具有可控壳层的功能性聚合物微球的构筑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年来,具备单一功能的聚合物微球,如单分散聚合物微球、磁性微球、荧光微球、pH响应微球和温度响应微球等的制备技术日趋成熟。而随着生物医药、电子信息、新材料等应用领域的飞速发展,人们对功能性聚合物微球的要求开始趋于多元化,多功能化的聚合物微球开始受到广泛的关注,构筑多种功能复合的微球已经成为聚合物微球的重要研究方向之一。本论文在沿用了我们课题组在微球制备方面的功能模块化设计理念的基础上,通过两种途径来制备功能性聚合物微球,一种途径是从单分散的聚合物微球出发,首先对聚合物微球表面进行官能团改性,然后通过可控聚合方法在微球表面接枝功能性聚合物,制备壳层可控且功能化的聚合物微球。另一种途径是从两嵌段共聚物出发,利用功能性小分子或纳米粒子与嵌段聚合物功能基团的非化学键作用构成核层功能化的聚合物微球。通过上述两种构筑功能性微球的思路,我们合成了一系列具有不同功能的聚合物微球,并且对微球进行了动态激光光散射(DLS)、透射电镜(TEM)、扫描电镜(SEM)、热重分析(TGA)、傅立叶红外(FTIR)、凝胶渗透色谱(GPC)以及核磁共振(NMR)等表征,取得了以下几个方面的结果:
     1.以甲基丙烯酸甲酯(MMA)和甲基丙烯酸缩水甘油酯(GMA)为单体,二乙烯基苯(DVB)为交联剂,分别采用无皂乳液一步聚合方法制备了不交联及低交联度的具有良好单分散性的亚微米P(MMA-GMA)聚合物微球;采用无皂乳液两步聚合(即后滴加交联剂的无皂乳液聚合)方法制备了高交联度的亚微米P(MMA-GMA)聚合物微球,该微球同样具有良好的单分散性,但是微球表面形态有所变化。本文通过对不同交联度聚合物微球的形态及稳定性的表征,推测了无皂乳液两步聚合法的机理。
     2.为了制备具可自分散功能的单分散聚合物微球,本文在对不同交联度的P(MMA-GMA)聚合物微球进行表面氨基改性后,以氨基化的P(MMA-GMA)聚合物微球为反应核,交替进行Michael加成和酰胺化反应,接枝了树枝形的聚酰胺胺(PAMAM)。并且,接枝了七代PAMAM的聚合物微球就已经表现出了良好的自分散性。通过对不同交联度聚合物微球表面接枝PAMAM后的形态及粒径变化进行的一系列表征,证明了聚合物微球功能性壳层的厚度可以通过改变树枝形聚合物的接枝代数来控制;研究了不同pH值的情况下,不同交联度聚合物微球的形态变化与反应核本身交联度之间的关系。实验也发现,表面接枝高代数PAMAM的功能性聚合物微球质子化后可以吸附大量的磁流体,并具有良好的磁分离效果。该类微球也可以作为进一步功能化的微球平台。
     3.在单分散的亚微米无机二氧化硅微球表面进行氨基化改性,并以此二氧化硅微球为反应核,交替进行Michael加成和酰胺化反应,获得了表面接枝树枝形PAMAM的二氧化硅微球。经过FTIR,TGA等表征,证明PAMAM可以很好的接枝到二氧化硅微球表面,得到功能化的有机—无机杂化微球。
     4.制备了表面接枝线性功能性聚合物链的单分散聚合物微球。以不同粒径大小的单分散亚微米聚苯乙烯—聚乙酸乙烯酯(P(St-VAc))聚合物微球为核,采用氧阴离子聚合方法,在微球表面引发可质子化单体甲基丙烯酸-2-(N,N-二甲胺基)乙酯(DMAEMA)的聚合反应。通过改变单体的投料量,可以良好的控制壳层功能性聚合物的接枝量。功能化后的聚合物微球可以通过改变环境的pH值来改变聚合物微球表面的电荷性质,从而可以完成对带异性电荷的磁流体的吸附和脱附,这种聚合物微球可以用于生物分子的输送转运载体。
     5.采用胶束法制备了核层功能化聚合物微球。通过稀土金属Eu(Ⅲ)与丙烯酸(AA)的络合相互作用,制备了核层为稀土金属络合物,壳层为固定链长的聚乙二醇(PEG)的纳米荧光微球。通过荧光光谱等表征,研究了在不同溶剂环境中,不同[Eu]/[AA]比例下,聚合物微球的荧光强度及其变化规律。并且尝试了以表面带有羧基的半导体纳米粒子CdTe通过正负电荷作用,诱导双亲水性嵌段共聚物在水性环境中形成壳层可控的荧光纳米微球。
The synthesis techniques of mono-functional microspheres, such as monodispersed microspheres, magnetic microspheres, fluorescent microspheres, pH-sensitive microspheres and thermo-sensitive microspheres, etc., have been developed very well over the last two decades. Due to the quickly development of functional microspheres in many applications, including biotech, electro-tech, IT and new materials et al., the preparation of functional microspheres was shifted from mono-functional microspheres to multi-functional microspheres. In this thesis, several kinds of functional microspheres were prepared, and two different synthetic routes were chosen to fabricate the microspheres. For the first route, mono-dispersed microspheres were prepared as the core particles at first. After the surface of these microspheres being modified with functional group, the controllable polymerizations were carried out on the surface of the microspheres to synthesize functional polymers, so that the shell-functionalized core-shell microspheres were fabricated. For the second route, di-block copolymers were prepared firstly. Functional micromolecules or nanoparticles coordinated with the functional groups of the di-block copolymers to fabricated core-functionalized core-shell nanospheres. All the functional micro- and nano-size spheres were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic
    resonance (NMR), etc. The main results have been obtained as follows:
    (1) Monodispersed sub-micron microspheres were prepared via two different soap-free emulsion polymerization, of which, methyl methacrylate (MMA) and glycidyl methacrylate (GMA) were used as monomer and divinyl benzene (DVB) was used as cross-linker. The un-crosslinked and low-crosslinked microspheres were synthesized by one-step soap-free emulsion polymerization. The high-density crosslinked microspheres were synthesized by two-step soap-free emulsion polymerization, in which the crosslinker were added into reaction system after the polymerization was initiated for a fixed amount of time. Owning to the different synthetic methods, the microspheres possess different shapes and structures.
    (2) To preparation of self-dispersible polymer microspheres with monodispersed size, monodisperse P(MMA-GMA) copolymer microspheres were utilized as core-particles and dendrimer PAMAM were acted as the functional shell. Dendrimer PAMAM grafted from the microspheres by repeated Michael addition and amidation. The core-shell functional microspheres with 7-generations PAMAM shell possess good self-dispersibility. Different cross-linking densities of core microspheres influence on the integrity of the functional core-shell spheres after acid treated. Protonated core-shell microspheres could load a mass of acid-modified magnetic nanoparticles.
    (3) Monodispersed sub-micron silica microspheres, as the core particles of the functional microspheres, were prepared via Stober process. Dendrimer PAMAM grafted from the silica spheres by repeated Michael addition and amidation. It is confirmed from FTIR and TGA results that the PAMAM were grafted onto the silica spheres successfully. The core-shell organic-inorganic hybrid microspheres were fabricated.
    (4) A series of poly(styrene-vinyl acetate) (P(St-VAc)) crosslinked monodispersed microspheres (240, 210, or 90 run) with different concentrations of PS (75, 50, or 25 wt %) were prepared by soap-free emulsion polymerization. Based on the crosslinked polymer microspheres, three series of monodispersed core-shell microspheres with pH-sensitive poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) shells were
    synthesized by oxyanionic polymerization. Because the PDMAEMA chain could be protonated at a low pH, these core-shell microspheres could adsorb negative-charged magnetite particles, and at higher pH, the magnetite particles could be released again, this process was reversible.
    (5) Coordination-induced micelles were prepared via rare earth metal Eu(III) with block copolymer of PEG-b-PAA. Since PEG and PAA were all hydrophilic polymer, the micellization was induced by the coordination of Eu(III) with block copolymer in aqueous solution. Fluorescence spectroscopy showed the formation of coordinative complex by bond Eu(III) - carboxyl of AA. The coordinated micelles were formed with hydrophilic PEG blocks and hydrophobic coordinative complexes. A study of the dependence of emission intensities of the Eu-copolymers on the Eu content showed that the emission intensities increased nonlinearly with increasing Eu content. The acid modified quantum dot (QD) CdTe was also utilized to coordinate with the amino-group of block copolymer PEG-PDMAEMA in aqueous solution. The TEM images showed that core-shell fluorescence nanospheres were fabricated.
引文
1. Barthet, C.; Armes, S. P.; Lascelles, S. F.; Luk, S. Y.; Stanley, H. M. E., Synthesis and characterization of micrometer-sized, polyaniline-coated polystyrene latexes. Langmuir 1998, 14, (8), 2032-2041.
    2. Li, W. H.; Stover, H. D. H., Monodisperse cross-linked core-shell polymer microspheres by precipitation polymerization. Macromolecules 2000, 33, (12), 4354-4360.
    3. Sparnacci, K.; Laus, M.; Tondelli, L.; Magnani, L.; Bernardi, C., Core-shell microspheres by dispersion polymerization as drug delivery systems. Macromolecular Chemistry and Physics 2002, 203, (10-11), 1364-1369.
    4. Okubo, M.; Izumi, J.; Hosotani, T.; Yamashita, T., Production of micron sized monodispersed core/shell polymethyl methacrylate polystyrene particles by seeded dispersion polymerization. Colloid and Polymer Science 1997, 275, (8), 797-801.
    5. Okubo, M.; Hosotani, T.; Yamashita, T., Influences of the locations of monomer and initiator in the seeded polymerization systems on the morphologies of micron-sized monodispersed composite polymer particles. Colloid and Polymer Science 1996, 274, (3), 279-284.
    6. Oliveira, E C.; Guimaraes, A.; Cavaille, J. Y.; Chazeau, L.; Gilbert, R. G.; Santos, A. M., Poly (dimethylaminoethyl methacrylate) gaited natural rubber from seeded emulsion polymerization. Polymer 2005, 46, (4), 1105-1111.
    7. Aguiar, A.; Gonzalez-Villegas, S.; Rabelero, M.; Mendizabal, E.; Puig, J. E.; Dominguez, J. M.; Katime, I., Core-shell polymers with improved mechanical properties prepared by microemulsion polymerization. Macromolecules 1999, 32, (20), 6767-6771.
    8. Asua, J. M., Miniemulsion polymerization. Progress in Polymer Science 2002, 27, (7), 1283-1346.
    9. Landfester, K.; Rothe, R.; Antonietti, M., Convenient synthesis of fluorinated latexes and core-shell structures by miniemulsion polymerization. Macromolecules 2002, 35, (5), 1658-1662.
    10. Zhang, K.; Han, K.; Zhang, X. H.; Yang, B., Synthesis and characterization of monodispersed inorganic/organic core/shell microspheres with fluorescence. Chinese Science Bulletin 2005, 50, (14), 1526-1528.
    11. Jordan, R.; West, N.; Ulman, A.; Chou, Y. M.; Nuyken, O., Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles. Macromolecules 2001, 34, (6), 1606-1611.
    12. Blomberg, S.; Ostberg, S.; Harth, E.; Bosman, A. W.; Van Horn, B.; Hawker, C. J., Production of crosslinked, hollow nanoparticles by surface-initiated living free-radical polymerization. Journal of Polymer Science Part a-Polymer Chemistry 2002, 40, (9), 1309-1320.
    13. Advincula, R. C., Surface initiated polymerization from nanoparticle surfaces. Journal of Dispersion Science and Technology 2003, 24, (3-4), 343-361.
    14. Tang, Y. F.; Feng, L.; Huang, Z. P.; Li, A. D.; Chen, Y. F., Fabrication of composite coating spheres with silica sphere/titania shell structure by heterogeneous nucleation-and-growth processing. Research on Chemical Intermediates 2005, 31, (4-6), 477-482.
    15. Cui, T.; Zhang, J. H.; Wang, J. Y.; Cui, F.; Chen, W.; Xu, F. B.; Wang, Z.; Zhang, K.; Yang, B., CdS-nanoparticle/polymer composite shells grown on silica nanospheres by atom transfer radical polymerization. Advanced Functional Materials 2005, 15, (3), 481-486.
    16. Caruso, F.; Mohwald, H., Protein multilayer formation on colloids through a stepwise self-assembly technique. Journal of the American Chemical Society 1999, 121, (25), 6039-6046.
    17. Caruso, F.; Spasova, M.; Saigueirino-Maceira, V.; Liz-Marzan, L. M., Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Advanced Materials 2001, 13, (14), 1090-+.
    18. Caruso, F.; Schuler, C., Enzyme multilayers on colloid particles: Assembly, stability, and enzymatic activity. Langmuir 2000, 16, (24), 9595-9603.
    19. Zhang, Q.; Remsen, E. E.; Wooley, K. L., Shell cross-linked nanoparticles containing hydrolytically degradable, crystalline core domains. Journal of the American Chemical Society 2000, 122, (15), 3642-3651.
    20. Wang, Y. M.; Mattice, W. L.; Napper, D. H., Simulation of the Formation of Micelles by Diblock Copolymers under Weak Segregation. Langmuir 1993, 9, (1), 66-70.
    21. Wooley, K. L., From dendrimers to knedel-like structures. Chemistry-a European Journal 1997, 3, (9), 1397-1399.
    22. Chen, S. A.; Lee, S. T., Kinetics and Mechanism of Emulsifier-Free Emulsion Polymerization - Styrene Hydrophilic Comonomer (Acrylamide) System. Macromolecules 1991, 24, (11), 3340-3351.
    23. Duracher, D.; Sauzedde, F.; Elaissari, A.; Perrin, A.; Pichot, C., Cationic amino-containing N-isopropylacrylamide-styrene copolymer latex particles: 1-Particle size and morphology vs. polymerization process. Colloid and Polymer Science 1998, 276, (3), 219-231.
    24. Fang, S. J.; Fujimoto, K.; Kondo, S.; Shiraki, K.; Kawaguchi, H., Emulsifier-free emulsion copolymerization of styrene and acrylamide using an amphoteric initiator. Colloid and Polymer Science 2000, 278, (9), 864-871.
    25. Liu, Z. F.; Xiao, H. N.; Wiseman, N., Emulsifier-free emulsion copolymerization of styrene with quaternary ammonium cationic monomers. Journal of Applied Polymer Science 2000, 76, (7), 1129-1140.
    26. Tuncel, A.; Kahraman, R.; Piskin, E., Monosize Polystyrene Latices Carrying Functional-Groups on Their Surfaces. Journal of Applied Polymer Science 1994, 51, (8), 1485-1498.
    27. Camli, T.; Tuncel, M.; Senel, S.; Tuncel, A., Functional, uniform, and macroporous latex particles: Preparation, electron microscopic characterization, and nonspecific protein adsorption properties. Journal of Applied Polymer Science 2002, 84, (2), 414-429.
    28. Du, Y. Z.; Tomohiro, T.; Kodaka, M., Synthesis of hemispherical poly(2-hydroxylethyl methacrylate-co-methyl methacrylate)/poly(styrene-co-glycidyl methacrylate) composite particles with heterobifunctional groups by soap-free seeded emulsion polymerization. Macromolecules 2004, 37, (3), 803-812.
    29. Wang, Y. M.; Wang, Y. X.; Feng, L. X., Preparation and magnetic properties of [P(St-co-AA)]Ni microspheres. Journal of Applied Polymer Science 1997, 64, (9), 1843-1848.
    30. Yan, C.; Cheng, S. Y.; Feng, L. X., Kinetics and mechanism of emulsifier-free emulsion copolymerization: Styrene-methyl methacrylate-acrylic acid system. Journal of Polymer Science Part a-Polymer Chemistry 1999, 37, (14), 2649-2656.
    31. Lin, K. F.; Shieh, Y. D., Core-shell particles designed for toughening epoxy resins. Ⅰ. Preparation and characterization of core-shell particles. Journal of Applied Polymer Science 1998, 69, (10), 2069-2078.
    32. Nishibiraki, H.; Kuroda, C. S.; Maeda, M.; Matsushita, N.; Abe, M.; Handa, H., Preparation of medical magnetic nanobeads with ferrite particles encapsulated in a polyglycidyl methacrylate (GMA) for bioscreening. Journal of Applied Physics 2005, 97, (10).
    33. Delasnieves, F. J.; Daniels, E. S.; Elaasser, M. S., Electrokinetic Characterization of Highly Sulfonated Polystyrene Model Colloids. Colloids and Surfaces 1991, 60, 107-126.
    34. Zeng, F.; Sun, Z. W.; Wu, S. Z.; Liu, X. X.; Wang, Z. Y.; Tong, Z., Preparation of highly charged, monodisperse nanospheres. Macromolecular Chemistry and Physics 2002, 203, (4), 673-677.
    35. Ni, H. M.; Ma, G. H.; Nagai, M.; Omi, S., Effects of ethyl acetate on the soap-free emulsion polymerization of 4-vinylpyridine and styrene. Journal of Applied Polymer Science 2001, 80, (11), 1988-2001.
    36. Ni, H. M.; Du, Y. Z.; Ma, G. H.; Nagai, M.; Omi, S., Mechanism of soap-free emulsion polymerization of styrene and 4-vinylpyridine: Characteristics of reaction in the monomer phase, aqueous phase, and their interface. Macromolecules 2001, 34, (19), 6577-6585.
    37. Okubo, M.; Yamashita, T.; Suzuki, T.; Shimizu, T., Production of micron sized monodispersed composite polymer particles by seeded polymerization utilizing the dynamic swelling method. Colloid and Polymer Science 1997, 275, (3), 288-292.
    38. Okubo, M.; Ise, E.; Yonehara, H.; Yamashita, T., Preparation of micron-sized, monodispersed, monomer-adsorbed polymer particles utilizing the dynamic swelling method with loosely cross-linked seed particles. Colloid and Polymer Science 2001, 279, (6), 539-545.
    39. Okubo, M.; Shiozaki, M.; Tsujihiro, M.; Tsukuda, Y., Studies on Suspension and Emulsion. 122. Preparation of Micron-Size Monodisperse Polymer Particles by Seeded Polymerization Utilizing the Dynamic Monomer Swelling Method. Colloid and Polymer Science 1991, 269, (3), 222-226.
    40. Okubo, M.; Nakagawa, T., Studies on Suspension and Emulsion. 135. Preparation of Micron-Size Monodisperse Polymer Particles Having Highly Cross-Linked Structures and Vinyl Groups by Seeded Polymerization of Divinylbenzene Using the Dynamic Swelling Method. Colloid and Polymer Science 1992, 270, (9), 853-858.
    41. Chen, X. Y.; Randall, D. P.; Perruchot, C.; Watts, J. F.; Patten, T. E.; von Werne, T.; Armes, S. P., Synthesis and aqueous solution properties of polyelectrolyte-grafted silica particles prepared by surface-initiated atom transfer radical polymerization. Journal of Colloid and Interface Science 2003, 257, (1), 56-64.
    42. Kawaguchi, H.; Isono, Y.; Tsuji, S., Hairy particles prepared by living radical graft-polymerization. Macromolecular Symposia 2002, 179, 75-87.
    43. Zheng, G. D.; Stover, H. D. H., Grafting ofpoly(alkyl (meth)acrylates) from swellable poly(DVB80-co-HEMA) microspheres by atom transfer radical polymerization. Macromolecules 2002, 35, (20), 7612-7619.
    44. Zheng, G. D.; Stover, H. D. H., Grafting of polystyrene from narrow disperse polymer particles by surface-initiated atom transfer radical polymerization. Macromolecules 2002, 35, (18), 6828-6834.
    45. Yasui, M.; Shiroya, T.; Fujimoto, K.; Kawaguchi, H., Activity of enzymes immobilized on microspheres with thermosensitive hairs. Colloids and Surfaces B-Biointerfaces 1997, 8, (6), 311-319.
    46. Okubo, M.; Lu, Y., Preparation of heterogeneous film from core-shell composite polymer particles produced by the stepwise heterocoagulation method with heat treatment. Colloid and Polymer Science 1996, 274, (11), 1020-1024.
    47. Okubo, M.; Lu, Y., Production of core-shell composite polymer particles utilizing the stepwise heterocoagulation method. Colloids and Surfaces a-Physicochemical and Engineering Aspects 1996, 109, 49-53.
    48. Ottewill, R. H.; Schofield, A. B.; Waters, J. A.; Williams, N. S. J., Preparation of core-shell polymer colloid particles by encapsulation. Colloid and Polymer Science 1997, 275, (3), 274-283.
    49. Park, M. K.; Onishi, K.; Locklin, J.; Caruso, F.; Advincula, R. C., Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells. Langmuir 2003, 19, (20), 8550-8554.
    50. Liang, Z. J.; Susha, A.; Caruso, F., Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chemistry of Materials 2003, 15, (16), 3176-3183.
    51. Harada, A.; Kataoka, K., Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-Charged Block-Copolymers with Poly(Ethylene Glycol) Segments. Macromolecules 1995, 28, (15), 5294-5299.
    52. Harada, A.; Kataoka, K., Chain length recognition: Core-shell supramolecular assembly from oppositely charged block copolymers. Science 1999, 283, (5398), 65-67.
    53. Kataoka, K.; Togawa, H.; Harada, A.; Yasugi, K.; Matsumoto, T.; Katayose, S., Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules 1996, 29, (26), 8556-8557.
    54. Harada, A.; Kataoka, K., Novel polyion complex micelles entrapping enzyme molecules in the core: Preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartie acid) block copolymer in aqueous medium. Macromolecules 1998, 31, (2), 288-294.
    55. Kabanov, A. V.; Kabanov, V. A., DNA Complexes with Polycations for the Delivery of Genetic Material into Cells. Bioconjugate Chemistry 1995, 6, (1), 7-20.
    56. Kabanov, A. V.; Vinogradov, S. V.; Suzdaltseva, Y. G; Alakhov, V. Y., Water-Soluble Block Polycations as Carriers for Oligonucleotide Delivery. Bioconjugate Chemistry 1995, 6, (6), 639-643.
    57. Kabanov, A. V.; Bronich, T. K.; Kabanov, V. A.; Yu, K.; Eisenberg, A., Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-polymethacrylate anions. Macromolecules 1996, 29, (21), 6797-6802.
    58. Vinogradov, S. V.; Bronich, T. K.; Kabanov, A. V., Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjugate Chemistry 1998, 9, (6), 805-812.
    59. Chen, D. Y.; Jiang, M., Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Accounts of Chemical Research 2005, 38, (6), 494-502.
    60. Kataoka, K.; Harada, A.; Nagasaki, Y., Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews 2001, 47, (1), 113-131.
    61. Liu, X. Y.; Jiang, M.; Yang, S.; Chen, M. Q.; Chen, D. Y.; Yang, C.; Wu, K., Micelles and hollow nanospheres based on epsilon-caprolactone-containing polymers in aqueous media. Angewandte Chemie-International Edition 2002, 41, (16), 2950-2953.
    62. Dou, H. J.; Jiang, M.; Peng, H. S.; Chen, D. Y.; Hong, Y., pH-dependent self-assembly: Micellization and micelle-hollow-sphere transition of cellulose-based copolymers. Angewandte Chemie-International Edition 2003, 42, (13), 1516-1519.
    63. Zhou, J. C.; Chen, S. M.; Duan, H. W.; Jiang, M.; Zhang, Y. X., Fluorocarbon modified nitroxide: A new electron spin resonance spin probe for micellization of surfactants. Langmuir 2001, 17, (18), 5685-5687.
    64. Zhou, J.; Yuan, X. F.; Jiang, M.; Zhang, Y. X., A novel fluorescence probe for micellization of amphiphilic molecules in water based on intramolecular exciplex formation. Macromolecular Rapid Communications 2000, 21, (9), 579-582.
    65. Thurmond, K. B.; Kowalewski, T.; Wooley, K. L., Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles. Journal of the American Chemical Society 1996, 118, (30), 7239-7240.
    66. Wooley, K. L., Shell crosslinked polymer assemblies: Nanoscale constructs inspired from biological systems. Journal of Polymer Science Part a-Polymer Chemistry 2000, 38, (9), 1397-1407.
    67. Thurmond, K. B.; Kowalewski, T.; Wooley, K. L., Shell cross-linked knedels: A synthetic study of the factors affecting the dimensions and properties of amphiphilic core-shell nanospheres. Journal of the American Chemical Society 1997, 119, (28), 6656-6665.
    68. Butun, V.; Billingham, N. C.; Armes, S. P., Synthesis of shell cross-linked micelles with tunable hydrophilic/hydrophobic cores. Journal of the American Chemical Society 1998, 120, (46), 12135-12136.
    69. Liu, S. Y.; Weaver, J. V. M.; Tang, Y. Q.; Billingham, N. C.; Armes, S. P.; Tribe, K., Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers. Macromolecules 2002, 35, (16), 6121-6131.
    70. Kang, Y. J.; Taton, T. A., Micelle-encapsulated carbon nanotubes: A route to nanotube composites. Journal of the American Chemical Society 2003, 125, (19), 5650-5651.
    71. Kang, Y. J.; Taton, T. A., Core/shell gold nanoparticles by self-assembly and crosslinking of micellar, block-copolymer shells. Angewandte Chemie-International Edition 2005, 44, (3), 409-412.
    72. Kim, B. S.; Qiu, J. M.; Wang, J. P.; Taton, T. A., Magnetomicelles: Composite Nanostructures from Magnetic Nanoparticles and Cross-Linked Amphiphilic Block Copolymers. Nano Letters 2005, ASAP.
    73. Chen, D. Y.; Peng, H. S.; Jiang, M., A novel one-step approach to core-stabilized nanoparticles at high solid contents. Macromolecules 2003, 36, (8), 2576-2578.
    74. Gu, C. F.; Chen, D. Y.; Jiang, M., Short-life core-shell structured nanoaggregates formed by the self-assembly of PEO-b-PAA/ETC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide) and their stabilization. Macromolecules 2004, 37, (4), 1666-1669.
    75. Yanase, N.; Noguchi, H.; Asakura, H.; Suzuta, T., Preparation of Magnetic Latex-Particles by Emulsion Polymerization of Styrene in the Presence of a Ferrofluid. Journal of Applied Polymer Science 1993, 50, (5), 765-776.
    76. Ando, K.; Kawaguchi, H., High-performance fluorescent particles prepared via miniemulsion polymerization. Journal of Colloid and Interface Science 2005, 285, (2), 619-626.
    77. Xie, G.; Zhang, Q. Y.; Luo, Z. P.; Wu, M.; Li, T. H., Preparation and characterization of monodisperse magnetic poly(styrene butyl acrylate methacrylic acid) microspheres in the presence of a polar solvent. Journal of Applied Polymer Science 2003, 87, (11), 1733-1738.
    78. Dresco, P. A.; Zaitsev, V. S.; Gambino, R. J.; Chu, B., Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 1999, 15, (6), 1945-1951.
    79. Liu, X. Q.; Guan, Y. P.; Ma, Z. Y.; Liu, H. Z., Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir 2004, 20, (23), 10278-10282.
    80. Deng, Y. H.; Yang, W. L.; Wang, C. C.; Fu, S. K., Anovel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure. Advanced Materials 2003, 15, (20), 1729-+.
    81. Kim, J. H.; Lee, T. R., Thermo- and pH-responsive hydrogel-coated gold nanoparticles. Chemistry of Materials 2004, 16, (19), 3647-3651.
    82. Kamata, K.; Lu, Y.; Xia, Y. N., Synthesis and characterization ofmonodispersed core-shell spherical colloids with movable cores. Journal of the American Chemical Society 2003, 125, (9), 2384-2385.
    83. Guo, J.; Yang, W. L.; Deng, Y. H.; Wang, C. C.; Fu, S. K., Organic-dye-coupted magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsutes. Small 2005, 1, (7), 737-743.
    84. Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y., Monodispersed colloidal spheres: Old materials with new applications. Advanced Materials 2000, 12, (10), 693-713.
    85. Yin, Y. D.; Lu, Y.; Gates, B.; Xia, Y. N., Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. Journal of the American Chemical Society 2001, 123, (36), 8718-8729.
    86. Gates, B.; Qin, D.; Xia, Y. N., Assembly of nanoparticles into opaline structures over large areas. Advanced Materials 1999, 11, (6), 466-+.
    87. Fudouzi, H.; Xia, Y. N., Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 2003, 19, (23), 9653-9660.
    88. Hong, X.; Li, J.; Wang, M. J.; Xu, J. J.; Guo, W.; Li, J. H.; Bai, Y. B.; Li, T. J., Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chemistry of Materials 2004, 16, (21), 4022-4027.
    89. Wang, P. H.; Pan, C. Y., Polymer metal composite microspheres - Preparation and characterization of poly(St-co-AN)Ni microspheres. European Polymer Journal 2000, 36, (10), 2297-2300.
    90. Nikitin, L. V.; Stepanov, G. V.; Mironova, L. S.; Samus, A. N., Properties of magnetoelastics synthesized in external magnetic field. Journal of Magnetism and Magnetic Materials 2003, 258, 468-470.
    91. Rittich, B.; Spanovda, A.; Ohlashennyy, Y.; Lenfeld, J.; Rudolf, I.; Horak, D.; Benes, M. J., Characterization of Deoxyribonuclease I Immobilized on Magnetic Hydrophilic Polymer Particles - Presented at the 2nd International Symposium on Separations in the Biosciences, Prague, September 17-20, 2001. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2002, 774, (1), 25-31.
    92. Ugelstad, J.; Ellingsen, T.; Berge, A.; Helgee, B., Magnetic polymer particles[P]. W08303920, US4774265, 1983-04-22.
    93. Ugelstad, J.; Berge, A.; Ellingsen, T.; Schmid, R.; Nilsen, T. N.; Mork, P. C.; Stenstad, P.; Homes, E.; Olsvik, O., Preparation and Application of New Monosized Polymer Particles. Progress in Polymer Science 1992, 17, (1), 87-161.
    94. Ugelstad, J.; Stenstad, P.; Kilaas, L.; Prestvik, W. S.; Herje, R.; Berge, A.; Homes, E., Monodisperse Magnetic Polymer Particles - New Biochemical and Biomedical Applications. Blood Purification 1993, 11, (6), 349-369.
    95. macs/techno/standard.htm, w. m. c.
    96. Gil, E. S.; Hudson, S. A., Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science 2004, 29, (12), 1173-1222.
    97. Torres-Lugo, M.; Peppas, N. A., Preparation and characterization of P(MAA-g-EG) nanospheres for protein delivery applications. Journal of Nanoparticle Research 2002, 4, (1-2), 73-81.
    98. Lee, E. S.; Shin; H. J.; Na, K.; Bae, Y. H., Poly(L-histidine)-PEGblock copolymer micelles and pH-induced destabilization. Journal of Controlled Release 2003, 90, (3), 363-374.
    99. Pelton, R. H.; Chibante, P., Preparation of Aqueous Lattices with N-Isopropylacrylamide. Colloids and Surfaces 1956, 20, (3), 247-256.
    100. Duracher, D.; Elaissari, A.; Pichot, C., Characterization of cross-linked poly(N-isopropylmethacrylamide) microgel latexes. Colloid and Polymer Science 1999, 277, (10), 905-913.
    101. Duracher, D.; Elaissari, A.; Pichot, C., Preparation of poly(N-isopropylmethacrylamide) latexes kinetic studies and characterization. Journal of Polymer Science Part a-Polymer Chemistry 1999, 37, (12), 1823-1837.
    102. Hazot, P.; Delair, T.; Elaissari, A.; Pichot, C.; Chapel, J. P.; Davenas, J., Synthesis and characterization of poly (N-ethylmethacrylamide) thermosensitive latex particles. Macromolecular Symposia 2000, 150, 291-296.
    103. Weissman, J. M.; Sunkara, H. B.; Tse, A. S.; Asher, S. A., Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 1996, 274, (5289), 959-960.
    104. Chang, S. Y.; Liu, L.; Asher, S. A., Preparation and Properties of Tailored Morphology, Monodisperse Colloidal Silica Cadmium-Sulfide Nanocomposites. Journal of the American Chemical Society 1994, 116, (15), 6739-6744.
    105. Rundquist, P. A.; Photinos, P.; Jagannathan, S.; Asher, S. A., Dynamical Bragg-Diffraction from Crystalline Colloidal Arrays. Journal of Chemical Physics 1989, 91, (8), 4932-4941.
    106. Cicek, H.; Tuncel, A., Immobilization of alpha-chymotrypsin in thermally reversible isopropylacrylamide-hydroxyethylmethacrylate copolymer gel. Journal of Polymer Science Part a-Polymer Chemistry 1998, 36, (4), 543-552.
    107. Kondo, A.; Fukuda, H., Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization. Journal of Fermentation and Bioengineering 1997, 84, (4), 337-341.
    108. Bayhan, M.; Tuncel, A., Uniform poly(isopropylacrylamide) gel beads for immobilization of alpha-chymotrypsin. Journal of Applied Polymer Science 1998, 67, (6), 1127-1139.
    109. Iijima, M.; Nagasaki, Y.; Kato, M.; Kataoka, K., A potassium alcoholate-initiated polymerization of 2-(trialkylsiloxyethyl) methacrylate. Polymer 1997, 38, (5), 1197-1202.
    110. Nagasaki, Y.; Sato, Y.; Kato, M., A novel synthesis of semitelechelic functional poly(methacrylate)s through an alcoholate initiated polymerization. Synthesis of poly 2-('N,N-diethylaminoethyl) methacrylate macromonomer. Macromolecular Rapid Communications 1997, 18, (9), 827-835.
    111. Vamvakaki, M.; Billingham, N. C.; Armes, S. P., Synthesis of controlled structure water-soluble diblock copolymers via oxyanionic polymerization. Macromolecules 1999, 32, (6), 2088-2090.
    112. Lascelles, S. F.; Malet, F.; Mayada, R.; Billingham, N. C.; Armes, S. P., Latex syntheses using novel tertiary amine methacrylate-based macromonomers prepared by oxyanionic polymerization. Macromolecules 1999, 32, (8), 2462-2471.
    113. Tomoi, M.; Sekiya, K.; Kakiuchi, H., Polym. J. 1974, 6, 438.
    114. Banez, M. V. D.; Robinson, K. L.; Vamvakaki, M.; Lascelles, S. F.; Armes, S. P., Synthesis of novel cationic polymeric surfactants. Polymer 2000, 41, (24), 8501-8511.
    115. Banez, M. V. D.; Robinson, K. L.; Armes, S. P., Synthesis and solution properties of dimethylsiloxane-2-(dimethylamino)ethyl methacrylate block copolymers. Macromolecules 2000, 33, (2), 451-456.
    116. Banez, M. V. D.; Robinson, K. L.; Butun, V.; Armes, S. P., Use of oxyanion-initiated polymerization for the synthesis of amine methacrylate-based homopolymers and block copolymers. Polymer 2001, 42, (1), 29-37.
    117. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A New Class of Polymers - Starburst-Dendritic Macromolecules. Polymer Journal 1985, 17, (1), 117-132.
    118. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., Dendritic Macromolecules - Synthesis of Starburst Dendrimers. Macromolecules 1986, 19, (9), 2466-2468.
    119. Tomalia, D. A.; Swanson, D. R.; Klimash, J. W.; Brothers, H. M., Cascade (Starburst(Tm)) Dendrimer Synthesis by the Divergent Dendron Divergent Core Anchoring Methods. Abstracts of Papers of the American Chemical Society 1993, 205, 2-POLY.
    120. Tomalia, D., Dewald J R. US4507466. 1985.
    121. Tomalia, D., Dewald J R. US 4558120. 1985.
    122. Bielinska, A.; KukowskaLatallo, J. F.; Johnson, J.; Tomalia, D. A.; Baker, J. R., Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Research 1996, 24, (11), 2176-2182.
    123. Shchepinov, M. S.; Udalova, I. A.; Bridgman, A. J.; Southern, E. M., Oligonucleotide dendrimers: synthesis and use as polylabelled DNA probes. Nucleic Acids Research 1997, 25, (22), 4447-4454.
    124. Jin, R. H.; Aida, T.; Inoue, S., Caged Porphyrin - the 1st Dendritic Molecule Having a Core Photochemical Functionality. Journal of the Chemical Society-Chemical Communications 1993, (16), 1260-1262.
    125. Aoi, K.; Tsutsumiuchi, K.; Yamamoto, A.; Okada, M., Globular carbohydrate macromolecule "sugar balls", 2 - Synthesis of mono(glycopeptide)-persubstituted dendrimers by polymer reaction with sugar-substituted alpha-amino acid N-carboxyanhydrides (glycoNCAs). Macromolecular Rapid Communications 1998, 19, (1), 5-9.
    126. Adam, G.; Neuerburg, J.; Spuntrup, E.; Muhler, A.; Scherer, K.; Gunther, R. W., Gd-Dtpa-Cascade-Polymer - Potential Blood-Pool Contrast Agent for Mr-Imaging. Jmri-Journal of Magnetic Resonance Imaging 1994, 4, (3), 462-466.
    1. Ugelstad, J.; Berge, A.; Ellingsen, T; Schmid, R; Nilsen, T. N.; Mork, P. C.; Stenstad, R; Homes, E.; Olsvik, O. Preparation and application of new monosized polymer particles. Progress in Polymer Science 1992, 17, 87.
    2. Arnold, S.; Liu, C. T.; Whitten, W. B. Room-temperature microparticle-based persistent spectral holes burning memory. Optics Letters 1991, 16, 420
    3.王艳;陈凌冰;潘永乐;李剑钊;赵有源;李富铭;徐小军;府寿宽.球形微粒样品室温永久光谱烧孔的动力学过程及多重性研究.光学学报1996,16,250
    4. Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y. Monodispersed colloidal spheres: old materials with new applications. Advanced Materials 2000, 12, 693
    5. Hughes, L. J.; Brown, G. L. Heterogeneous polymer systems. I. Torsional Modulus Studies. Journal of Applied Polymer Science 1961, 17, 580
    6. Tuncel, A.; Kahraman, R.; Piskin, E. Monosize polystyrene microbeads by dispersion polymerization. Journal of Applied Polymer Science 1993, 50, 303
    7. Okubo, M.; Ikegami, K.; Yamamoto, Y. Preparation of micron-size monodisperse polymer microspheres having chloromethyl group. Colloid and Polymer Science 1989, 267, 193
    8. Kawaguchi, H.; Sugi, Y.; Ohtsuka, Y. Copolymerization of styrene with acrylamide derivatives in an emulsifier-flee aqueous medium. Journal of Applied Polymer Science 1981, 26, 1649
    9. Li, K.; Stover, H. D. H. Synthesis of monodisperse poly(divinylbenzene) microspheres. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31, 3257
    10. (a) Omi, S.; Katami, K; Yamarnoto, A.; Iso, M. Synthesis of polymeric microspheres employing spg emulsification techniques. Journal of Applied Polymer Science 1994, 5, 1.
    (b) Omi, S. Preparation of monodisperse microspheres using the Shirasu porous glass emulsification technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 109, 97
    11. Harkins, W. D. A General Theory of the Reaction Loci in Emulsion Polymerization. Journal of Chemical Physics 1945, 13, 381
    
    12. Harkins, W. D. A General Theory of the Reaction Loci in Emulsion Polymerization. II. Journal of Chemical Physics 1946, 14,47
    
    13. Harkins, W. D. A General Theory of the Mechanism of Emulsion Polymerization. Journal of the American Chemical Society 1947, 69, 1428
    
    14. Smith, W. V.; Ewart. E. H. Kinetics of Emulsion Polymerization. Journal of Chemical Physics 1948, 16, 592
    
    15. (a) Fitch, R.M.; Prenosil, M. B.; Sprick, K. J. JPolym Sci Part C, 1969, 27, 95; (b) Fitch, R. M. British Polymer Journal 1973, 5, 467; (c) Goodwin, J. W.; Hearn, J.; Ho, C. C; Ottewill, R. H. British Polymer Journal 1973, 5, 347; (d) Hansen, F. K.; Ugelstad, J. Particle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation. Journal of Polymer Science: Polymer Chemistry Edition 1978, 16, 1953; (e) Feeney, P. J.; Napper, D. H.; Gilber, R.G. Surfactant-free emulsion polymerizations: predictions of the coagulative nucleation theory. Macromolecules 1987, 20, 2922
    
    16. Goodall, A. R.; Wilkinson, M. C.; Hearn, J. Mechanism of emulsion polymerization of styrene in soap-free systems. Journal of Polymer Science: Polymer Chemistry Edition 1977, 15, 2193
    
    17. Song, J. S.; Tronc, F.;Winnik, M. A. Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles. Journal of the American Chemical Society 2004,126, 6562
    
    18. Kim, J. W.; Kim, B. S.; Suh, K. D. Monodisperse micron-sized cross-linked polystyrene particles. VI. Understanding of nucleated particle formation and particle growth. Colloid and Polymer Science 2000, 278, 591
    
    19. Yasuda, M.; Seki, H.; Yokoyama, H.; Ogino, H.; Ishimi, K.; Ishikawa, H. Simulation of a Particle Formation Stage in the Dispersion Polymerization of Styrene. Macromolecules 2001, 34, 3261
    1. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, R, A New Class of Polymers - Starburst-Dendritic Macromolecules. Polymer Journal 1985, 17, (1), 117-132.
    2. Aoi, K.; Tsutsumiuchi, K.; Yarnamoto, A.; Okada, M., Globular carbohydrate macromolecule "sugar balls", 2 - Synthesis of mono(glycopeptide)-persubstituted dendrimers by polymer reaction with sugar-substituted alpha-amino acid N-carboxyanhydrides (glycoNCAs). Macromolecular Rapid Communications 1998, 19, (1), 5-9.
    3. Adam, G.; Neuerburg, J.; Spuntrup, E.; Muhler, A.; Scherer, K.; Gunther, R. W., Gd-Dtpa-Cascade-Polymer - Potential Blood-Pool Contrast Agent for Mr-Imaging. Jmri-Journal of Magnetic Resonance Imaging 1994, 4, (3), 462-466.
    4. Bielinska, A.; KukowskaLatallo, J. F.; Johnson, J.; Tomalia, D. A.; Baker, J. R., Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Research 1996, 24, (11), 2176-2182.
    5. Shchepinov, M. S.; Udalova, I. A.; Bridgman, A. J.; Southern, E. M., Oligonucleotide dendrimers: synthesis and use as polylabelled DNA probes. Nucleic Acids Research 1997, 25, (22), 4447-4454.
    6. Singh, P.; Moll, F.; Lin, S. H.; Ferzli, C.; Yu, K. S.; Koski, R. K.; Saul, R. G.; Cronin, P., Starburst(Tm) Dendrimers - Enhanced Performance and Flexibility for Immunoassays. Clinical Chemistry 1994, 40, (9), 1845-1849.
    7. Roberts, J. C.; Bhalgat, M. K.; Zera, R. T., Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst(TM) dendrimers. Journal of Biomedical Materials Research 1996, 30, (1), 53-65.
    8. Jin, R. H.; Aida, T.; Inoue, S., Caged Porphyrin - the 1st Dendritic Molecule Having a Core Photochemical Functionality. Journal of the Chemical Society-Chemical Communications 1993, (16), 1260-1262.
    9. Tsubokawa, N.; Takayama, T., Surface modification of chitosan powder by grafting of'dendrimer-like' hyperbranched polymer onto the surface. Reactive & Functional Polymers 2000, 43, (3), 341-350.
    10. Dvomic, P. R.; de Leuze-Jallouli, A. M.; Owen, M. J.; Perz, S. V., Radially layered poly(amidoamine-organosilicon) dendrimers. Macromolecules 2000, 33, (15), 5366-5378.
    11. Kawaguchi, H., Functional polymer microspheres. Progress in Polymer Science 2000, 25, (8), 1171-1210.
    12. Lal, M.; Levy, L.; Kim, K. S.; He, G. S.; Wang, X.; Min, Y. H.; Pakatchi, S.; Prasad, P. N., Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence. Chemistry of Materials 2000, 12, (9), 2632-2639.
    13. Vanblaaderen, A.; Imhof, A.; Hage, W.; Vrij, A., 3-Dimensional Imaging of Submicrometer Colloidal Particles in Concentrated Suspensions Using Confocal Scanning Laser Microscopy. Langmuir 1992, 8, (6), 1514-1517.
    14. Khan, M.; Huck, W. T. S., Hyperbranched polyglycidol on Si/SiO2 surfaces via surface-initiated polymerization. Macromolecules 2003, 36, (14), 5088-5093.
    15. Driffield, M.; Goodall, D. M.; Klute, A. S.; Smith, D. K.; Wilson, K., Synthesis and characterization of silica-supported L-lysine-based dendritic branches. Langmuir 2002, 18, (22), 8660-8665.
    16. Hayashi, S.; Fujiki, K.; Tsubokawa, N., Grafting of hyperbranched polymers onto ultrafine silica: postgraft polymerization of vinyl monomers initiated by pendant initiating groups of polymer chains grafted onto the surface. Reactive & Functional Polymers 2000, 46, (2), 193-201.
    17. Sakai, K.; Teng, T. C.; Katada, A.; Harada, T.; Yoshida, K.; Yamanaka, K.; Asami, Y.; Sakata, M.; Hirayama, C.; Kunitake, M., Designable size exclusion chromatography columns based on dendritic polymer-modified porous silica particles. Chemistry of Materials 2003, 15, (21), 4091-4097.
    18. Antebi, S.; Arya, P.; Manzer, L. E.; Alper, H., Carbonylation reactions of iodoarenes with PAMAM dendrimer-palladium catalysts immobilized on silica. Journal of Organic Chemistry 2002, 67, (19), 6623-6631.
    19. Ruckenstein, E.; Yin, W. S., SiO2-poly(amidoamine) dendrimer inorganic/organic hybrids. Journal of Polymer Science Part a-Polymer Chemistry 2000, 38, (9), 1443-1449.
    20. Bu, J.; Li, R. J.; Quah, C. W.; Carpenter, K. J., Propagation ofPAMAM dendrons on silica gel: A study on the reaction kinetics. Macromolecules 2004, 37, (18), 6687-6694.
    21. Stober, W.; Fink, A., Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Inter Sci 1968, 26, 62.
    22. Bogush, G. H.; Zukoski, C. F., Studies of the Kinetics of the Precipitation of Uniform Silica Particles through the Hydrolysis and Condensation of Silicon Alkoxides. Journal of Colloid and Interface Science 1991, 142, (1), 1-18.
    23. Vanblaaderen, A.; Vrij, A., Synthesis and Characterization of Monodisperse Colloidal Organo-Silica Spheres. Journal of Colloid and Interface Science 1993, 156, (1), 1-18.
    1. Kim, H. B.; Wang, Y. C.; Winnik, M. A. Synthesis, structure and film-forming properties of poly(butyl methacrylate) poly(methacrylic acid) core-shell latex. Polymer 1994, 35, 1779
    
    2. Schellenberg, C.; Akari, S.; Regenbrecht, M.; Tauer, K.; Petrat, F. M.; Antonietti, M. Spherical Polymer Containers with a Fluid Polymer Core: Synthesis and Characterization of Film Formation by AFM. Langmuir 1999, 15, 1283
    
    3. Lee, S.; Rudin, A. Synthesis of core-shell latexes by redox initiation at ambient temperatures. Journal of Polymer Science Part A: Polymer Chemistry 1992, 30, 2211
    
    4. Okubo, M.; Izumi, J.; Hosotani, T.; Yamashita, T. Production of micron sized monodispersed core/shell polymethyl methacrylate polystyrene particles by seeded dispersion polymerization. Colloid and Polymer Science 1997, 275, 797
    
    5. Okubo, M.; Shiozaki, M.; Tsujihiro, M.; Tsukuda,Y. Studies on suspension and emulsion. 122. Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method. Colloid and Polymer Science 1991, 269, 222
    
    6. Okubo, M.; Nakagawa, T. Studies on suspension and emulsion. 135. Preparation of micron-size monodisperse polymer particles having highly cross-linked structures and vinyl groups by seeded polymerization of divinylbenzene using the dynamic swelling method. Colloid and Polymer Science 1992, 270, 853
    
    7. Okubo, M.; Yamashita, T.; Suzuki, T.; Shimizu, T. Production of micron sized monodispersed composite polymer particles by seeded polymerization utilizing the dynamic swelling method. Colloid and Polymer Science 1997, 275, 288
    
    8. Zheng, G. D.; Stover, H. D. H. Grafting of polystyrene from narrow disperse polymer particles by surface-initiated atom transfer radical polymerization. Macromolecules, 2002, 35, 6828
    
    9. Zheng, G. D.; Stover, H. D. H. Grafting of poly(alkyl (meth)acrylates) from swellable poly(DVB80-co-HEMA) microspheres by atom transfer radical polymerization. Macromolecules, 2002, 35, 7612.
    10. Zheng, G. D.; Stover, H. D. H. Formation and morphology of methacrylic polymers and block copolymers tethered on polymer microspheres. Macromolecules, 2003, 36, 1808
    11. Min, K.; Hu, J. H.; Wang, C. C.; Elaissari, A. Surface modification of polystyrene latex particles via atom transfer radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40, 892
    12. Deng, Y. H.; Yang, W. L.; Wang, C. C.; Fu, S. K. A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure. Advanced Materials 2003, 15, 1729
    13. Banez, M. V. D.; Robinson, K. L.; Armes, S. P. Synthesis and solution properties of dimethylsiloxane-2-(dimethylamino)ethyl methacrylate block copolymers. Macromolecules, 2000, 33, 451
    14. Chen, W. Y.; Alexandridis, P.; Su, C. K.; Patrickios, C. S.; Hertler, W. R.; Hatton, T. A. Effect of block size and sequence on the micellization of ABC triblock methacrylic polyampholytes. Macromolecules, 1995, 28, 8604
    1. Jenekhe, S. A.; Chen, X. L., Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers. Science 1999, 283, 372
    2. Zhao, D. Y.; Yang, P. D.; Melosh, N.: Feng, J. L.; Chmelka, B. F.; Stucky, G. D., Continuous Mesoporous Silica Films with Highly Ordered Large Pore Structures. Advanced Materials 1998, 10, 1308
    3. Hurter, P. N.; Hatton, T. A., Solubilization of polycyclic aromatic hydrocarbons by poly(ethylene oxide-propylene oxide) block copolymer micelles: effects of polymer structure. Langmuir 1992, 8, 1291
    4. Kataoka, K.; Kwon, G. S.; Yokoyama, M.; Okano, T.; Sakurai, Y., Block copolymer micelles as vehicles for drug delivery. Journal of Controlled Release 1993, 24, 119
    5. Harada, A.; Kataoka, K., Chain length recognition: Core-shell supramolecular assembly from oppositely charged block copolymers. Science 1999, 283, 65
    6. Thurmond, K. B.; Kowalewski, T.; Wooley, K. L., Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles. Journal of the American Chemical Society 1996, 118, 7239
    7. Chen, D. Y.; Jiang, M., Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Accounts of Chemical Research 2005, 38, 494
    8.李文连.,稀土有机配合物发光研究的新进展.化学通报,1991,8,1
    9. Wang, Y. P.; Lei, Z. Q.; Feng, H. Y., Synthesis and Fluorescence Properties of Rare-Earth-Metal Ion Polymer Ligand Low-Molecular-Weight Ligand Ternary Complexes. Journal of Applied Polymer Science 1992, 9, 1641
    10. Ueba, Y.; Banks, E.; Okamoto, Y., Investigation on the Synthesis and Characterization of Rare Earth Metal-Containing Polymers. Ⅱ. Fluorescence Properties of Eu~(3+)-Polymer Complexes Containing β-Diketone igand. Journal of Applied Polymer Science 1980, 12, 2007
    11. Wang, L. H.; Wang, W.; Zhang, W. G.; Kang, E. T.; Huang, W., Synthesis and Luminescence Properties of Novel Eu-Containing Copolymers Consisting of Eu(Ⅲ)-Acrylate-β-Diketonate Complex Monomers and Methyl Methacrylate. Chemistry of Materials 2000, 12, 2212
    12. Adachi, G.; Takahashi, A.; Mishima, T., Fluorescence of a Eu2+-(Mathacryloyl-Oxymethyl- 15-Crown-5-Oligoether) polymer complex. Chemistry Express 1988, 2, 97
    13.唐洁渊;章文贡.,聚丙烯酸.铕.二苯甲酰甲烷配合物及其荧光性质的研究.高分子学报2001,4,480
    14.唐洁渊;章文贡.,含稀土铕(Ⅲ)配位聚合物的研究———铕(Ⅲ)-噻吩甲酰三氟丙酮-苯乙烯-丙烯酸共聚物的研究.高分子学报2002,4,479
    15.邓友娥;唐洁渊;章文贡;肖荔人.,含稀土铕(III)配位聚合物的研究.功能高分子学报2003,1,49
    16.张其锦;陈国栋;汪月生.,含Sm聚合物的制备及荧光性质.材料科学进展1992,5,435
    17. Okamoto, Y.; Ueba, Y.; Nagata, I., Rare earth metal-containing polymers. 4. Energy transfer from uranyl to europium ions in ionomers. Macromolecules 1981, 14, 807
    18. Okamoto, Y.; Ueba, Y.; Dzhanibekov, N. F., Rare Earth Metal Containing Polymers. 3. Characterization of Ion-Containing Polymer Structures Using Rare Earth Metal Fluorescence Probes. Macromolecules 1981, 14, 17
    19. Okamoto, Y., Synthesis, Characterization, and Application of Polymers Containing Lanthanide Metals. Journal of Macromolecular Science-Chemistry 1987, A 24, 455
    20. Efros, A. L., Inter-band Absorption of Light in a Semiconductor Sphere. Soviet Physics - Semiconductors 1982, 16, 772.
    21. Ekimov, A. I.; Onushchenko, A. A., Quantum size eect in the optical spectra of semiconductor microcrystals. Soviet Physics - Semiconductors 1982, 16, 775.
    22. Henglein, A., Photochemistry of colloidal cadmium sulfide. 2. Effects of adsorbed methyl viologen and of colloidal platinum. Journal of Physical Chemistry 1982, 86, 2291
    23. R. Rossetti, S. Nakahara, L. E. Brus., Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution Journal of Chemical Physics 1983, 79, 1086
    24. Eychmtiller, A., Structure and Photophysics of Semiconductor Nanocrystals. Journal of Physical Chemistry Part B 2000, 104, 6514
    25.蔡彦;陈明清;吉红念;黄晓华;沈健.,Eu(Ⅲ)-聚N-乙烯基乙酰胺高分子配合物的合成及光谱性质研究.,高分子学报2003,4,599
    26. Kirby, A. F.; Richardson, F. S., Detailed Analysis of the Optical Absorption and Emission Spectra of Eu~(3+) in the Trigonal (C_3) Eu(DBM)_3·H_2O System. Journal of Physical Chemistry 1983, 87, 2544
    27. Wang, L. H.; Wang, W.; Zhang, W. G.; En-Tang Kang, E. T.; Huang, W., Synthesis and luminescence properties of novel Eu-containing copolymers consisting of Eu(Ⅲ)-acrylate-beta-diketonate complex monomers and methyl methacrylate. Chemistry of Materials 2000, 12, 2212
    28. Kang, Y. J.; Taton, T. A., Core-Shell Gold Nanoparticles by Self-Assembly and crosslinking of micellar, block copolymer shells. Angewandte Chemic International Edition 2005, 44, 409
    29. Kim, B. S.; Qiu, J. M.; Wang, J. P.; Taton, T. A., Magnetomicelles: Composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymer. Nano Letter 2005, (ASAP)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700