol. Cell Biol., 8:1985-1992
    Feinbaum R L, Storz G and Ausbel F M, 1991. High intensity and blue light regulated expression of chimeric chalcone synthase genes in transgenic Arabidopsis thaliana plants. Mol. Gen. Gene.., 226:449-456
    Finkelstein R R and Gibson S I, 2002. ABA and sugar interactions regulating development: Cross-talk or voices in a crowd? Curr. Opin. Plant Biol. 5:26-32
    Frohnmeyer H, Bowler C, Zhu J K, Yamagata H, Schfer E and Chua N H, 1998. Different roles for calcium and calmodulin in phytochrome and UV-regulated expression of chalcone synthase. Plant J., 19:763-772
    Frohnmeyer H, Ehmann B, Kretsch M, Rocholl M, Harter K, Nagatani A, Furuya M, Batschauer A and Schfer E, 1992. Differential usage of photoreceptors for chalcone synthase gene expression during plant development. Plant J, 2:899-960
    Frohnmeyer H, Loyall L, Blatt M R and Grabov A, 1999. A millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca~(2+) and stimulates gene expression in transgenic parsley cell cultures. Plant J., 20:109-117
    Fuglevand G, Jackson J A and Jenkins G I, 1996. UV-B, UV-A and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene eopression in Arabidopsis. Plant Cell, 8:2347-2357
    Gallagher S, Short T W, Ray P M, Pratt L H and Briggs W R, 1988. Light-mediated changes in two proteins found associated with plasma membrane fractions from pea stem sctions. Proc. Natl. Acad. Sci. USA, 85:8003-8007
    Gautier H, Vavasseur A, Lascève G and Boudet A, 1992. Redox processes in the blue light responses of guard celll protoplasts of Comndina communis L. Plant Physiol., 98:34-38
    Gazzarrini S and McCourt P, 2001. Genetic interactions between ABA, ethylene and sugar
    
    signaling pathways. Curr. Opin. Plant Biol., 4:387-391
    Gilman G A, 1987. G protein: Transducers of receptor-generated signals. Annu. Rev. Biochem., 56:615-649
    Guo H W, Mockler T, Duong H, and Lin C T, 2001. SUB1, an Arabidopsis Ca~(2+)-binding-protein involved in cryptochrome and phytochrome coaction. Science, 291:487-490
    Guo H, Duong H, Ma N and Lin C, 1999. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J, 19:279-287
    Guo H, Yang H, Mockler T and Lin C, 1998. Regulation of flowering time by Arabidopsis. Science, 279:1360-1363
    Harada A, Sakai T and Okada K, 2003. phot1 and phot2 mediate blue-light-induced transient increases in cytosolic Ca~(2+) differently in Arabidopsis leaves. Proc Natl Acad Sci USA, 100:8583-8588
    Harborne J B, 1993. The flvonoids: Advances in research since 1986. eds J B Harborne, Chapman & Hall, London, pp1-20
    Harmon A C, Gribskov M and Harper J F, 2000. CDPKs—a kinase for every Ca~(2+) signal? Trends Plant Sci, 5, 154-159.
    Harter K, Frohnmeyer H, Kircher S, Kunkel T, Mühlbauer S and Schfer E, 1994. Light induces rapid changes of the phosphorylation pattern in the cytosol of evacuolated parsley protoplasts. Proc. Natl. Acad. Sci. USA, 91:5038-5.42
    Horwitz B A and Berrocal T G M, 1997. A spectroscopic view of some recent advances in the study of blue light photoreception. Bot. Acta.,110:360-368
    Horwitz B A, 1994. Properties and transduction chains of the UV and blue light photoreceptors. In Photomorphogenesis in plants, 2nd ed., R E Kendrick and G H M Kronenberg, eds., Kluwer, Dordrecht, Netherlands,pp.327-350
    Huala E, Oeuer P W, Liscum E, Han I-S, Larsen E and Briggs W, 1997. Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science, 228:2120-2123
    Jackson J A, Jenkins G I, 1995. Extension growth response and flavonoid biosynthesis gene expression in the Arabidopsis hy4 mutant. Planta, 197:233-239
    
    
    Jarillo J A, Ahmad M, Cashmore A R, 1998. NPL1: A second membr of the NPH srine/threonine kinase family of Arabidopsis. Plant Physiol., 117:719
    Jenkins G I, Christie J M, Fuglevand G, Long J C and Jackson J A, 1995 Plant responses to UV and blue light: Biochemical and genetic approaches. Plant Sci., 112:117-138
    Kagawa T, 2003. The phototropin family as photoreceptors for blue-light-induced chloroplast relocation. J Plant Res, 116:77-82
    Kaiser T, Emmler K, Kretsch T, Weisshacar B, Schfer E and Batschauer A, 1995. Promoter elements of the mustard CHS1 gene are sufficient for light regulation in transgenic plant. Plant Mol. Biol., 28:219-229
    Karlsson P E, 1986. Blue light regulation of stomata in wheat seedlings. Ⅱ. Action spectrum and search for action dichroism. Physiol. Plantarum, 66:207-210
    Kendrick R E and Kronenberg G H M, 1994. Photomorphogenesis In: Plants, 2nd ed. Dordrecht: Kluwer
    Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K I, 2001. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature, 414:656-660
    Kinoshita T, Nishimura M and Shimazaki K I, 1995. Cytosolic concentration of Ca~(2+) regulates the plasma membrane H~+ ATPase in guard cells of fava bean. Plant Cell, 7:1333-1342
    Knight H and Knight M R, 2001. Abiotic stress signaling pathways: Specificity and cross-talk. Trends Plant Sci., 6:262-267
    Knight H, 2000. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol.,195:269-324
    Koch K E, 1996. Carbohydrate modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47:509-540
    Koornneef N, Rolff E and Spruit C J P, 1980. Genetic control of light-inhibited hypotyl elongation in Arabidopsis Thaliana. Z. Pflanzenphysiol, 100:147-160
    Kubasek W L, Shirley B W, Mckillop A, Goodman H M W and Ausubel F M, 1992. Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedling. Plant Cell, 4: 1229-1236
    Lamb C J, Lawton M A, Dron M and Dixon R A, 1989. Signals and transduction mechanisms for activating of plant defenses against microbial attack. Cell, 56:215-224
    
    
    Lange H, Shropshire W Jr and Mohr H, 1970. An analysis of phytochrome—mediated anthocyanin synthesis. Plant Physiol., 47:649-655
    Lascève G, Leymarie J, Olney M A, Liscum E, Christie J M, Vavasseur A and Briggs W R, 1999. Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. Plant Physiol, 120:605-614
    Levine A, Tenhaken R, Dixon R and Lamb C, 1994. H_2O_2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79:583-593
    Lewis B D, Karlin-Neumann G, Davis R W and Spalding E P, 1997. Calcium-activated anion channels and memvrane depolarization induce by blue light and cold in Arabidopsis seedlings. Plant Physiol., 114:1327-1334
    Lin C and Cashmore A R, 1996. Cryptochrome and plant photomorphogenesis. In WR Briggs, RL Heath, EM Tobin, eds, Regulation of Plant Growth and Development by light. American Society of Plant Physiologists, Rockville, MD, pp:30-41
    Lin C, 2000. Phtoreptors and regulation of flowering time. Plant Physiol, 123:39-50
    Lin C, Ahmad M and Cashmore A R, 1996. Arabidopsis cryptochrome is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J, 10: 893-902
    Lin C, Ahmad M, Gordon C and Cashmore A R, 1995a. Expresion of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue,UV-A, and green light. Proc. Natl. Acad. Sci. USA, 92:8423-8427
    Lin C, Robentson D E, Ahmad M, Raibedas R A, Jorns S, Dutton L and Cashmore A R, 1995b. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science, 269:968-976
    Lin C, Yang H, Guo H, Mockler T, Chen J and Cashmore A R, 1998. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome. Proc. Natl. Acad. Sci. USA, 95:2686~2690
    Liscum E and Briggs W, 1995. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell, 7:473-485
    Liscum E and Hangarter R P, 1991. Arabidopsis mutant lacking blue light-dependent inhibition of hypocotyls elongation. Plant Cell, 3:685-694
    
    
    Long J C and Jenkins G I, 1998. Involvement of plasma membrane redox activity and calcium homeostasis in the UV-B and UV-A/blue light induction of gene expression in Arabidopsis. Plant Cell 10:2077-2086
    Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S and Gruissem S, 2002. CaMs and CBLs: Calcium sensors for specific signal-response coupling in plants. Plant Cell 14 (suppl.), S389-S400.
    Mackintosh C, Lyon G D and Mackintosh R W, 1994. Protein phosphatase inhibitors activate anti-fungal defence responses of soybean cotyledons and cell cultures. Plant J.,5:137-147
    Malhotra K., Kim S T, Batschaucer A, Cawut L and Sancar A, 1995. Putative blue-light photoreceptor from Arabidopsis thaliana and Sinapis alba with a high degree of seqauence homology to DNA photolyase contain the two photolyase cofactors but lack DNA photolyase activity. Biochemistry, 34:6892-6899
    Mancinelli A L and Robino I, 1978. The high irradiance responses of plant photomorphogenesis. Bot. Rev., 44:129-180
    Mancinelli A L, 1983. The photoregulation of anthocyanin synthesis. In: Shropshire J W, Mohr H (eds.) Photomorphogenesis in plants. Dordrecht: Kluwer Academic Publishers, 211-270
    Mathieu Y, Lapous D, Thomine S, Laurière C and Guern J, 1996. Cytoplasmic acidification as an early phosphorylation dependent response of tobacco cells to elicitors. Planta, 199:416-424
    McClure J W, 1975. In The Flavonoids(eds J E T J Mabry and H Mabry), Chapman and Hall, pp970-1055
    Michelet B and Boutry M, 1995. The plasma membrane H+-ATPase. Plant Physiol.,108:1-6
    Mockler T C, Guo H, Yang H, Duong H and Lin C, 1999. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development, 126:2073-2082
    Mockler T, Yang H Y, Yu X H, Parikh D, Cheng Y C, Dolan S and Lin C T, 2003. Regulation of photoperiodic flowering Arabidopsis photoreceptors. Proc. Natl. Acad. Sci. USA, 100:2140-2145
    Mohr H, 1957. Der Einfluss monoshromatischer Strahlung auf das Lngenwachstum des Hypocotyls und auf die Anthocyanbildung bei Keimlingen von Sinapis alba L.(Brassica alba
    
    Bioss.) Planta, 49:389-405
    Mol J, Jenkins GI, Schfer E, Weiss D, 1996. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis. Crit. Rev. Plant Sci., 15:525-557
    Mol J, Grotewold E and Koes R, 1998. How genes paint flowers and seeds. Trends in Plant Science, 3:1360-1385
    Mφller S G, Kim Y-S, Kunkel T and Chua N-H, 2003. PP7 is a positive regulator of blue light signaling in Arabidopsis. Plant Cell, 15:1111-1119
    Mustilli A C and Bowler C, 1997. Tuning into the signals controlling photoregulated gene expression in plants. Embo J, 16:5801-5806
    Neff M M and Chory J, 1998. Genetic interaction between phytochrome A, phytochrome B, and cryptochrome1 during Arabidopsis development. Plant Physiol., 118:27-35
    Neuhaus G, Bowler C, Kern R and Chua N H, 1993. Calcium/calmodulin-dependent and independent phytochrome signal transduction pathways. Cell, 73:937-952
    Ni M, Tepperman J M and Quail P H, 1999. Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light. Nature, 400:781-784
    Noh B and Spalding E P, 1998. Anion channels and the stimulation of anthocyanin accumulation by blue-light in Arabidopsis seedlings. Plant Physiol. 116:503-509
    Nozue K, Kanegae T, Imaizumi T, Fukada S, Okamoto H Yeh K-C, Lagarias J C and Wada M, 1998. A phytochrome from the fern Adiantum with features of the putative photoreceptor NPHI. Proc. Natl. Acad. Sci. USA, 95:15826-15830
    O'Donnell V B, Tew D G, Jones O T G and England P J, 1993. Studies on the inhibitory mechanism of iodonium compounds with special reference to niutrophil NADPH oxidase. Biochem. J., 290:41-49
    Ohi S, Hedrick S A,Chory J and Lamb C J, 1990. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell,2:837-848
    Okamoto H, Matsui M and Deng X W, 2001. Overexpression of the heterotrimeric G-protein α-subunit enhances phytochrome-mediated inhibition of hypocotyls elongation in Arabidopsis. Plant Cell, 13:1639-1651
    Osterlund M T and Deng X W, 1998. Multiple photoreceptors mediate the light-induced reduction of GUS-COP frm Arbidopsis hypocotyls nuclei. Plant J., 16:201-208
    
    
    Palmer J M, Short T W and Briggs W R, 1993a. Correlation of blue-light-induced phosphorylation to phototropism in Zea mays L. Plant Physiol., 102:1219-1225
    Palmer J M, Short T W, Gallagher S and Briggs W R, 1993b. Blue-light-induced phosphorylation of a plasma membrane-associated protein in Zea mays L. Plant Physiol., 102:1211-1218
    Palmgren M G, 1998. Proton gradients and plant growth: Role of the plasma membrane H+-ATPase. Adv. Bor. Res., 28:1-70
    Parks B M, Cho M H and Spalding E E 1998. Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings. Plant Physiol., 118:609-615
    Pichon O and Desbiez M O,1994. Is cytoplasmic pH involved in the regulation of cell cycle in plants? Plant Physiol., 92:261-265
    Piringer A A and Heinze P H, 1954. Effect of light on the formation of a pigment in the tomato fruit cuticle. Plant Physiol, 29:467-472
    Poppe C, Sweere U, Drumm-Herrel H and Schfer E, 1998. The blue light receptor cryptochromel can act independently of phytochrome A and B in Arabidopsis thaliana. Plant J., 16:465-471
    Putterill J, Robson F, Lee K, Simon R and Coupland G, 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 80:807-857
    Quail P H, 1994. Phytochrome genes and their expression. In photomorphogenesis in plants, R.E. Kendreck and G.H.M. Kronenberg, eds(Dordrecht, the Netherlands; Kluwer Academic Publishers) ,pp: 71~104
    Quail P H, Boylan M T, Park B M, Short T W, Xu Y and Wagner D, 1995. Phytochromes: photosensory perception and signal transduction. Science, 268:675-680
    Quiones M A and Zeiger E, 1994. A putative role of the xanthophylls, zeaxanthin, in blue llight photoreception of corn coleoptiles. Science, 264:558-561
    Raghavendra A S, 1990. Blue light effects on stomata are mediated by the guard cell plasma membrane redox system distinct from the proton translacating ATPase. Plant Cell Environ.,13:105-110
    Rayle D L and Cleland R E, 1992. The acid growth theory of auxin-induced cell elongation is
    
    alive and well. Plant Physiol., 99:1271-1274
    Reymond P, Short T W and Briggs W R, 1992a. Blue light activates a specific protein kinase in higher plants. Plant Physiol, 100:655-661
    Reymond P, Short T W, Briggs W R and Poff K L, 1992b. Light-induced phosphorulation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana. Proc Natl Acad Sci, USA 89:4718-4721
    Roitsch T, 1999. Source-sink regulation by sugar and stress, Curr. Opin. Plant Biol. 2:198-206
    Rolland E Winderickx J and Thevelein J M, 2001. Glucosesensing mechanisms in eukaryotic cells. Trends Biochem. Sci., 26:310-317
    Rubinstein B and Luster D G, 1993. Plasma membrane redox activity: Components and role in plant processes. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44:131-155
    Rudd J J and Franklin-Tong V E, 2001. Unravelling response-specificity in Ca~(2+) signalling pathways in plant cells. New Phytol., 151, 7-33.
    Sakai T, Kagawa T, Kasahara M, Swartz T E, Christie J M, Briggs W R, Wada M and Okada K, 2001. Arobidopsis nph1 and np11: blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci USA, 98:6969-6974
    Sakamoto K and Briggs, 2002. Cellular and subcellular localization of phototropinl. Plant Cell, 14:1723-1735
    Sancar A, 1994. Structure and function of DNA photolyase. Biochemistry,33:2-9
    Sanders D, Brownlee C and Harper J E 1999. Communicating with calcium. Plant Cell, 11:691-706
    Schnelzer E, Jahnen W and Hahlbrock K, 1988. In situ localizatilon of light-induced chalcone synthase mRNA,chalcone synthase and flavonoid end products in epidermal cells of parsley leaves. Proc. Natl. Acad. Sci. USA, 85:2984~2993
    Senger H, 1984. Blue light effects in biological systems. Berlin: Springer-Verlag
    Serrano E E, Zeiger E and Hagiwara S, 1988. Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts. Proc. Natl. Acad. Sci. USA, 85:436-440
    Serrano T, 1989. Structure and funtion of plasma membrane ATPase. Annu. Rev. Plant Physiol. Plant Mol. Biol.,40:61-69
    Shacklock P S, Read N D and Trewavas A J, 1992. Cytosolic free calcium mediates red light
    
    induced photomorphogenesis. Nature, 358:153-155
    Shalitin D, Yang H, Mockler T C, Maymon M, Guo H, Whitelam G C and Lin C, 2002. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature, 417:763-767
    Sheen J, Zhou L and Jang J C, 1999. Sugars as signaling molecules. Curr. Opin. Plant Biol., 2:410-418
    Shirley B W, Hanley S and Goodman H M, 1992. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell, 4:333-347
    Short T W and Briggs W R, 1994. The transduction of blue light signals in higher plant. Annu. Rev. Plant. Physiol. Plant Mol. Biol., 45:143-171
    Short T W, Reymond P and Briggs W R, 1993. Apea plasma membrane protein exhibiting blue-light-induced phosphorylation retains photosensitivity following triton solubilization. Plant Physiol., 101:647-655
    Siegelman H W and Hendricks S B, 1957. Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Plant Physiol., 32:393-398
    Smeekens S, 2000. Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51:49-81
    Somer D E, Devlin P F and Kay S A, 1998. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science, 282:1488-1490
    Spalding E P and Cosgrove D J, 1988. L:arge membrane depolarization precedes rapid blue-light induced growth inhibition in cucumber. Planta, 178:407-410
    Spalding E P and Cosgrove D J, 1992. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls. Planta, 188:199-205
    Srivastava A and Zeiger E, 1995a. Guard cell zeaxanthin tracks photosynthetic active radiation and stomatal apertures in Vicia faba leaves. Plant Cell Environ.,18:813-817
    Srivastava A and Zeiger E, 1995b. The inhibitor of zeaxanthin formation, dithiothreitol, inhibits blue-light-stimulated stomatal opening in Vicia faba. Planta, 196:445-449
    Stoelzle S, Kagawa T, Wada M, Hedrich R and Dietrich P, 2003. Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc. Natl. Acad. Sci. USA, 100:1456-1461
    
    
    Stulke J and Hillen W, 1999. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol., 2:195-201
    Sussman M R and Harper J F,1989. Molecular biolcular biology of the plasma membrane of higher plants. Plant Cell, 1:935-960
    Sussman M R,1994. Molecular analysis of proteins in plant plasma membrane. Annu. Rev. Plant Physiol. Plant Mol. Biol., 45:211-234
    Trewavas A, 2000. Signal perception and transduction. In Biochemistry & Molecular Biology of Plants. B B Buchanan, W Gruissem and R L Jones(eds.), American Society of P;ant Physiologists, Rockville, Maryland, USA, pp 940-989
    Trost P, Foscarini S, Preger V, Bonora P, Vitale L and Pupillo P, 1997. Dessecting the diphenylene iodonium-sensitive NAD(P)H:Quinone oxidoreductase of zucchini plasma membrane. Plant Physiol., 114:737-746
    Vandonselaar M, Hickie R A, Quail J W and Delbaere L T, 1994. Trifluoperazine-induced conformational change in Ca~(2+)-calmodulin. Nature Struct. Biol., 1:795-801
    Wagner G J, 1982. Recent Advances in Phytochemistry, In Cellar and Subedllular Localization in plant Metabolism (eds L L Creasy and G Hrazdina), vol.16, Plenum Press, New York,pp1-45
    Wang X J and Iino M, 1997. Blue-light-induced shrinking of protoplasts from Maize coleoptiles and its relationship to coleoptile growth. Plant Physiol., 114:1009-1020
    Wang X J and Iino M, 1998. Interaction of cryptochromel,phytochrome, and ion fluxes in blue-light-induced shrinking of Arabidopsis hypocotyls protoplasts. Plant Physiol., 117:1265-1279
    Wang X, Haga K, Nishizaki Y and Iino M, Blue-light-dependent osmoregulation in protoplasts of Phaseolus vulgaris pulvini. Plant Cell Physiol., 2001, 42:1363-1372
    Warpeha K M F, Hamm H E, Lasenick M M and Kaufman L S, 1991. A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas. Proc Natl Acad Sci,USA, 88:8925~8929
    Wellmann E, 1983. UV radiation in photomorphogenesis. Shropshire Jr W and Mohr H(eds.) Springer-Verlag, Berlin
    Whitelam G C and Devlin P F, 1998. Light signaling in Arabidopsis. Plant Physiol. Biochem.,
    
    36:125-133
    Williams L E, Schueler S B and Briskin D P, 1990. Further characterization of the red beet plasma membrane Ca~(2+)-ATPase using GTP as an alternative substrate. Plant Physiol., 92:747-754
    Withrow R B, Klein W H, Price L and Elstad B, 1953. Influence of visible and near infra-red radiant energy on organ development and pigment synthesis in bean and corn. Plant Physiol., 28:1-14
    Xie X, Chen Z and Wang X, 2002. AF545572 GI:23506658 Sorghum bicolor cryptochrome 2 apoprotein (cry2) mRNA, complete cds.
    Yang H Q, Wu Y J, Tang R H, Liu D M, Liu Y and Cashmore A R, 2000. The C termini of Arabidopsis cryptochrome mediate a constitutive light response. Cell, 103:815-827
    Yatsuhashi H, Hashimoto T and Shimizu S, 1982. Ultraviolet action spectrum for anthocyanin formation in broom Sorghum forst internodes. Plant Physiol., 70:735
    Yeh K C and Lagarias J C, 1998. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl. Acad. Sci. USA, 95:13976-13981
    Zeiger E and Zhu J, 1998 Role of zeaxanthin in blue light photoreception and the modulation of light-CO_2 interactions in guard cells. J Exp. Bot., 49:433-442
    Zeiger E, 1983. The biology of stomatal guard cells. Annu Rev Plant Physiol, 34:441-475

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700