黑茶藨子(Ribes nigrum L.)含Cytb_5结构域脱氢酶基因的克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含Cytb_5结构域的脱氢酶是近些年发现的一类新的小家族蛋白,这些蛋白都含有一个标志Cytb_5蛋白特征的血色素结合区:“His-Pro-Gly-Gly domain”;同时,它们还含有膜结合脱氢酶所必需的三个保守的“His Box”,通常为HisⅠ区HK_(3-4)H、HisⅡ区HX_(2-3)HH和HisⅢ区(H/Q)X_(2/3)HH。现已知:Δ6-、Δ5-和Δ4-脂肪酸脱氢酶、脂肪酸羟基化酶以及Δ8-鞘脂脱氢酶是该家族蛋白的主要成员。在植物中,此类蛋白研究最多的是△6-脂肪酸脱氢酶和Δ8-鞘脂脱氢酶,前者是γ-亚麻酸生产中的关键酶,后者可能涉及植物的细胞程序性死亡和抗逆作用,因此具有重要研究意义。本研究以富含γ-亚麻酸的植物黑茶藨子(Ribes nigrum L.)为材料,利用基因组步移方法从黑茶藨子DNA中克隆获得了多个含Cytb_5结构域的脱氢酶基因,通过酿酒酵母异源表达初步鉴定了基因功能,并进行了基因间功能差异和进化关系等方面的分析研究。主要研究结果如下:
     1 含Cytb_5结构域脱氢酶基因的克隆
     根据已知的Δ6-脂肪酸脱氢酶和Δ8-鞘脂脱氢酶保守区序列设计简并引物,以黑茶藨子DNA为模板,通过PCR扩增技术,共获得三个约1032bp大小的脱氢酶相关基因的中间片断。在此基础上,利用基因组步移技术,获得两个含Cytb_5结构域的脱氢酶相关基因的全长序列RnCyDA、RnCyDB,以及一个含有ATG起始密码子的含Cytb_5结构域的脱氢酶相关基因片断RnCyDC。
     RnCyDA、RnCyDB全长1347bp,编码448个氨基酸,RnCyDB第54位含一个终止子;RnCyDC片断长1140bp。RnCyDA、RnCyDB和RnCyDC具有共同特点:在第41aa位点处具有Cytb_5蛋白标志的HPGG domain,在159~163aa、196~200aa、375~
Cytochrome b_5 fusion desaturases represent a new class of family proteins which share the same characteristics fusing a Cytochrome b_5 domain HPGG involved in heme-binding and owning a conserved tripartite motif of membrane-bound desaturases, HX_(3-4)H, HX_(2-3)HH and (H/Q)X_(2/3)HH. To date, Δ6-, Δ5- and Δ4-fatty acid desaturases, hydroxylases and Δ8-sphingplipid desaturase have been found in the family. A6-fatty acid desaturase and A8-sphingplipid desaturase in plant had been studied because the former is the key desaturase in producing of GLA and the latter is likely to involve in the programmed cell death (PCD) and the resistance of plant. In our studies, several Cytochrome b_5 fusion desaturase genes were cloned from genomic DNA of black currant (Ribes nigrum L.) by the genomic walking method and expressed in yeast (Saccharomyces cerevisiae) to determine their functions. Some reasons about different functions and possible evolutionary relationships among these genes were discussed. The main results are provided as following:1 Cloning of Cytochrome b_5 fusion desaturase genesThe DNA fragments of putative Cytochrome b_5 fusion desaturase genes were amplified from the genomic DNA of black currant leaves by using degenerated primers designed according to the sequence of conserved histidine boxes of known Cytb_5 fusion desaturases. Three amplified products (about 1032 bp) were cloned and 5' and 3' extension of these fragments were obtained by the genomic walking method. Two full-length sequences, 1347 bp in length, named RnCyDA and RnCyDB, and a fragment with 1140 bp, named RnCyDC with ATG start codon thus were obtained.
    RnCyDA encodes 448 aa. RnCyDB has a stop codon at 54th aa. The deduced amino acid sequences of RnCyDA, RnCyDB and RnCyDC contain cytochrome b5-like heme-binding domains at their N-terminus and the diagnostic three "histidine box" of membrane-bound desaturases.2 Site-directed mutagenesis of RnCyDB and construction of chimeric genes RnCyDCA, RnCyDCB.The site-directed mutagenesis was performed for RnCyDB by using overlap extend method and " 160TAA " which is encoded for stop codon was mutated to be " 160CAA " encoding amino acid "Q" . The mutated RnCyDB was named RnCyDB 1. The 208bp terminal sequence of RnCyDA and RnCyDB were linked with RnCyDC, respectivly and two chimeric genes RnCyDC A and RnCyDCB with entire 1347bp ORF were obtained.3 Bio-information analysisPrimary bioinformation of RnCyDA, RnCyDB 1 and RnCyDCA/B were obtained by using some softwares in some web sites. Based on the obtained information, membrane topology models were proposed for RnCyDA, RnCyDB 1 and RnCyDCA/B.4 Function characterization of cloned Cytochrome b$ fusion desaturase genes The open reading frames (ORFs) of RnCyDA, RnCyDB 1 and RnCyDCA/B werecloned into the yeast expression vector pYES2 (Invitrogen) by using the Hindlll and Xbal restriction sites. The constructed vectors were used to transform yeast (Saccharomyces cerevisiae) strain INVSc I by using the lithium acetate method and the recombinant yeast cells were selected on a uracil-deficient medium. The expression of the transformed gene controlled by the GAL promoter was induced by adding galactose (2%, w/v) in suspension culture. Sphingolipid LCB and/or total fatty acids of cultured yeast were extracted and their methyl esters were analyzed by GC-MS.The presence of additional desaturated 8-LCBs is observed in yeast cells expressing RnCyDA, but not in the control with the empty vector. It might be predicted that the black currant RnCyDA encodes a A8-sphingplipid desaturase. GC-MS analysis of FAME (fatty acid methyl esters) of cultured yeast expressing RnCyDCA/B revealed that novel fatty acid peaks corresponding to GLA and OTA were detected, but absent in
引文
[1] 古绍彬,虞龙,向砥,于洋,余增亮.2001.利用海洋微藻生产DHA和EPA的研究现状及前景.中国水产科学.8(3):90-94
    [2] 杭晓敏,唐涌濂,柳向龙.2001.多不饱和脂肪酸的研究进展.生物工程进展.21(4):18-21
    [3] 黄建忠,施巧琴,周晓兰,林跃鑫,谢必峰,吴松刚.深黄被孢霉高产脂变株的选育及其发酵的研究.微生物学通报.25(4):187-191
    [4] 黄锐之,刘智宏,朗春秀,胡张华,陈锦清.2001.植物中多不饱和脂肪酸生物合成的基因工程.植物生理学通讯.37(6):547-550
    [5] 雷帮星,粱宗琦,刘作易,刘爱英.利用真菌生产GLA、Ara和EPA的研究进展.山地农业生物学报.19(5):388-393.
    [6] 李明春,刘莉,胡国武,财音青格乐,邢来君.2004.转基因烟草表达高山被孢酶△6-脂肪酸脱氢酶基因的研究.作物学报.30(6):618-621.
    [7] 李璇,郑建仙.1998,脂肪与心血管疾病相关关系最新进展及对食品工业的指导意义.食品与发酵工业.24(1):74-79
    [8] 刘莉,李明春,胡国武,张丽,邢来君.2001.深黄被抱霉M_(6-22)△6-脂肪酸脱氢酶基因在酿酒酵母中的表达.微生物学报.41(4):397-401.
    [9] 阮征,吴谋成,胡筱波等.2003.多不饱和脂肪酸的研究进展[J].中国油脂.28(2):55-59.
    [10] 张海满,刘福祯.2000.α-亚麻酸的功能、资源及生产方法.中国油脂.25(6):192-194
    [11] 赵晓燕,马越.2004.亚麻酸的研究进展.中国食品添加剂.1:27-31.
    [12] 郑建仙.功能性食品(第二卷)[M].北京:中国轻工业出版社.128-155.
    [13] Abbas H, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill Jr AH, Riley RT. 1994. Fumonisinand AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiology 106:1085-1093.
    [14] Albert CM, Hennekens CH, Donnell CJ, Ajani UA, Carey VJ, Willett WC, Ruskin JN and Manson JE. 1998. Fish consumption and risk of sudden cardiac death. J. Am. Med. Assoc. 279:23-28.
    [15] Apiradee H, Sanjukta S, Matura S, Supapon C. 2004. Mutation study of conserved amino acid residues of Spirulina △6-acyl-lipid desaturase showing involvement of histidine 313 in the regioselectivity of the enzyme. Appl Microbiol Biotechnol. 66: 74-84
    [16] Batrakov SG, Konova IV, Sheichenko VI, Esipov SE, Galanina LA and Istratova LN. 2002. Unusual fatty acid composition of cerebrosides from the filamentous soil fungus Mortierella alpina. Chem. Phys. Lipids. 117:45-51
    [17] Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H, Dunn T. 1998. The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca~(2+)-sensitive csg2D mutant. Journal of Biological Chemistry. 273:30688-30694.
    [18] Benghezal M, Wasteneys G O, Jones D A. 2000. Localization of AtROP4 and AtROP6 and interaction with the guanine nucleotide dissociation inhibitor AtRHoGD11 from Arabidopsis. Plant Mol. Biol. 42: 515-530.
    [19] Bloomfield DK, Bloch K. 1960. Formation of unsaturated fatty acids. J Biol Chem. 235:337-345
    [20] Bouche N, Bouchez D 2001 Arabidopsis gene knockout: phenotypes wanted. Curr. Opin. Plant Biol. 4: 111-117.
    [21] Brandizzi F, Frangne N, Marc-Martin S, Hawes C, et al. 2002a. The destination for single-pass membrane proteins is influenced by the length of the hydrophobic domain. Plant Cell. 14: 1077-1092.
    [22] Brandwagt BF, Mesbah LA, Takken FL, Laurent PL, Kneppers TJ, Hille J, Nijkamp HJ. 2000. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B_1. Proc.Natl.Acad.Sci.USA .97:4961-496
    [23] Broadwater JA, Whittle E, Shanldin J. 2002. Desaturation and hydroxylation; residue 148 and 324 of Arabidopsis FAD2, inaddition to substrate chain length, exert a major influence in partitioning of catalytic specificity. Biol Chem. 277:15613-15620
    [24] Broderson P, Pike HM, Olszak B, Skov S, Odum N, Jorgensen LB, Brown RE, Mundy J. 2002. Knockout of Arabidopsis acceleratedcell-death 11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes and Development. 16: 490-502.
    [25] Bntikofer P, Malherbe T, Boschung M, Roditi I. 2001. GPI-anchored proteins: now you see 'em, now you don't. FASEB J. 15: 545-548.
    [26] Cahoon EB, Lynch DV. 1991. Analysis of glucocerebrosides of rye (Secale cereale L. cv. Puma) leaf and plasma membrane. Plant Physiology. 95: 58-68.
    [27] Carter HE, Strobach DR, Hawthorne JN. 1969. Biochemistry of the sphingolipids. 18. Complete structure of tetrasaccharide phytoglycolipid. Biochemistry. 8: 383-388.
    [28] Chent F & John MR. 1995. A strategy for high cell density culture of heterotrophic microalgae with inhibitory substrates. Journal of Applied Phycology. 46:43 -47.
    [29] Cho HP, Nakamura MT, and Clarke SD. 1999. Cloning, Expression, and Nutritional Regulation of the Mammalian △6 Desaturase. The Journal of Biological Chemistry. 274(1): 471-477.
    [30] Clarke SD, Jump DB. 1996. Polyunsaturated fatty acid regulation of hepatic gene transcription. Lipids. 31: S7-S11.
    [31] Colquhoun A. 2002. Gamma-linolenic acid alters the composition of mitochondrial membrane subfractions, decreases outer mitochondrial membrane binging of hexokinase and alters carnitine palmitoyltransferase I properties in the Walker 256 rat tumour. Biochimica et Biophysica Acta. 1583:74-84.
    [32] Cook D, Grierson D, Jones C, Wallace A, West G, Tucker G. 2002. Modification of fatty acid composition in tomato (Lycopersicon esculentum) by expression of a borage △6-desa turase. Mol Biotechnol. 21(2):123-128.
    [33] Coursol S, Fan LM, Le Stunff H, Spiege IS, Gilroy S, Assmann SM. 2003. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature. 423: 651-654.
    [34] Davis BC, Kris-Etherton PM. 2003. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am J Clin Nutr. 78(suppl):640S-6S.
    [35] Diaz AR, Mansilla MC, Vila AJ, Mendoza D. 2002. Membrane topology of the acyl-lipid desaturase from Bacillus subtilis. Biol Chem. 277:48099-48106
    [36] Dickson RC, Lester RL. 1999a. Yeast sphingolipids. Biochimica et Biophysica Acta. 1426: 347-357.
    [37] Dickson RC, Lester RL. 2002. Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta. 13; 1583(1): 13-25.
    [38] Domergue F, Lerchl J, Zahringer O and Heinz E. 2002. Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur. J. Biochem. 269:4105-4113.
    [39] Donaldson RP, and Luster DG. 1991. Multiple forms of plant cytochromes P450. Plant Physiol. 96:669-674.
    [40] Dunn TM, Haak D, Monaghan E, Beeler TJ. 1998. Synthesis of monohydroxylated inositolphosphorylceramide (IPC-C) in Saccharomyces cerevisiae requires Scs7p, a protein with both a cytochrome b_5-like domain and a hydroxylase/desaturase domain. Yeast. 14: 311-321.
    [41] Dunn TM, Lynch DV, Michaelson LV, and Napier JA. 2004. A Post-genomic Approach to Understanding Sphingolipid Metabolism in Arabidopsis thaliana. Annals of Botany. 93: 483-497.
    [42] Dyerberg J. 1986. Linolenate-derived polyunsaturated fatty acids and prevention of atherosclerosis. Natur. Rev. 44(4): 125-134.
    [43] Ekharde,Ziegler LJ,Filer JR.闻芝梅,陈君石主译.1998.现代营养学[M].第七版.北京:人民卫生出版社.pp:44-56
    [44] Fujino Y, Ohnishi M, Ito S. 1985. Molecular species of ceramide and mono-, di-, tri- and tetraglycosylceramide in bran and endosperm of rice grains. Agric. Biol. Chem. 49:2753-2762
    [45] Gable K, Slife H, Bacikova D, Monaghan E, Dunn TM. 2000. Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. Journal of Biological Chemistry 275:7597-7603.
    [46] Garcia MF, Garrido CJA, Rodriguez RJ, Vilches FM, Adam AC, Polaina J, Alonso DL. 2002. Cloning and molecular characterization of the △6-desaturase from two echium plant species: production of GLA by heterologous expression in yeast and tobacco. Lipids. 37(4):417-26.
    [47] Gaynor EC, te Heesen S, Graham TR, Aebi M, et al. 1994. Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast. J Cell Biol. 127: 653-665.
    [48] Geomord V, Wee E, Faye L. 1999. Protein retention and localization in the endoplasmic reticulum and the Golgi apparetus. Biochimie. 81: 607-618.
    [49] Gili I, Valivety R. 1997. Polyunsaturased fatty acids: Part1: occurrence, biological activities and application. trends biotechnol. 15: 401-409.
    [50] Girke T, Schmidt H, Zahringer U, Reski R, Heinz E. 1998. Identification of a novel △6-acyl- group desaturase by targeted gene disruption in Physcomitrella patens. Plant J. 15: 39-48
    [51] Grilley MM, Stock SD, Dickson RC, Lester RL, Takemoto JY. 1998. Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. Journal of Biological Chemistry. 273:11062-11068.
    [52] Guillas I, Kirchman PA, Chuard R, Pfefferli M, Jiang JC, Jazwinski SM, Conzelmann A. 2001. C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO Journal 20: 2655-2665.
    [53] Haak D, Gable K, Beeler T, Dunn T. 1997. Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. Journal of Biological Chemistry 272:29704-29710.
    [54] Hakomori S. 1983. Chemistry of glycosphingolipids. In: Kanfer JN, Hakomori S, eds. Handbook of lipid research, vol. 3, sphingolipid biochemistry. New York, NY, USA: Plenum Press, 1-164.
    [55] Haschke H, Kaiser G, Martinoia E, Hammer U, Teucher T, Dorne AJ, Heinz E. 1990. Lipid profiles of leaf tonoplasts from plants with different CO_2 fixation mechanisms. Botanica Acta. 103:32-38
    [56] Hastings N, Agaba M, Tocher DR, Leaver MJ, Dick JR, Sargent JR, Teale AJ. 2001. A vertebrate fatty acid desaturase with △5- and △6-activities. Proc.Natl.Acad.Sci.USA. 98:14304-14309.
    [57] Heinz E. 1993. Biosynthesis of polyunsaturated fatty acids. In TS Moore Jr, ed, Lipid Metabolism in Plants. CRC Press, Boca Raton, FL. pp: 33-89
    [58] Heinz E. 1996. in: W.W. Christie (Ed.), Advances in Lipid Methodology-Three, The Oily Press, Dundee. pp:211-332.
    [59] Herre Guiliou, Sabine D'Andrea, Vincent Rioux, Romain Barnouin, Stephanie Dalaine, Frederique Pedrono, Sophie Jan, and Philippe Legrand. 2004. Distinct roles of endoplasmic reticulum cytochrome b_5 and fused cytochrome b_5-like domain for rat △6-desaturase activity. Journal of Lipid Research. 45:32-40
    [60] Hong H-P, Datla N, MacKenzie SL, and Qiu X. 2002b. Isolation and characterization of a △5-FA Desaturase from pythium irregulare by Hereologous Expression in Saccharomyces cerevisiae and Oilseed Crops. Lipids. 37(9): 863-868.
    [61] Hong H-P, Datla N, Reed DW, Covello PS, MacKenzie SL, and Qiu X. 2002a. High-Level Production of γ-Linolenic Acid in Brassica juncea Using a △6-Desaturase from Pythium irregulare. Plant Physiology. 129:354-362.
    [62] Hsieh TCY, Lester RL, Laine RA. 1981. Glycophosphoceramides from plants.Purification and characterization of a novel tetrasaccharide derived from tobacco leaf glycolipids. Journal of Biological Chemistry. 256: 7747-7755.
    [63] Huang YSH, Sunita C, Jennifer MT, et al. 1999. Cloning of △12- and △6-desaturase from Mortierella aplina and recombinant production of γ-linolenic acid in saccharomyces cerevisiae. Lipids. 34(7):649-659.
    [64] Iida I, Nakahara T, Yokochi T. 1996. Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J Ferm Bioeng. 81(1):76-78
    [65] Imai H, Morimoto Y, Tamura K. 2000a. Sphingoid base composition of monoglucosylceramide in Brassicaceae. Journal of Plant Physiology. 157:453-456
    [66] Imai H, Ohnishi M, Hotsubo K, Kojima M, Ito S. 1997. Sphingoid base composition of cerebrosides from plant leaves. Bioscience Biotechology and Biochemistry. 61:351-353.
    [67] Imai H, Yamamoto K, Shibahara A, Miyatani S, Nakayama T. 2000b. Determining double-bond positions in monoenoic 2-hydroxy fatty acids of glucosylceramides by gas chromatography-mass spectrometry. Lipids. 35: 233-236.
    [68] Itoh R, Toda K, Takahashi H, Takano H, Kuroiwa T. 1998. Delta9-fatty acid desaturase gene containing a carboxyl-terminai cytochrome b_5 domain from the red alga Cyanidioschyzon merolae. Curr Genet. 3: 165-170.
    [69] Jackson A E, van Waes, M A. 1999. The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Bio., 15: 799-842.
    [70] Jennemann R, Geyer R, Sandhoff R, Gschwind RM, Levery SB, Grone HJ, and Wiegandt H. 2001. Glycoinositolphosphosphingolipids (basidiolipids) of higher mushrooms. FEBS J. 268(5): 1190-1205.
    [71] Kaul K, Lester RL. 1978. Isolation of six novel phosphoinositol-containing sphingolipids from tobacco leaves. Biochemistry. 17: 3569-3575.
    [72] Kawaguchi M, Imai H, Naoe M, Yasui Y & Ohnishi M. 2000. Cerebrosides in grapevine leaves: Distinct Composition of sphingoid bases among the grapevine species having different tolerances to freezing temperature. Biosci. Biotechnol. Biochem. 64:1271-1273
    [73] Kawai G, Ohnishi M, Fujino Y, and Ikeda Y. 1986. Stimulatory effect of certain plant sphingolipids on fruiting of Schizophyllum commune. J. Biol. Chem 261: 779-784.
    [74] Kaya K, Ramesha CS, Thompson Jr GA. 1984. On the formation of α-hydroxy fatty acids. Evidence for a direct hydroxylation of nonhydroxy fatty acid containing sphingolipids. Journal of Biological Chemistry 259:3548-3553.
    [75] Kearns EV, Hugly S and Somerville CR. 1991. The role of cytochrome b_5 in △12-desaturase of oleic acid by microsomes of safflower (Carthamus tinctorius L.). Arch. Biochem. Biophys. 284:431-436.
    [76] Knutzon DS, Thurmond JM, Huang YS, Chaudhary S, Bobik EG, Jr, Chan GM, Kirchner SJ, and Mukerji P. 1998. Identification of △5-Desaturase from Mortierella alpina by Heterologous Expression in Bakers' Yeast and Canola. J. Bio. Chem. 273(45):29360-66.
    [77] Kobkul LT, Rapeeporn M, Morakot T and Supapon C. 2000. △6-Desaturase of Mucor rouxii with High Similarity to Plant △6-Desaturase and Its Heterologous Expression in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications. 279(1):17-22
    [78] Kohlwein SD, Eder S, Oh CS, Martin CE, Gable K, Bacikova D, Duun T. 2001. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Molecular and Cellular Biology. 21: 109-125.
    [79] Kretsinger RH. 1996. EF-hands reach out. Nat. Struct. Biol. 3: 12-15.
    [80] Lands WEM. 1991. Biosynthesis of prostaglandins. Ann Rev Nutr. 11:41-60
    [81] Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G and Lazdunskil M. 2000. Polyunsaturated fatty acids are potent neuroprotectors. The EMBO Journal. 19(8): 1784-1793.
    [82] Leaf A and Kang JX. 1996. Prevention of cardiac sudden death by n-3 fatty acids: a review of the evidence. J. Intern. Med. 240: 5-12.
    [83] Leaf A, Kang JX, Xiao Y F, Billman G E and Voskuyl RA. 1999. The antiarrhythmic and anticonvulsant effects of dietary n-3 fatty acids. J. Membr. Biol. 172:1-11.
    [84] Lederer F. 1994. The cytochrome b_5-fold: an adaptable molecule. Biochimie. 76:674-692.
    [85] Leipelt M, Warnecke D, Zahringer U, Ott C, Muller F, Hube B, Heinz E. 2001. Glucosylceramide Synthases, a Gene Family Responsible for the Biosynthesis of Glucosphingolipids in Animals, Plants, and Fungi. J. Biol. Chem. 276: 33621-33629.
    [86] Leonard AE, Kelder B, Bobik EG, Chuang LT, Parker-Barnes JM, Thurmond JM, Kroegger PE, Kopchick JJ, Huang YS, Mukerji P. 2000. cDNA cloning and characterization of human △5-desaturase involved in the biosynthesis of arachidonic acid. Biochem.J. 347:719-724.
    [87] Lester RL, Dickson RC. 1993. Sphingolipids with inositolphosphatecontaining head groups. Advances in Lipid Research 26: 253-274.
    [88] Lester RL, Wells G B, Oxford G, and Dickson R C. 1993. Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesize novel inositol glycerophospholipids that mimic sphingolipid structures. J. Biol. Chem. 268:845-856
    [89] Longman AJ, Michaelson LV, Sayanova O, Napier JA and AK Stobart. 2000. An unusual desaturase in Aquilegia vulgaris. Biochemical Society Transactions. 28(6): 641-643
    [90] Lynch D, Caffrey M, Hogan JL, Steponkus PL. 1992. Calorimetric and x-ray diffraction studies of rye glucocerebroside mesomorphism. Biophysical Journal 610:1289-1300.
    [91] Lynch D, Cahoon EB, Fair(?)eld SR, Tannishtha R. 1990. Glycosphingolipids of plant membranes. In: Quinn PJ, Harwood, JL, eds. Plant lipid biochemistry, structure and utilization. London: Portland Press, 47-52.
    [92] Lynch DV and Dunn TM. 2004. An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytologist. 161: 677-702
    [93] Lynch DV and Phinney AJ. 1995. in: JC. Kader, P. Mazliak (Eds.). Plant Lipid Metabolism. Kluwer Academic Publishing, Dordrecht. pp. 239-241.
    [94] Lynch DV, Dunn TM. 2004. An introduction to plant sphingolipids. New Phytologist. 161: 677-702.
    [95] Lynch DV, Fairfield SR. 1993. Sphingolipid long-chain base synthesis in plants: characterization of serine palmitoyltransferase activity in squash fruit microsomes. Plant Physiology 103: 1421-1429.
    [96] Lynch DV, Steponkus PL. 1987. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv. Puma). Plant Physiology 83: 761-767.
    [97] Lynch DV. 1993. In: Moore Jr TS(ed). Lipid metabolism in plants. Boca Raton, FL, USA CRC Press, pp:285-308.
    [98] Lynch DV. 2000. Enzymes of sphingolipid metabolism in plants. Methods in Enzymology 311: 130-149.
    [99] Mandon EC, Ehses I, Rother J, van Echten G, Sandhoff K. 1992. Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase and sphinganine N-acyltransferase in mouse liver. Journal of Biological Chemistry. 267:11144-11148.
    [100] McCandy RR. Hegsted DM. The role of Fats in human Nutritron. London: Academic Press. 1975.211-230.
    [101] McCartney A W, Dyer J M, Dhanoa P K, et al. 2004. Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. The Plant Journal, 37:156-173.
    [102] Meesters PAEP, Springer J, Eggink G. 1997. Cloning and expression of the △9 fatty acid desaturase gene from Cryptococcus curvatusATCC 20509 containing histidine boxes and a cytochrome b_5 domain. Appl Microbiol Biotechnol. 47: 663-667.
    [103] Merrill AHJr, Sweeley CC. 1996. Sphingolipids: metabolism and cell signalling. In: Vance DE, Vance JE, eds. New comprehensive biochemistry: biochemistry of lipids, lipoproteins and membranes. Amsterdam, the Netherlands: Elsevier, 309-340.
    [104] Michaelson LV, Lazarus CM, Griffiths G, Napieri J A and Stobart AK. 1998a. Isolation of a △5-Fatty Acid Desaturase Gene from Mortierella alpina. The Journal of Biological Chemistry. 273(30): 19055-19059.
    [105] Michaelson LV, Longman AJ, Sayanova O, Stobart AK and Napier JA. 2002. Isolation and characterization of a cDNA encoding a △8-sphingolipid desaturase from Aquilegia vulgaris. Biochemical Society Transactions. 30(6):1073-1075
    [106] Michaelson LV, Napier JA, Lazarus CM, Griffiths G, Stobart AK. 1998b. Isolation of a △5-desaturase gene from Caenorhabditis elegans. FEBS Lett. 439:215-218.
    [107] Michel C, van Echten-Deckert G, Rother J, Sandhoff K, Wang E, Merrill Jr AH. 1997. Characterization of ceramide synthesis: a dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. Journal of Biological Chemistry. 272: 22432-22437.
    [108] Michel C, van Echten-Deckert G. 1997. Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Letters 416:153-155
    [109] Mitchell AG and Martin CE. 1995. A novel cytochrome b_5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae △9-fatty acid desaturase. J. Biol. Chem. 270:29766- 29772
    [110] Mitchell, AG., Martin, CE. 1997. Fahlp, a Saccharomyces cerevisiae Cytochrome b5 Fusion Protein, and Its Arabidopsis thaliana Homolog That Lacks the Cytochrome b5 Domain Both Function in the alpha-Hydroxylation of Sphingolipid-associated Very Long Chain Fatty Acids. J. Biol. Chem. 272:28281-28288
    [111] Murata N, Deshnium P, Tasaka Y. 1996. Biosynthesis of γ-linolenic acid in the cyanobacterium Spirulina platensis. In: Huang YS, Mills DE (eds)γ-Linolenic acid metabolism and its roles in nutrition and medicine. AOCS, Urbana-Champaign, pp:22-32
    [112] Nair SS, Leitch JW, Falconer J and Garg ML. 1997. Prevention of cardiac arrhythmia by dietary (n-3) polyunsaturated fatty acids and their mechanism of action. J. Nutr. 127:383-393
    [113] Napier JA, Hey SJ, Lacey DJ, Shewry PR. 1998. Identification of a Caenorhabditis elegans △6-fatty acid desaturase by heterologous expression in Saccharomyces cerevisiae. Biochem J 330: 611-614.
    [114] Napier JA, Michaelson LV, Sayanova O. 2003. The role of cytochrome b5 fusion desaturases in the synthesis of polyunsaturated fatty acids. Prostaglandins; Leukotrienes and Essential Fatty Acids. 68: 135-143.
    [115] Napier JA, Sayanova O, Sperling P, Heinz E. 1999. A growing family of cytochrome b_5-domain fusion proteins. Trends in plant science. 4(1):2-4
    [116] Napier JA, Sayanova O, Stobart AK, Shewry PR. 1997. A new class of cytochrom b_5 fusion proteins. Biochem J. 328:717-720
    [117] Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM. 2001. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature. 410: 596-599.
    [118] Nicola H, Morris A, Douglas RT, et al. 2001. A vertebrate fatty acid desaturase with △5 and △6 activities. Biochemistry. 25: 14304-14309.
    [119] Noda N, Tanaka R, Tsujino K, Miura M, Miyahara L, Hayakawa J. 1995. Two amphoteric galactocerebrosides possessing in tri-unsaturated long-chain base from the leech (Hirudo nipponica). Chem. Pharmaceutical Bull. 43(4): 567-570.
    [120] Norberg P, Mason JE, Liljenberg C. 1991. Characterization of glucosylceramide from plasma membranes of plant root cells. Biochimica et Biophysica Acta 1066: 257-260.
    [121] Norberg P, Nilsson R, Nyiredy S, Liljenberg C. 1996. Glucosylceramides of oat root plasma membranes-physicochemical behavior in natural and in model systems. Biochimica et Biophysica Acta 1299: 80-86.
    [122] Nordoy A. 1999. Dietary fatty acids and coronary heart disease. Lipids. 34:S19-S22
    [123] Ohnishi M, Ito S, Fujino Y. 1983. Characterization of sphingolipids in spinach leaves. Biochimica et Biophysica Acta. 752: 416-422.
    [124] Oxley D, Bacic A. 1999. Structures of the glycosylphosphatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspensioncultured cells. Proceedings of the National Academy of Sciences, USA. 96:14246-14251.
    [125] Pelham H R B. 2000. Using sorting signals to retain protein in the endoplasmic reticulum. Math. Enzymol. 327: 279-283.
    [126] Phillips JC, Huang YS. 1995. Natural sources and biosynthesis of linolenic acid: An overview(A). The United States of America: AOCS Press. 1-6
    [127] Qiu X, Hong HP, and MacKenzie SL. 2001. Identification of a △4-Fatty Acid Desaturase from Thraustochytrium sp. Involved in the Biosynthesis of Docosahexanoic Acid by Heterologous Expression in Saccharomyces cerevisiae and Brassica juncea. The Journal of Biological Chemistry. 276(34):31561-31566.
    [128] Qiu X, Hong HP, Datla N, MacKenzie SL, Tayler CD, Thomas LT. 2002. Expression of borage △6-desaturase in Saccharomyces cerevisiae and oilseed crops. Can J Bet. 80:42-49.
    [129] Ratledge, C. 1993. Single cell oils - have they a biotechnological future? Trends Biotech. 11:278-284.
    [130] Reddy AS & Thomas TL. 1996. Expression of a cyanobacterial △6-desaturase gene results in γ-linolenic acid production in transgenic plants. Nature biotechnology. 14: 639-642.
    [131] Reddy AS, Nuccio ML, Gross LM, Thomas TL. 1993. Isolation of a △6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp.strain PCC 7120. Plant Molecular Biology. 22(2): 293-300
    [132] Roudier F, Schindelmann G, DeSalle R, Benfey PN. 2002. The COBRA Family of Putative GPI-Anchored Proteins in Arabidopsis. A New Fellowship in Expansion. Plant Physiol. 130: 538-548.
    [133] Sakaki T, Zahringer U, Warnecke DC, Fahl A, Knogge W, Heinz E. 2001. Sterol glycosides and cerebrosides accumulate in Pichia pastoris, Rhynchosporium secalis, and other fungi under normal conditions or under heat shock and ethanol stress. Yeast. 18:679-695
    [134] Sakuradani E. Kobayashi M. Shimizu S. 1999. △6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus gene cloning and its heterologous expression in a fungus Aspergillus. Gene. 238:445-453.
    [135] Sato S, Xing AQ, Ye XG, Schweiger B, Kinney A, Graef G and Clemente T. 2004. Production of γ-Linolenic Acid and Stearidonic Acid in Seeds of Marker-Free Transgenic Soybean. Genomics Molecular Genetics & Biotechology. 44:646-652.
    [136] Sayanova O, Beaudoin F, Libisch B, Castel A, Shewry PR, Napier JA. 2001. Mutagenesis and heterologous expression in yeast of a plant △6-fatty acid desaturase. J.Exp.Bot. 360:1581-1585.
    [137] Sayanova O, Beaudoin F, Libisch B, Shewry P, and Napier JA. 2000. Mutagenesis of the borage △6-fatty acid desaturase. Biochem. Soc. Transac. 28:636-638.
    [138] Sayanova O, Beaudoin F, Michaelson LV, Shewry PR, Napier JA. 2003. Identification of Primula fatty acid △6-desaturases with n-3 substrate preferences. FEBS Lett. 542:100-104
    [139] Sayanova O, Davies GM, Smith MA, Griffiths G, Stobart AK, Shewry PR, Napier JA. 1999a. Accumulation of △6-unsaturated fatty acids in transgenic tobacco plants expressing a △6-desatu- rase from Borago officinalis. J Exp Bot 50:1647-1652
    [140] Sayanova O, Shewry PR, Napier JA. 1999b. Histidine-41 of the cytochrome b5 domain of the borage △6 fatty acid desaturase is essential for enzyme activity. Plant Physiol 121: 641-644
    [141] Sayanova O, Smith MA, Lapinskas P, Stobart AK, Dobson G, Christie WW, Shewry PR, Napier JA. 1997. Expression of a borage desaturasc cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of △6-desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci USA. 94:4211-4216.
    [142] Scheffler J A, et al. 1997. Desaturase multigene families of Brassica napus arose through genome duplication. Theor. Appl. Genet. 94, 583-591.
    [143] Schmidt H, Sperliag P and Heinz E. 1995. PCR-bascd cloning of membrane-bound desaturascs, in Plant Lipid Metabolism (Kader J C and Mazliak P, eds), pp:21-23.Kluwer Academic Publishers, Dordecht.
    [144] Schorling S, Vallee B, Barz WP, Riezman H, Oesterhelt D. 2001. Lag1p and Lac1p are essential for the acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisiae. Molecular Biology of the Cell. 12:3417-3427.
    [145] Seiliez I, Panserat S, Kaushik S, Bergot P. 2001. Cloning, tissue distribution and nutritional regulation of △6-desaturase-like enzyme in rainbow trout. Comparative Biochemistry and Physiology Part B. 130:83-93
    [146] Shanklin J & Cahoon EB. 1998. Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol. 49: 611-641
    [147] Shanklin J, Whittle E, Fox BG. 1994. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, steroyl-CoA desaturase and arc conserved in alkene hydroxylase and xylene monooxygenase. Biochemistry 33:12787-12794.
    [148] Sherrier DJ, Prime TA, Dupree P. 1999. Glycosylphosphatidylinositolanchored cell-surface proteins from Arabidopsis. Electrophoresis. 20: 2027±2035.
    [149] Simons K, Toomre D. 2000. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 1(1):31-39
    [150] Smith MA, et al. 1994. Tobacco cytochrome b_5 cDNA isolation, expression analysis and in vitro protein targeting. Plant Mol. Biol. 25:527-537.
    [151] Smith MA, et al. 1990. Electon-transport components of the 1-acyl-2oleoyl-sn-glycero-3-phospho-choline △12-desaturase in microsomal preparations from developing safflower (Carthamus tinctorius L. ) cotyledons. Biochem. J. 272: 23-29.
    [152] Smith MA, et al. 1992. Evidence for cytochrome b5 as electron donor in ricinoleic acid biosynthesis in microsomal preparations from developing castor bean (Ricinus communis L.). Biochem. J. 287: 141-144
    [153] Spassieva SD, Markham JE, Hille J. 2002. The plant disease resistance gene Asc-Ⅰ prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant Journal 32:561-572
    [154] Sperling P, Blume A, Zahringer U, Heinz E. 2000. Further characterization of △8-sphingolipid desaturases from higher plants. Biochemical Society Transactions. 28: 638-641.
    [155] Sperling P, et al. 1990. High oleic sunflower studies on Composition and desaturation of acyl groups in different lipids and organs. Z. Naturforsch, C. 45, 166-172.
    [156] Sperling P, Heinz E. 2003. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta. Jun 10; 1632(1-3): 1-15.
    [157] Sperling P, Lee M, Girke T, Zahringer U, Stymne S and Heinz E. 2000. A bifunctional △6-fatty acyl acetylenase/desaturase from the moss Ceratodon purpureus, A new member of the cytochrome b_5 superfamily. Eur. J. Biochem. 267:3801-3811.
    [158] Sperling P, Libisch B, Zahringer U, Heinz E. 2001a. Functional identification of △8-sphingolipid desaturase from Borago officinalis. Archives of Biochemistry and Biophysics 388: 293-298.
    [159] Sperling P, Schmidt H and Heinz E. 1995. A cytochrome-b_5-containing fusion protein similar to acyl lipid desaturases. Eur. J. Biochem. 232,798-805.
    [160] Sperling P, Ternes P, Moll H, Franke S, Zahringer U, Heinz E. 2001b. Functional characterization of sphingolipid C4-hydroxylase genes from Arabidopsis thaliana. FEBS Letters 494: 90-94.
    [161] Sperling P, Ternes P, Zank T, Heinz E. 2003. The evolution of desaturases. Prostaglandins, Leukotrienes and Essential Fatty Acids. 68: 73-95.
    [162] Sperling P, Zahringer U, Heinz E. 1998. A sphingolipid desaturase from higher plants: identification of a new cytochrome b5 fusion protein. Journal of Biological Chemistry. 273: 28590-28596.
    [163] Steponkus PL, Lynch D. 1989. Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold acclimation. Journal of Bioenergetics and Biomembranes. 21:21±41.
    [164] Sundberg RJ, Martin RB. 1974. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem Rev. 74:471-517
    [165] Svetek JYM, Nothnagel EA 1999. Presence of glycosylphosphatidylinositol lipid anchor on rose arabinogalactan proteins. Journal of Biological Chemistry. 274: 14724-14733.
    [166] Tamura K, Mitsuhashi N, Hara-Nishimura I, Imai H. 2001. Characterization of an Arabidopsis cDNA encoding a subunit of serine palmitoyltransferase, the initial enzyme in sphingolipid biosynthesis. Plant and Cell Physiology. 42: 1274-1281.
    [167] Tavernier E, Le Quoc D, Le Quoc K. 1993. Lipid composition of the vacuolar membrane of Acer pseudoplatanus cultured cells. Biochimica et Biophysica Acta. 167: 242-247.
    [168] Teasdale R D and Jackson M R. 1996. Signal-mediated sorting of serine palmtolytransferase, the intitial enzyme In sphingolipid biosynthesis. Plant Cell Physiol. 42: 12774-1281.
    [169] Ternes P, Franke S, Zahringer U, Sperling P, and Heinz E. 2002. Identification and Characterization of a Sphingolipid Delta4-Desaturase Family J. Biol. Chem. 277(28): 25512-25518.
    [170] Thorneycroft D, Sherson SM, Smith SM. 2001. Using gene knockouts to investigate plant metabolism. Journal of Experimental Botany. 52, 1593-1601.
    [171] Toledo MS, Levery SB, Straus AH, Suzuki E, Momany M, Glushka J, Moulton JM, Takahashi HK. 1999. Dimorphic expression of cerebrosides in the mycopathogen Sporothrix schenckii. Biochemistry. 38:7294-7306.
    [172] Uemura M, Joseph RA, Steponkus PL. 1995. Cold acclimation of Arabidopsis thaliana. Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiology. 109: 15-30.
    [173] Uemura M, Steponkus PL. 1994. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiology. 104: 479-496.
    [174] Umemura K, Ogawa N, Yamauchi T, Iwata M, Shimura M, Koga J. 2000. Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants. Plant and Cell Physiology. 41: 676-683.
    [175] Van Meer G, and Holthuis JCM. 2000. Sphingolipid transport in eukaryotic cells. Biochim. Biophys. Acta. 1486: 145-170
    [176] Wallis JG & Browse J. 1999. The △8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch.Biochem. Biophys.365:307-316.
    [177] Wesley SV, Helliweli CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27: 581-590.
    [178] Whitney HM, Michaelson LV, Sayanova O, Pickett JA, Napier J A. 2003. Functional characterisation of two cytochrome b_5-fusion desaturases from Anemone leveillei: the unexpected identification of a fatty acid △6-desaturase. Planta. 217: 983-992
    [179] Worrall D, Ng C, Hetherington AM. 2003. Sphingolipids, new players in plant signaling. Trends in Plant Science. 8: 317-320.
    [180] Yaguchi T, Tanaka S, Yokochi T, Nakahara T and Higashihara T. 1997. Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. Journal of the

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700