猪Lipin和FIT基因的克隆与组织分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪诱导转录物(FIT)和Lipin都是与脂肪代谢有关的基因,FIT是对脂肪组装成脂滴起关键作用的基因,是内质网膜蛋白,参与脂类代谢的氧化作用。Lipin是一种关键的脂肪调节酶,作为蛋白质在哺乳动物细胞中调节脂肪代谢。
     为了研究Lipin和FIT蛋白的生物学功能,本试验以EST片段为基础,利用同源序列克隆原理设计引物,对猪各种组织提取的总RNA进行RT-PCR,通过RT-PCR技术克隆得到FIT(FIT1和FIT2)和Lipin(Lipin1,2和3)的cDNA序列,利用生物信息学工具预测其相关生物学性质,并对其组织进行分布初探,试验分两个系列。
     一、猪Lipin蛋白家族的克隆和组织分布
     Lipin1基因包含一个完整的开放阅读框架(open reading frame, ORF)为2-2686bp,全长为2692bp,由894个氨基酸残基组成,其中酸性氨基酸为189个,碱性氨基酸为122个,分子量为98.91kDa,等电点为6.40。结构域预测含有LNS2结构域,位置在678-834aa,核定位NLS预测含有“KKRRKRRRK”结构,含有HAD-样结构域“DIDGT”催化模序,Lipin1基因与小鼠、人和大鼠的cDNA序列同源性分别为82.8%、85.0%、82.8%,预测的氨基酸序列与小鼠、人和大鼠的同源性分别为88.8%、89.9%和88.7%。
     Lipin2基因全长为2693bp,ORF为11-2686bp,由891个氨基酸残基组成,其中酸性氨基酸为190个,碱性氨基酸为126个,分子量为98.89kDa,等电点为5.32。LNS2结构域位置在680-836aa,核定位NLS预测含有“KKKKRRRKK”结构,含有HAD-样结构域“DIDGT”催化模序,Lipin2基因与小鼠、人和大鼠的cDNA序列同源性分别为83.0%、86.7%、82.9%,预测的氨基酸序列的同源性分别为87.4%、90.3%和87.4%。
     Lipin3基因变体1全长为2872bp,ORF为149-2728bp,由859个氨基酸残基组成,其中酸性氨基酸为165个,碱性氨基酸为105个,分子量为93.59kDa,等电点为5.42。LNS2结构域位置在648-804aa,核定位NLS预测含有“KKKRRRRKPRRKE”结构,含有HAD-样结构域“DIDGT”催化模序,Lipin3基因变体1与小鼠、人和大鼠的cDNA序列同源性分别为75.6%、83.4%、78.6%,预测的氨基酸序列的同源性分别为75.9%、81.6%和77.4%。变体2全长为2848bp,ORF为149-2704bp,由851个氨基酸残基组成,其中酸性氨基酸为163个,碱性氨基酸为104个,分子量为92.74kDa,等电点为5.42。LNS2结构域位置在640-796aa,核定位NLS预测含有“KKKRRRRKPRRKE”结构,含有HAD-样结构域“DIDGT”催化模序,变体2与小鼠、人和大鼠的cDNA序列同源性分别为75.6%、83.2%、78.5%,预测的氨基酸序列的同源性分别为76%、80.9%和77.4%。
     组织分布结果显示:Lipin1在脾、肺、肾、膀胱、大脑、小脑、胃、空肠、肌肉和脂肪等多种组织中都有分布,而Lipin2和Lipin3仅在脾、肺、回肠和肌肉中有分布。
     二、猪FIT蛋白家族的克隆和组织分布
     利用同源序列克隆原理设计克隆引物,对猪各种组织提取的总RNA进行RT-PCR,将PCR产物与pMD19-T载体连接后转化Ecol.JM109感受态细胞,筛选阳性克隆、测序,并进行序列分析,克隆的猪FIT1基因包含完整的开放阅读框架,长为1310bp,ORF为400-1272bp,编码290个氨基酸,其中酸性氨基酸为22个,碱性氨基酸为39个,分子量为32.17kDa,等电点为10.47,信号肽为1~35aa,含有6个跨膜结构域。猪FIT1的核酸序列与人、牛、大鼠和小鼠的同源性分别为92.1%、93.2%、87.4%和88.1%,氨基酸序列的同源性分别为97.2%、96.6%、94.8%和95.5% ,为进一步研究FIT1的生物学功能奠定了基础。
     克隆的猪FIT2基因包含完整的开放阅读框架,长为1776bp,ORF为82-870bp,编码262个氨基酸,其中酸性氨基酸为28个,碱性氨基酸为31个,分子量为29.64kDa,等电点为8.91,信号肽为1~30aa,含有4个跨膜结构域。FIT2的核酸序列与小鼠、大鼠和人的同源性分别为85.0%、85.7%和88.1%,氨基酸序列的同源性分别为87.4%、87.4%和92.0%,为进一步研究FIT2的生物学功能奠定了基础。
     组织分布结果显示:FIT1主要在肌肉和脂肪组织有分布,其它组织分布量太低,而FIT2在心、肝、脾、肾、大脑、小脑、空肠、回肠、甲状腺、肌肉和脂肪等组织都有分布。
Fat-induced transcript (FIT) and Lipin are related to fat metabolism gene.FIT is assembled into lipid droplets of fat play a key role of the gene, is a endoplasmic reticulum protein involved in oxidation of lipid metabolism. Lipin is a key regulatory enzymes of fat,it has been identified as a protein that regulates fat metabolism in mammalian cells.
     In order to study the biological function of Lipin and FIT proteins, EST fragment of this test is based on the principle of the use of cloned sequences primers were designed for a variety of organizations pig of total RNA extracted for RT-PCR, through RT-PCR technology has been cloned FIT (FIT1 and FIT2) and Lipin (lipin1, 2 and 3) cDNA sequences, using bioinformatics tools are available to predict the nature of their biology and distribution of their organizations.The study was divided into two series.
     Ⅰ.Cloning and tissues distribution of pig Lipin proteins.
     The cloned sequences containing the open reading frame of Lipin1 gene consist of 2692bp, and ORF is 2-2686bp and encodes 894 amino acids, of which 189 acidic amino acid, basic amino acid for 122, molecular weight 98.91kDa, isoelectric point of 6.40. Forecast containing LNS2 domain, the location of the 678-834, NLS nuclear localization prediction with "KKRRKRRRK" structure, with HAD-like domain "DIDGT" catalytic motif.Identity analysis showed that the lipin1 nucleotide sequences shared 82.8%, 85.0%, 82.8% homology with that of mouse, human and rat, the deduced amino acid sequences shared 88.8%,89.9% and 88.7% homology with that of mouse, human and rat.
     The cloned sequences containing the open reading frame of Lipin2 gene consist of 2693bp, and ORF is 11-2686bp and encodes 891 amino acids, of which 190 acidic amino acid, basic amino acid for 126, molecular weight 98.89kDa, isoelectric point of 5.32. Forecast containing LNS2 domain, the location of the 680-836, NLS nuclear localization prediction with " KKKKRRRKK " structure, with HAD-like domain "DIDGT" catalytic motif.Identity analysis showed that the Lipin2 nucleotide sequences shared 83.0%、86.7%、82.9%, homology with that of mouse, human and rat, the deduced amino acid sequences shared 87.4%、90.3%和87.4%homology with that of mouse, human and rat.
     The cloned sequences containing the open reading frame of Lipin3 transcript variant1 gene consist of 2872bp, and ORF is 149-2728bp and encodes 859 amino acids, of which 165 acidic amino acid, basic amino acid for 105, molecular weight 93.59kDa, isoelectric point of 5.42. Forecast containing LNS2 domain, the location of the 648-804, NLS nuclear localization prediction with " KKKRRRRKPRRKE " structure, with HAD-like domain "DIDGT" catalytic motif.Identity analysis showed that the Lipin3 transcript variant1 nucleotide sequences shared 75.6%、83.4%、78.6%, homology with that of mouse, human and rat, the deduced amino acid sequences shared 75.9%、81.6%和77.4% homology with that of mouse, human and rat. The cloned sequences containing the open reading frame of Lipin3 transcript variant2 gene consist of 2848bp, and ORF is 149-2704bp and encodes 851 amino acids, of which 163 acidic amino acid, basic amino acid for 104, molecular weight 92.74kDa, isoelectric point of 5.42. Forecast containing LNS2 domain, the location of the 640-796, NLS nuclear localization prediction with "KKKRRRRKPRRKE " structure, with HAD-like domain "DIDGT" catalytic motif.Identity analysis showed that the Lipin3 transcript variant1 nucleotide sequences shared75.6%、83.2%、78.5%, homology with that of mouse, human and rat, the deduced amino acid sequences shared 76%、80.9%和77.4% homology with that of mouse, human and rat.
     Tissue distribution results showed that: Lipin1 in a variety of tissues are distributed, but only in Lipin2 and Lipin3 spleen, lung, ileum, and muscle are distributed.
     Ⅱ.Cloning and tissues distribution of pig FIT proteins.
     Cloning primers were designed according to the cloning principle of homologous sequence. Total RNA extracted from all kinds of tissue of pig and was amplified by RT-PCR, the PCR products were ligated into the pMD19-T vector, and then transformed into Ecol. JM109 competent cells. The positive clone was identified and the sequence was sequenced and analyzed. The cloned sequences containing the open reading frame of pig FIT1 consist of 1310bp, and ORF is 400-1472bp and encodes 290 amino acids,of which 22 acidic amino acid, basic amino acid for 39, molecular weight 32.17kDa, isoelectric point of 10.47,signal peptide for 1 ~ 35aa, containing six transmembrane domain. Identity analysis showed that the pig FIT1 nucleotide sequences shared 92.1%、93.2%、87.4%和88.1% homology with that of human, bovine, rat and mouse, the deduced amino acid sequences shared 97.2%、96.6%、94.8%和95.5% homology with that of human,bovine, rat and mouse. It provides the experiment basis for further researching its biological function.
     The cloned sequences containing the open reading frame of pig FIT2 consist of 1776bp, and ORF is 82-870bp and encodes 262 amino acids,of which 28 acidic amino acid, basic amino acid for 31, molecular weight 29.64kDa, isoelectric point of 8.91,signal peptide for 1 ~ 30aa, containing four transmembrane domain. Identity analysis showed that the pig FIT2 nucleotide sequences shared 85.0%、85.7%和88.1% homology with that of mouse, human and rat, the deduced amino acid sequences shared87.4%、87.4%和92.0% homology with that of mouse, human and rat. It provides the experiment basis for further researching its biological function.
     Tissue distribution results showed that: FIT1 pig is highly expressed in the cerebellum, in the lung, stomach, ileum and a small amount of expression in the brain, FIT2 mainly in the ileum and is highly expressed in the brain.
引文
[1] Petersen, K. F., and Shulman, G. I. Etiology of insulin resistance[J]. Am J Med,2006; 119:S10-16.
    [2] Reue, K., and Phan, J. Metabolic consequences of lipodystrophy in mouse models[J].Curr Opin Clin Nutr Metab Care,2006;9:436-441.
    [3]Hegele, R. A., and Pollex, R. L. Genetic and physiological insights into the metabolic syndrome[J]. Am J Physiol Regul Integr Comp Physiol,2005;289:R663-669.
    [4] Reue, K., Xu, P., Wang, X. P., and Slavin, B. G. Adipose tissue deficiency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fld) gene[J]. J Lipid Res,2000;41: 1067-1076.
    [5]Reue, K., and Donkor, J. Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns[J]. Future Lipidology,2006;1:91-101.
    [6] Peterfy, M., Phan, J., Xu, P., and Reue, K. Hepatic Lipin 1 expression is diminished in insulin-resistant obese subjects and is reactivated by marked weight loss[J].Nat Genet.2001; 27:121-124.
    [7] Carman. Lipin, a obesity gene[J]. J Biol Chem, 2006;26:176-183.
    [8]黄艳群,陈文,康相涛等。Lpin基因的研究进展[C].牧医工程学院论文集,2008;5:157-161.
    [9]George M. Carman ,Gil-Soo Han. Roles of phosphatidate phosphatase enzymes in lipid metabolism[J]. Trends Biochem Sci,2006; 31(12): 694–699.
    [10]Smith SW. The enzymatic dephosphorylation of phosphatidic acids[J]. J Biol Chem, 1957;228:915–922.
    [11]Coleman, R. A., Lewin, T. M., and Muoio, D. M.Overexpression of rat long chain Acyl-CoA synthetase 1 alters fatty acid metabolism in rat primary hepatocytes[J].Annu Rev Nutr,2001; 20:77-103.
    [12]Jamal Z. Plasma membrane fractions from rat liver contain a phosphatidate phosphohydrolase distinct from that in the endoplasmic reticulum and cytosol[J]. J Biol Chem,1991;266:2988–2996.
    [13] Carman GM. Phosphatidate phosphatases and diacylglycerol pyrophosphate phosphatases in Saccharomyces cerevisiae and Escherichia coli[J]. Biochim Biophys Acta,1997;1348:45–55.
    [14] Oshiro J. Diacylglycerol pyrophosphate phosphatase in Saccharomyces cerevisiae[J]. Biochim Biophys Acta,2003;1635:1–9.
    [15] Sciorra VA, Morris AJ. Roles for lipid phosphate phosphatases in regulation of cellular signaling[J].Biochim Biophys Acta,2002;1582:45–51.
    [16] Nanjundan M, Possmayer F. Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase[J]. Am J Physiol Lung Cell Mol Physiol,2003;284:L1–L23.
    [17]Brindley DN. Lipid phosphate phosphatases regulate signal transduction through glycerolipids and sphingolipids[J]. Biochim Biophys Acta,2002;1582:33–44.
    [18]Brindley DN. Lipid phosphate phosphatases and related proteins: signaling functions in development,cell division, and cancer[J]. J Cell Biochem,2004;92:900–912.
    [19]Pyne S. Lipid phosphate phosphatases and lipid phosphate signalling[J].Biochem Soc Trans,2005;33:1370–1374.
    [20]Han GS. The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme[J]. J Biol Chem,2006;281:9210–9218.
    [21]Brindley DN. Intracellular translocation of phosphatidate phosphohydrolase and its possible role in the control of glycerolipid synthesis[J]. Prog Lipid Res,1984;23:115–133.
    [22]Carman GM, Henry SA. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes[J]. Prog Lipid Res,1999;38:361–399.
    [23]Sorger D, Daum G. Triacylglycerol biosynthesis in yeast[J]. Appl Microbiol Biotechnol, 2003;61:289–299.
    [24]Santos-Rosa H. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth[J]. EMBOJ,2005;24:1931–1941.
    [25]Exton JH. Signaling through phosphatidylcholine breakdown[J]. J Biol Chem,1990;265:1–4.
    [26] Exton JH. Phosphatidylcholine breakdown and signal transduction[J]. Biochim Biophys Acta, 1994;1212:26–42.
    [27]Testerink C, Munnik T. Phosphatidic acid: a multifunctional stress signaling lipid in plants[J]. Trends Plant Sci,2005;10:368–375.
    [28] Waggoner DW. Structural organization of mammalian lipid phosphate phosphatases: implications for signal transduction[J]. Biochim Biophys Acta,1999;1439:299–316.
    [29] Wang X. Signaling functions of phosphatidic acid[J]. Prog Lipid Res,2006;45:250–278.
    [30] Howe AG, McMaster CR. Regulation of phosphatidylcholine homeostasis by sec14[J]. Can J Physiol Pharmacol,2006;84:29–38.
    [31]Taylor FR, Parks LW. Triacylglycerol metabolism in Saccharomyces cerevisiae relation to phospholipid synthesis[J]. Biochim Biophys Acta,1979;575:204–214.
    [32]Hosaka K, Yamashita S. Regulatory role of phosphatidate phosphatase in triacylglycerol synthesis of Saccharomyces cerevisiae[J]. Biochim Biophys Acta,1984;796:110–117.
    [33]Toke DA. Isolation and characterization of the Saccharomyces cerevisiae DPP1 gene encoding for diacylglycerol pyrophosphate phosphatase[J]. J Biol Chem,1998;273:3278–3284.
    [34]Toke DA. Isolation and characterization of the Saccharomyces cerevisiae LPP1 gene encoding a Mg2+-independent phosphatidate phosphatase[J]. J Biol Chem,1999;273:14331–14338.
    [35]Han GS. Regulation of the Saccharomyces cerevisiae DPP1-encoded diacylglycerol pyrophosphate phosphatase by zinc[J]. J Biol Chem,2001;276:10126–10133.
    [36]Han GS. Vacuole membrane topography of the DPP1-encoded diacylglycerol pyrophosphate phosphatase catalytic site from Saccharomyces cerevisiae[J]. J Biol Chem,2004;279:5338–5345.
    [37]Huh WK. Global analysis of protein localization in budding yeast[J].Nature,2003;425: 686-691.
    [38]Wu WI. Purification and characterization of diacylglycerol pyrophosphate phosphatase from Saccharomyces cerevisiae[J]. J Biol Chem,1996;271:1868–1876.
    [39]Furneisen JM, Carman GM. Enzymological properties of the LPP1-encoded lipid phosphatase from Saccharomyces cerevisiae[J]. Biochim Biophys Acta,2000;1484:71–82.
    [40]Faulkner A. The LPP1 and DPP1 gene products account for most of the isoprenoid phosphatase activities in Saccharomyces cerevisiae[J]. J Biol Chem,1999;274:14831–14837.
    [41]van Schooten B. Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite[J].Biochim Biophys Acta,2006;1761:151–159.
    [42]Brindley DN, Waggoner DW. Mammalian lipid phosphate phosphohydrolases[J]. J Biol Chem,1998;273:24281–24284.
    [43]Roberts R. Human type 2 phosphatidic acid phosphohydrolases– substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform[J].J Biol Chem, 1998;273:22059–22067.
    [44]Smyth SS. Lipid phosphate phosphatases regulate lysophosphatidic acid production and signaling in platelets: studies using chemical inhibitors of lipid phosphate phosphatase activity[J]. J Biol Chem,2003;278:43214–43223.
    [45]Balsinde J, Dennis EA. Bromoenol lactone inhibits magnesium-dependent phosphatidate phosphohydrolase and blocks triacylglycerol biosynthesis in mouse P388D1 macrophages[J]. J Biol Chem,1996;271:31937–31941.
    [46]Collet JF. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif[J]. J Biol Chem,1998;273:14107–14112.
    [47]Collet JF. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases[J]. J Biol Chem,1999;274:33985–33990.
    [48]Stukey J, Carman GM. Identification of a novel phosphatase sequence motif[J]. Protein Sci, 1997;6:469–472.
    [49]Toke DA. Mutagenesis of the phosphatase sequence motif in diacylglycerol pyrophosphate phosphatase from Saccharomyces cerevisiae[J]. Biochemistry,1999;38:14606–14613.
    [50]Hemrika W. From phosphatases to vanadium peroxidases: a similar architecture of the activesite[J]. Proc Natl Acad Sci USA,1997;94:2145–2149.
    [51]Neuwald AF. An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases[J]. Protein Sci,1997;6:1764–1767.
    [52]Zhang QX. Identification of structurally important domains of lipid phosphate phosphatase-1:implications for its sites of action[J]. Biochem,2000;345:181–184.
    [53] Lin YP, Carman GM. Purification and characterization of phosphatidate phosphatase from Saccharomyces cerevisiae[J]. J Biol Chem,1989;264:8641–8645.
    [54] Morlock KR. Phosphatidate phosphatase from Saccharomyces cerevisiae. Isolation of 45-kDa and 104-kDa forms of the enzyme that are differentially regulated by inosito[J]. J Biol Chem, 1991;266:3586–3593.
    [55]Wu WI, Carman GM. Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by phospholipids[J]. Biochemistry,1996;35:3790–3796.
    [56]Wu WI. Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by sphingoid bases[J]. J Biol Chem,1993;268:13830–13837.
    [57]Wu WI, Carman GM. Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by nucleotides[J]. J Biol Chem,1994;269:29495–29501.
    [58]Morlock KR. Regulation of phosphatidate phosphatase activity by inositol in Saccharomyces cerevisiae[J]. J Bacteriol,1988;170:3561–3566.
    [59]Wu WI. Regulation of lipid biosynthesis in Saccharomyces cerevisiae by fumonisin B1[J]. J Biol Chem,1995;270:13171–13178.
    [60]Peterfy M. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin[J]. Nat Genet,2001;27:121–124.
    [61]Phan J, Reue K. Lipin, a lipodystrophy and obesity gene[J].Cell Metab,2005;1:73–83.
    [62]Phan J, Reue K. Lipin, a lipodystrophy and obesity gene[J]. Obstet Gynecol Surv, 2005;60:652–653.
    [63]Peterfy M. Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis[J]. J Biol Chem,2005;280:32883–32889.
    [64] Phan J. Biphasic expression of lipin suggests dual roles in adipocyte development[J]. Drug News Perspect ,2005;18:5–11.
    [65]Phan J. Lipin expression preceding peroxisome proliferator-activated receptor-γis critical for adipogenesis in vivo and in vitro[J]. J Biol Chem,2004;279:29558–29564.
    [66] Huffman TA. Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin[J]. Proc Natl Acad Sci USA,2002;99:1047–1052.
    [67]Martin S, Parton RG. Lipid droplets: a unified view of a dynamic organelle[J]. Nat Rev MolCell Biol,2006;7:373–378.
    [68]Spiegelman BM, Flier JS. Obesity and regulation of energy balance[J].Cell,2001; 104:531–543.
    [69]Brasaemle DL, Dolios G, Shapiro L,et al. Analysis of lipolytic protein trafficking and interactions in adipocytes[J].J Biol Chem,2004; 279:46835–46842.
    [70]Liu P, Ying Y, Zhao Y, et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic[J].J Biol Chem,2004;279:3787–3792.
    [71]Beller M, Riedel D, Jansch L,et al. Characterization of the Drosophila lipid droplet subproteome[J].Mol Cell Proteomics,2006; 5:1082–1094.
    [72]Chang BH, Chan L. Assistant professor department of molecular and cellular biology[J]. Am J Physiol,2007; 292:G1465–G1468.
    [73]Mullner H, Daum G. Dynamics of neutral lipid storage in yeast[J]. Acta Biochem Pol,2004; 51:323–347.
    [74]Zechner R, Strauss JG, Haemmerle G,et al. Lipolysis: pathway underconstruction[J]. Curr Opin Lipidol,2005;16:333–340.
    [75]Londos C, Brasaemle DL, Schultz CJ,et al. The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion[J].Semin Cell Dev Biol,1999;10:51–58.
    [76]DuncanRE,AhmadianM, JaworskiK,et al. Regulation of lipolysis in adipocytes[J].Annu Rev Nutr,2007;27: 79–101.
    [77]Cases S, Smith SJ, Zheng YW,et al. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis[J]. Proc Natl Acad Sci USA,1998; 95:13018–13023.
    [78]Cases S, Stone SJ, Zhou P,et al. Cloning of DGAT2, a second mam-malian diacylglycerol acyltransferase, and related family members[J].J Biol Chem,2001; 276:38870–38876.
    [79] Novikoff AB, Novikoff PM, Rosen OM,et al. A role for microtubules in sorting endocytic vesicles in rat hepatocytes[J].J Cell Biol,1980; 87:180–196.
    [80]Robenek H, Hofnagel O, Buers I,et al. Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis[J].J Cell Sci,2006;119:4215–4224.
    [81]Staels B, Dallongeville J, Auwerx J,et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism[J].Circulation,1998;98:2088–2093.
    [82]Wolfe KH, Shields DC. Molecular evidence for an ancient duplication of the entire yeast genome[J].Nature,1997; 387:708–713.
    [83]Tocher D. Genetic Analysis of digestive physiology using fluorescent phospholipid reporters[J].Elsevier, 1995;4: 119–157.
    [84]Schlegel A, Stainier DY. Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae[J].Biochemistry,2006; 45:15179–15187.
    [85]Almsherqi ZA, Kohlwein SD, Deng Y. Cubic membranes: a legend beyond the flatland of cell membrane organization[J].J Cell Biol,2006; 173:839–844.
    [86]Snapp EL, Hegde RS, Francolini M, et al. Formation of stacked ER cristernae by low affinity protein interactions[J]. J Cell Biol,2003; 163:257–269.
    [87]Huh WK, Falvo JV, Gerke LC,et al. Skp1-Cullin-F-box-dependent degradation of aah1p eequires its interaction with the F-box Protein Saf1p[J].Nature,2003;425:686–691.
    [88]BrasaemleDL, Rubin B,Harten IA,et al. The Phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion[J].J Biol Chem,2000;275:38486–38493.
    [89]Kadereit B, Nikawa J, Kodaki T,et al. Evolutionarily conserved gene family important for fat storage[J].PNAS,2008;105:94–99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700