酱油和醋香气成分的测定及生产工艺鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酱油和食醋是人们日常生活中重要的调味品。我国于2000年9月1日颁布了酱油和食醋的国家标准,在GB18186-2000《酿造酱油》和GBl8187-2000《酿造食醋》中都规定了要如实标明酱油和食醋生产的方法,即是高盐稀态发酵工艺酱油还是低盐固态发酵发酵工艺酱油,是固态发酵食醋还是液态发酵食醋。但是由于缺乏规范的生产工艺标准和质量检测标准,假冒伪劣产品屡禁不止。
     香气成分是评价产品质量的重要指标之一。为了鉴定酱油和食醋的品质,本试验采用顶空固相微萃取-气相色谱法测定酱油和食醋的香气成分。对酱油和食醋的香气成分萃取条件进行了优化及定性、定量研究,并进行了主成分分析和聚类分析,确立了酱油和食醋主要的香气成分和鉴定不同工艺产品的质量指标。结论主要有以下几点:
     1.采用固相微萃取-气相色谱法分析酱油中的香气成分,对测定中的萃取头种类、萃取时间、萃取温度、加盐浓度、解析时间等条件参数进行了优化,最终确定了用85μmPA萃取头,在10mL样品中加入1g固体NaCl,萃取温度40℃,萃取时间30min,在气相色谱中解析3min为最佳萃取条件。在此条件下经GC-MS/GC进行定性定量分析,共定性出52种香气组分包括11种酸、6种醛、11种醇、12种酯、4种酚和8种杂环类化合物,定量了其中的20种主要组分。本方法定量重现性良好,标准变异系数(RSD)均小于10%,样品回收率为91.2%~106.7%。
     2.采用固相微萃取-气相色谱法分析食醋中的香气成分,对测定中的样品稀释倍数、萃取时间、萃取温度、加盐浓度、解析时间等条件参数进行了优化,最终确定了用85μmPA萃取头,将醋样品用去离子水稀释20倍,取10mL稀释样品中加入3g固体NaCl,萃取温度40℃,萃取时间45min,在气相色谱中解析3min为最佳萃取条件,在此条件下经GC-MS/GC进行定性定量分析,共定性出59种香气组分包括14种醇、12种酯、14种酸、10种醛、3种酚、3种吡嗪和3种杂环类化合物,定量了其中的24种主要组分。本方法定量重现性良好,标准变异系数(RSD)均小于10%,样品回收率为88.3%~100.9%。
     3.对酱油的数据进行主成分分析,结果表明:当取5个主成分吋,其累计贡献率达到82.373%>80%,说明前5个主成分能概括原数据的大部分信息。它们包括了酱油中的乙醇、乙酸乙酯、乳酸乙酯、正丁醇、异戊醇、3-甲硫基-1-丙醇、糠醇、β-苯乙醇、4-乙基愈创木酚和2-乙酰基吡咯等重要香气成分。
     4.对食醋的数据进行主成分分析,结果表明:当取4个主成分吋,其累计贡献率达到81.253%>80%,说明前4个主成分能概括原数据的大部分信息。它们包括了食醋中的双乙酰、异戊醛、4-乙基愈创木酚、乳酸乙酯、β-苯乙醇、乙酸异戊酯、异丁醇、丁酸、正丁醇和戊酸等重要香气成分。
     5.对所测得酱油数据进行聚类分析,发现乙醇、乙酸乙酯、乳酸乙酯、β-苯乙醇和4-乙基愈创木酚在高盐稀态发酵酱油中的含量较高,最高含量分别为33600mg/L、23.3mg/L、36.2mg/L、8.1mg/L和2.8mg/L;而乙酸和2-乙酰基吡咯在低盐固态发酵酱油中的含量较高,分别达到2380.3mg/L和62.9mg/L;且高盐稀态发酵酱油中的香气成分有50多种,在低盐固态发酵酱油中检测到约40种。
     经分析还发现:属于高盐稀态发酵工艺的两类酱油在香气成分含量上也存在着很大的差异,除糠醇和2-乙酰基吡咯外,天然晒露发酵酱油中各香气组分的含量比采用日本工艺的高盐稀态发酵酱油的要少。
     6.对所测得食醋数据进行聚类分析,发现异戊醛、双乙酰、正丙醇、3-羟基-2-丁酮、乳酸乙酯、糠醛、4-乙基愈创木酚和4-乙基苯酚在固态发酵食醋中的含量较高,最高值分别为3.9mg/L、208.2mg/L、54.9mg/L、2935.7mg/L、19.7mg/L、252.1 mg/L、6.8mg/L和24.3 mg/L;而在液态发食醋中则含量较少,3-羟基-2-丁酮的含量为200.6 mg/L~792.6mg/L,双乙酰的含量为9.7 mg/L~23.3mg/L:除3-羟基-2-丁酮外,以上其它香气成分在配制食醋中则未检出。且固态发酵食醋中的香气成分有50多种,在液态发酵食醋中一般检测到30多种香气成分,而在配制食醋中仅检测到大约20种。
     7.综上所述:不同制造工艺的酱油和食醋在香气成分上有明显差异性,这种差异性既体现在物质种类水平上,也表现在相同物质成分的含量水平上,据此差异性可以鉴定不同酿造工艺的酱油和食醋产品。
Soy sauce and vinegar are important seasoning in our daily life.The national standards were promulgated at Sep.1~(st) 2000.The methods for producting soy sauce and viegar must be truthfully regulated in GB 18186-2000 fermented soy sauce and GB 18187-2000 Fermented Vinegar,that was the high-salt liquid-state fermented soy sauce or the low-salt solid-state fermented soy sauces,the solid-state fermented vinegar or the liquid-state fermented vinegar.But there were no standard techniques in soy sauce and vinegar production and the corresponding national quality standards were simple.Therefore,counterfeit products were prevalent.
     The flavor component was one of the important indicators to evaluate the quality of some products.Thus,flavor compounds in soy sauce and vinegars were analyzed in the present study by head space-solid phase microextraction coupled with gas chromatogragh(HS-SPME-GC) to assess the quality of products.In this paper, optimization of determination condition for flavor compounds in Soy Sauce and vinegars and were determined qualitatively and quantitatively by means of HS-SPME-GC,and then the data was processed using principal component analysis and cluster analysis,the main flavor components of the soy sauce and vinegars were determined and the quality indexs of different kinds making processes were identified. The main results were as follows.
     1.A method for detection of flavor compounds in soy sauce by SPME-GC had been developed.The analysis parameters of SPME fiber coating,extraction time, sample temperature,content of sodium chloride,desorption time had been optimized. Finally,The optimized method was determined:A 10-mL soy sauce was placed into a 20-mL vial and saturated with lg sodium chloride.The sample was extracted using 85μmPA fiber for 30 min at 40℃,then the volatiles were desorbed from the fiber at temperature of 230℃for 3min.Consequently,52 components were identified by means of GC-MS/GC,20 of which were quantified.The identified compounds were 11 alcohols,11 acids,6 carbonyls,12 esters,4 phenols,8 other compounds.The recoveries was between 91.2%and 106.7%.The experiment of reproducibility of relative contents was good and relative standard deviations(RSD) was less than 10%.
     2.A method for detection of flavor compounds in vinegars by SPME-GC had been developed.The analysis parameters of dilution multiple,extraction time,sample temperature,content of sodium chloride,desorption time had been optimized.Finally, the optimized method was determined:The vinegar was diluted 20 times with deionized water and then the 10mL diluted vinegar was placed into a 20-mL vial and saturated with 3g sodium chloride.The sample was extracted using 85μmPA fiber for 45 min at 40℃,then the volatiles were desorbed from the fiber at 230℃for 3min. Consequently,59 components were identified by means of GC-MS/GC,24 of which were quantified.The identified compounds were 14 alcohols,14 acids,12 esters,10 carbonyls,3 phenols,3 pyrazines,3 other compounds.The recoveries was at the range from 88.3%to 100.9%.The experiment of reproducibility of relative contents was good and relative standard deviations(RSD) was less than 10%.
     3.The results of principal component analysis for the data of the soy sauces indicated that the accumulative contribution rate of the first five principal components to total variation accounted for 82.373%>80%,maintaining most of information of original data.they consisted of alcohol,ethyl acetate,ethyl lactate,butanol,isoamyl alcohol,3-(methylthio)-1-propyl acetate,furfuryl alcohol,β-phenylethyl alcohol, 4-ethyl guaiacol and 2-acetyl pyrrole in soy sauce.
     4.The results of principal component analysis for the data of vinegars indicated that the accumulative contribution rate of the first four principal components to total variation accounted for 81.253%>80%,maintaining most of information of original data.they consisted of diacetyl,isovaleraldehyde,4-ethyl guaiacol,ethyl lactate,β-phenylethyl alcohol,isoamyl acetate,isobutanol,butyrate,butanol and pentanoic acid in vinegars.
     5.The results of cluster analysis for the data of the soy sauces indicated that the content of alcohol,ethyl acetate,ethyl lactate,butanol,isoamyl alcohol,β-phenylethyl alcohol and 4-ethyl guaiacol were high content in the high-salt liquid-state fermented soy sauce,the maximum content was 33600mg/L,23.3mg/L,36.2mg/L,8.1mg/L and 2.8mg/L respectively;However,the content of acetic acid and 2-acetyl pyrrole was high content in the low-salt solid-state fermented soy sauces,the maximum contents was 2380.3mg/L and 62.9mg/L respectively;There were more than 50 kinds of flavor components detected in the high-salt liquid-state fermented soy sauce,but only approximately 40 kinds of flavor components detected in the low-salt solid-state fermented soy sauces.
     The results also showed that there were very great difference for the two kinds of the high-salt liquid-state fermented soy sauce process in the content of the flavor components,except for furfuryl alcohol and 2-acetyl pyrrole.There were lower contents of the flavor compounds in the natural fermented soy sauce than those in the high-salt liquid-state fermented processing adoptd by japanese.
     6.The results of cluster analysis for the data of vinegars indicated that the content of isovaleraldehyde,diacetyl,n-propanol,3-hydroxy-2-butanone,ethyl lactate, furfuryl alcohol,4-ethyl guaiacol and 4-ethylphenol was high content in the solid-state fermented vinegar,the maximum contents was 3.9mg/L,208.2rag/L, 54.9mg/L,2935.7mg/L,19.7mg/L,252.1mg/L,6.8mg/L and 24.3 mg/L respectively. However,the content of them were lower content in the liquid-state fermented vinegars.The content of diacetyl was at the range from 9.7mg/L to 23.3 mg/L,the content of 3-hydroxy-2-butanone was at the range from 200.6mg/L to 792.6 mg/L; Except for 3-hydroxy-2-butanone,the other above flavor compounds were not detected in the blended vinegars;There were more than 50 kinds of flavor components detected in the solid-state fermented vinegars,more than 30 kinds of aroma components detected in the liquid-state fermented vinegar,only approximately 20 kinds of flavor components detected in the blended vinegars.
     7.The results of principal component analysis and cluster analysis indicated that profiles of flavor components of soy sauce or vinegar depended on their fermentation processes.The difference was reflected in the type and content of flavor compounds. Thus,the fermentation processes of soy sauce or vinegars could be deduced according to the type and content of flavor compounds in their products.
引文
1.包启安.食醋风味的探索.中国调味品,1995,4:1-6
    2.蔡木易,谷瑞增.我国酱油行业的现状发展及氯丙醇问题.中国酿造,2001,3:1-5
    3.程传格,刘纪正,董福英,刘建华.济宁食醋香味成分分析.山东科学,1991,4(4):14-18
    4.胡嘉鹏.中日酱油文化比较.中国调味品,2002,4:3-8
    5.胡国平,谢韩.我国酱油行业需要巨人的崛起.江苏调味副食品,2002,5:7-8
    6.陈騊声.生物新技术在食品中的应用.中国酿造,1992,1:42-50
    7.陈闽军,吴永江,范骁晖,程翼宇.色谱指纹图谱分析技术用于鉴别中药川芎产地.中国中药杂志,2003,28(7):606-609
    8.陈华,郁志勇,朱国斌.中国白酒香型的化学模式识别-聚类分析.食品科学,2000,8:37-41
    9.陈峰.主成分与因子分析教学中的几点体会.中国卫生统计,1999,16(5):317-319
    10.陈宇.聚类算法研究.福建电脑,2007,7:27-30
    11.黄恒君,项泾渭,刘晓梅.主成分回归分析的直接实现--基于SPSS二次开发.甘肃科学学报,2007,19(2):107-110
    12.黄仲华.论食醋与健康.中国调味品,1998,3:2-6
    13.横塚保,佐佐木正兴.酱油的香味成分.日本酿造协会志,1958,4:4-11
    14.贺铮怡,敖宗华,吴珏,李国权,陶文沂.镇江香醋中川芎嗪的测定及生成机理的研究.中国调味品,2004,2:36-39
    15.胡本高.液态深层发酵与固态发酵食醋风味差别探讨.食品工业,2004,5:26-29
    16.李幼筠.我国酿造酱油生产工艺的发展方向.中国调味品,2007,2:51-59
    17.刘曰胜,韩秋菊.先液后固新食醋发酵工艺.中国调味品,1998,4:21-23
    18.鲁肇元.酱油生产技术-酱油的起源及酱油生产艺的沿革.中国调味品,2002,11:34-36
    19.刘杨岷,张家丽,王利平,袁身淑.食醋风味成分比较研究.食品与机械,2005,21(5):39-42
    20.李敏雄,郭锦富.酱油香味成分之研究.中国农业化学杂志,1987,25(1):101-103
    21.李幼筠.中国固态发酵食醋工艺剖析.江苏调味副食品,2002,6:1-5
    22.李丽,路海峰,梁丽绒,吕利华,赵良启.山西老陈醋香气成分分析.山西大学学报,2005,28(2):209-213
    23.李松林.应用HPLC-DAD-MS联用技术研究中药川芎指纹图谱.药学学报,2004,39(8):621-626
    24.李大锦,王汝珍.低盐固态发酵酱油技术进步现状与发展.江苏调味副食品,2002,5:1-3
    25.李在富,颜勇.亟待制定酿造酱油、食醋和配制酱油、食醋统一的完善的标准.中国调味品,2005,10:51-53
    26.林祖申.多菌种发酵是提高酱油、食醋质量的重要途径.中国酿造,2005,6:1-5
    27.林祖申.影响酱油感官指标的色泽混浊和沉淀的研讨.中国调味品,1999,7:2-4
    28.路海峰.山西老陈醋香气成分分析和胰岛素样生长因子的克隆.[硕士学位论文].太原:山西大学图书馆,2003
    29.马辉明.酱油生产中原料不同润水和蒸料方法的实验报告.中国调味品,1997,8:12-14
    30.马辉明.低盐固态酱油亦能与高盐稀态酱油媲美质疑.中国调味品,1998,2:30-32
    31.马学曾.酱油食醋若干理念的思考.中国调味品,2004,12:41-43
    32.浅尾保夫.酱香成份.日本酿造协会志,1962,10(4):1105-1107
    33.宋钢.关于酱油香型的探讨.中国酿造,2003,4:5-9
    34.谭耀辉.酱油质量与原料大豆和小麦成分的关系.专题与讨论,2000,8:1-7
    35.王林祥,刘杨崛,王建新.酱油风味成分的分离与鉴定.中国调味品,2005,1:45-49
    36.魏爱雪.EPA-82690方法测定水中VOC的质量保证.环境科学进展,1996,4:70-80
    37.萧凤岐.食醋的历史与文化.中国酿造,2000,108(4):33-35
    38.谢韩.浅谈酱油风味.江苏调味副食品,2001,71:1-3
    39.徐清苹,敖宗华,陶文沂.食醋功能研究进展(上).中国调味品,2003,298(12):19-23
    40.许玉琴.散布图在质量分析中的应用.江苏调味副食品,2006,23(2):12-14
    41.杨峥,李连生,邓旭.酱油中香气成分的剖析.食品与发酵工业,1990,2:18-23
    42.姚兆敏,戚民.评判酱油质量的方法.城市技术监督,1999,11:49-51
    43.仪宏,王丽丽.食醋生产工艺研究.中国调味品,1997,10:13-16
    44.余鸣春,敖宗华,陶文沂,吴珏,李国权,叶有伟.镇江恒顺优质香醋理化指标的分析研究.中国调味品,2006,6:19-22
    45.阎慈琳.关于主成分分析做综合评价的若干问题.数理统计与管理,1998,2:22-25
    46.殷东来.固稀发酵酱油的生产工艺浅析.江苏调味副食品,2004,4:14-17
    47.岳春,初峰,侯振建.液态法生产食醋工艺研究.食品工业科技,2005,26(3):113-115
    48.曾平佳.中国酱油业的发展思考.食品研究与开发,2004,3:11-14
    49.赵大云,高明清.一种分析检测食品风味物质的新方法-固相微萃取法.中国调味品,1999,7:24-26
    50.郑海燕.我国酱油酿造发展的几个问题.中国调味品,1997,3:102-104
    51.赵德安.酱油酿造的主要工艺条件.江苏调味副食品,2002,5:4-6
    52.赵德安.论传统发酵调味品生产工艺.中国调味品,2003,9:13-16
    53.赵德安.混合发酵与纯种发酵.中国调味品,2005,3:3-6
    54.赵希男.主成分分析法评价功能浅析.系统工程,1995,13:24-27
    55.翟玮玮,顾立众.食醋发酵工艺述评.江苏食品与发酵,2001,9:18-20
    56.张林,鲁肇元,李栓勤,李月.GB18187-2000酿造食醋.北京:中国标准出版社,2000
    57.张秀梅,王素,刘瑞钦,陈彩英,冯军风.酱油中香气成份的试验研究.中国调味品,2003,3:13-16
    58.Arhtur C,Pawliszyn J.Solid phase microextraction with thermal desorption using fused silica optical fibers.Anal Chem,1990,62:2145-2148
    59. Aurand L W, Singleton J A, Bell T A, Etchells J K. Volatile Components in the vapors of natural and distilled vinegar. Journal-of-Agricultural-aiid-Food-Chemistry, 1966,31: 172-177
    60. Blanch G, Bertrand M, Christian G, Patrick E, Gilbert C, Elisabeth G. Volatite Composition of vinegars and gas chromatographic-mass. Spectrometric Analysis Chemistry, 1992,40(3): 1046-1049
    61. Charles M. Bertrand M, Christian G, Patrick E, Gilbert C, Elisabeth G. Potent aroma compounds of two red wine vinegars. Journal of Agricultural and Food Chemistry, 2000,48(1): 70-77
    62. Eichelberger J W, Behymer T D, Budde W L, Munch J W. EPA Method 525 Determination of organic compounds in drinking water by liquid-soild extraction and capillary column gas chromatography mass spectrometry. Revision2.0. Environmental Monitoring Systems Laboratory Office of Research and Development, 1992,43:1345-1349
    63. Enrique D G, Ranibn N M, Remedios C N, Carmelo G B. Optimisation of stir bar sorptive extraction applied to the determination of volatile compounds in vinegars. Journal of Chromatography, 2006, 11: 47-53
    64. Erbe T, Bruckner H. Chiral amino acid analysis simultaneous distillation-extraction. Journal of Agricultural and Food-selected, 1998, 207: 400-402
    65. Hardy P J. Extraction and concentration of volatiles from dilute aqueous and aqueous-alcoholic solution using tricblorofluorometbane. Journal of Agricultural and Food Chemistry, 1969, 17: 656-658
    66. Khan J H. Analysis of vinegar by gas-liquid chromatogramphy. Journal-of-Ygrieu Itural-and-Food-Chemistry, 1966, 14: 460-465
    67. Kishi M, Fukaya M, Tsukamoto Y, Nagasawa T, Takehana K, Nishizawa N. Enhancing effect of dietary vinegar on the intesinal absorption of calcium in ovariectomized rats. Bioscience Biotechnology and Biochemistry, 1999, 163(5): 905-910
    68. Liljeberg H, Bjorck D. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with addid vinegar. EurJClinNutr, 1998 ,52 (5): 368-371
    69. Marina C, Paolo L, Daniela M, Andrea M, Alessandro U. Determination of carboxylic acids in vinegars and in aceto balsamico tradizionale di modena by HPLC and GC methods. Journal-of-Agricultural- and- Food-Chemistry, 2002, 50(19): 5255-5261
    70. Nunomura N, Sasaki M, Asao Y, Okotsuka T. Isolation and identification of 4-hydroxy-2(or 5)-5(or 2)-methyl-3(2H)-furanone as a flavor component in shoyu. Ager Biol Chem, 1976, 40: 491-495
    71. Nunomura N, Sasaki M, Asao Y, Okotsuka T. Identification of volatile components in shoyu by GC-MS, Ager Biol Chem, 1977, 41: 485-490
    72. Nunomura N, Sasaki M, Asao Y, Okotsuka T. Isolation of 4-hydroxy-5-methyl-3(2H)-furanone a flavor component in shoyu. Ager Biol Chem, 1978, 43: 1361-1363
    73. Nunomura N, Sasaki M, Asao Y, Okotsuka T. Shoyu volatile components neutral fractions. Ager Biol Chem, 1979,48: 1753-1762
    74. Nunomura N, Sasaki M, Asao Y, Okotsuka T. Shoyu volatile components acidic fractions and the characteristic flavor components. Ager Biol Chem, 1980,44: 339-351
    75. Nunomura N, Sasaki M, Asao Y, Okotsuka T. Shoyu volatile components basic fractions. Ager Biol Chem, 1981,42: 2123-2128
    76. Nunomura N, Sasaki M, Asao Y, Okotsuka T. Say sauce flavor components acidic fractions and the characteris-tic flavor component. Ager Biol Chem, 1982, 45: 1339-1342
    77. Oka S, Nagata K. Isolation and characterization of neutral peptides in soy sauce. Ager Biol Chem, 1974, 38: 1185-1194
    78. Ramon N M, Remedios C M, Ma G M, Fernando G R, Carmelo G B. Headspace solid-phase microextraction analysis of aroma compounds in vinegar validation study. Journal of Chromatography A, 2002, 96: 261-267
    79. Saiz N J, Gonzalez J M, Pizarro C. Prediction of organic acids and other quality parameters of wine vinegar by near-infrared spectroscopy. Food Chemistry,2005, 8(3): 183-187
    80. Signore A. Cbemometric analysis and volatile compounds of traditional balsamic vinegars from Modena. Journal-of-Food-Engineering, 2001, 2: 77-90
    81. Splinter R C. Environmental analysis sampling analysis method data report and laboratory handling. Sino-Amercan Symposium on Environmental Management, 2004, 12(3): 78-81
    82. Steffen A, Pawliszyn J. Analysis of flavour volatiles using headspaee solid phase microextraction. Agric Food Chem, 1996,44: 2187-2193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700