层状结构生物相容微胶囊的制备及其药物传输性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1991年,Decher等提出基于静电相互作用的层层自组装概念;1998年,M(o|¨)hwald等人将此技术应用于可去除的胶体颗粒,得到一种具有全新结构的微胶囊。本文通过层层自组装技术将聚电解质组装到胶体微粒上,去除胶体微粒模板后得到中空微胶囊,并探索了其在药物传输体系中的应用。首先利用无机沉淀法合成聚苯乙烯磺酸钠(PSS)掺杂的碳酸钙胶体微粒(CaCO_3(PSS)),在其表面层层组装PSS和聚烯丙基胺盐酸盐(PAH)。用乙二胺四乙酸二钠(EDTA)溶去碳酸钙后,得到内部填充PSS的微胶囊。这种微胶囊对带正电荷的小分子药物、荧光探针和大分子多糖具有强烈的自沉积效应,而排斥带负电荷的分子。以PSS/PAH微胶囊为药物载体,研究了抗癌药物柔红霉素(DNR)和阿霉素(DOX)的药物投料浓度、离子强度和温度等条件对药物在微胶囊内沉积的影响。定量分析结果表明,在更高的药物初始浓度、更高的盐浓度下可将更多的药物包埋到微胶囊中(在药物投料浓度为1mg/mL时,DNR和DOX在微胶囊内的浓度分别达到29.6mg/mL和32.0mg/mL。)。由于微胶囊中预先包埋的PSS会释放出来,去核后在微胶囊表面额外组装聚电解质则导致药物包埋效率的降低。研究了不同层数的微胶囊对DNR和DOX的控释性能,药物自微胶囊中的释放在最初四小时内遵循扩散控制的释放机理。
     为制备生物相容性更好的微胶囊,采用天然多糖在碳酸钙微粒表面层层自组装,然后去核。碳酸钙模板的合成是在羧甲基纤维素钠(CMC)存在下通过硝酸钙与碳酸钠反应得到。通过热失重分析得出CMC在CaCO_3(CMC)中的含量为5.3%。将两种生物相容性多糖壳聚糖和海藻酸钠依次组装在CaCO_3(CMC)模板表面。Zeta-电位分析揭示了壳聚糖和海藻酸钠在碳酸钙表面的层层增长。将囊壁用戊二醛交联之后,微胶囊的稳定性显著提高。这样制备的壳聚糖/海藻酸钠微胶囊可自发包埋带正电荷的小分子物质如罗丹明6G。微胶囊的体外细胞培养显示出其具有良好的生物相容性。
     采用包埋DOX的微胶囊进行体外细胞培养和体内动物试验。完全由多糖制备的微胶囊通过在CMC掺杂的CaCO_3微粒表面层层组装带相反电荷的壳聚糖和海藻酸钠,采用戊二醛交联囊壁,然后用EDTA去核。如此得到的微胶囊含有带负电的CMC,其在微胶囊中可能呈自由状态,或与第一层过量的壳聚糖形成络合物。这种微胶囊对带正电的DNR和DOX显示出强烈的富集效应,在药物投料浓度为1mg/mL时,两种药物在微胶囊内的浓度分别达到83.7mg/mL和88.6mg/mL。激光共聚焦显微镜(CLSM)和透射电镜(TEM)揭示了药物在微胶囊内均匀分布。被包埋的药物可以重新释放出来,并在起始阶段遵循扩散控制释放机理。采用包埋DOX的微胶囊进行动物试验,通过相差显微镜、CLSM和TEM等显微技术和吖啶橙、Hoechst33342和四氧化锇等染色方法证明载药微胶囊能够有效诱导HepG2肝癌细胞的凋亡。将HepG2肝癌细胞种植到BALB/c/nu裸鼠右前肢腋下产生肿瘤,采用载药微胶囊进行治疗。经4周体内培养,结果显示包埋的DOX(抑制率40.3%)比游离的DOX(抑制率30.6%)具有更好的治疗效果。
     本文进一步合成了两端带有氨基的PEG,以其作为间隔基,将叶酸接枝到聚电解质微胶囊表面,利用叶酸和细胞表面的叶酸受体的特异识别作用,实现叶酸修饰微胶囊对肝癌细胞的特异性黏附,并初步评价了叶酸修饰微胶囊包埋阿霉素后对人肝癌细胞HepG2的生长抑制作用。
The Layer-by-Layer (LbL) self-assembly based on electrostatic interaction was initially introduced by Decher and co-workers in 1991. Later on, the technique was applied onto decomposable colloidal particles by Mohwald, Caruso, Donath and co-workers, followed by core removal to produce hollow microcapsules. We applied this novel strategy to incorporate and release anti-cancer drugs of daunorubicin (DNR) and doxorubicin (DOX) in preformed microcapsules. Oppositely charged poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) were assembled onto PSS doped-CaCO_3 colloidal particles in a LbL manner to yield core-shell particles. After removal of the carbonate cores by disodium ethylenediaminetetraacetic acid (EDTA), hollow microcapsules with entrapped PSS were fabricated, which showed spontaneous loading ability of positively charged DNR and DOX. The drug loading was confirmed qualitatively by observations under confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM) and scanning force microscopy (SEM). Quantification of the drug loading was performed under different conditions, revealing that a larger amount of drugs could be incorporated at higher drug feeding concentrations and higher salt concentrations. The DNR and DOX concentration in the microcapsule interiors can reach to 29.6mg/mL and 32.0 mg/mL, respectively, with a drug feeding concentration of 1mg/mL. However, putting additional polyelectrolyte layers on the microcapsules after core removal resulted in weaker drug loading efficiency due to the loss of PSS during assembly. The drug release behaviors from the microcapsules with different layer numbers were studied too, revealing a diffusion controlled release mechanism at the initial stage (4h).
    Biocompatible multilayer microcapsules were fabricated by LbL self-assembly of natural polysaccharides onto CaCO_3 particles, following with core removal. The micron-sized CaCO_3 particles were synthesized by reaction between Ca(NO_3)_2 and Na_2CO_3 solutions in the existence of carboxylmethyl cellulose (CMC). The incorporated amount of CMC in the CaCO_3 particles was found to be 5.3wt% by thermogravimetric analysis. Two biocompatible polysaccharides, chitosan and sodium alginate were alternately deposited onto the CaCO_3(CMC) templates to obtain hollow microcapsules. Regular oscillation of surface charge as detected by zeta potential demonstrated that the assembly proceeded surely in an LbL manner. The stability of the microcapsules was effectively improved by crosslinking of chitosan with
    glutaraldehyde. The chemical reaction was verified by infrared spectroscopy. The microcapsules thus fabricated could be spontaneously filled with positively charged low molecular weight substances such as rhodamine 6G and showed good biocompatibility as detected by in vitro cell culture. DNR and DOX can be effectively encapsulated into the fabricated (CMC)/(chitosan/alginate)_5 microcapsules. The drug concentration can be as high as 83.7 mg/mL and 88.6mg/mL for DNR and DOX, respectively, with the drug feeding concentration of 1mg/mL. The entrapped drugs can be released again in a diffusion controlled manner in the initial stage (~2h).
    The DOX loaded microcapsules were further used to treat tumor by in vitro cell culture and in vivo animal experiments. The microcapsules composed of totally polysaccharides were fabricated by deposition of oppositely charged chitosan and alginate onto CMC doped CaCO_3 colloidal particles in an LbL fashion, followed by crosslinking with glutaraldehyde and decomposition of the cores by EDTA. The as-prepared microcapsules contain negatively charged CMC, which may either in a free state or most possibly coupled with the excess chitosan of the first layer. They showed strong ability to accumulate the positively charged DOX with a factor of tens to hundreds, i.e. the drug concentration within the microcapsules was hundreds times higher than the feeding concentration. CLSM and TEM observed homogeneous distribution of the drug. In vitro experiment showed that the encapsulated drug can effectively induce the apoptosis of HepG2 tumor cells, as evidenced by various microscopy techniques after acridine orange, Hoechst 33342 and osmium tetraoxide staining, respectively. By seeding the HepG2 hepatoma cells into BALB/c/nu mice, tumors were created for the experimental studies. The results showed that the encapsulated DOX had better efficacy than that of the free drug in terms of tumor inhibition in a 4 week in vivo culture period.
    For the purpose of targeted delivery of microcapsules onto cancer cells, folic acids (FA) were immobilized onto polyelectrolyte microcapsules through the linkage of diamino terminated poly(ethylene glycol) (PEG). The FA modified microcapsules can selectively adsorb onto SMMC-7721 liver cancer cells via folate receptor mediated specific recognition. DOX loaded FA modified microcapsules had better inhibition efficacy to HepG2 cells than that of the free drug in the same culture period.
引文
[1] 梁治齐编著.微胶囊技术及其应用.北京:中国轻工业出版社,1999.1-3.
    [2] 高长有.第二章中空微胶囊,沈家骢主编,超分子层状结构,北京:科学出版社,2004.
    [3] Langer R, Vacanti JP. Tissue engineering. Science 1993, 260: 920-926.
    [4] Baldwin SP, Saltzman WM. Polymers for tissue engineering. Trends Polym. Sci. 1996, 4(6): 177-182.
    [5] 高长有,李安,益小苏,封麟先.多孔聚合物材料的应用及其生物相容性.生物医学工程学杂志.1999,16(4):511-515.
    [6] Marinakos SM, Novak JP, Brousseau Ⅲ LC, House AB, Edeki EM, Feldhaus JC, Feldheim DL. Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation, J. Am. Chem. Soc. 1999, 121: 8518-8522.
    [7] Xu XL, Asher SA. Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals. J. Am. Chem. Soc. 2004, 126: 7940-7945.
    [8] Hunkeler D. Polymers for bioartificial organs. Trends Polym. Sci. 1997, 5: 286-293.
    [9] Okubo M, Ito A, Nakamura M. Effect of molecular weight on the production of multi-hollow polymer particles by the alkali/cooling method. Colloid Polym. Sci. 1997, 275: 82-85.
    [10] 梁志武,郝广杰,申小义等.中空结构聚合物微粒的制备方法.赢分子通报.2003,5:36-41.
    [11] Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA. Polymersomes: Tough vesicles made from diblock copolymers. Science 1999, 284: 1143-1146.
    [12] F6rster S, Plantenberg T. From Self-Organizing Polymers to Nanohybrid and Biomaterials. Angew. Chem. Int. Ed. 2002, 41: 689-714.
    [13] Dingsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA. Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles. Science 2002, 298: 1006-1009.
    [14] Panhuis M, Paunov VN. Assembling carbon nanotubosomes using an emulsion-inversion technique. Chem. Commun. 2005, 1726-1728.
    [15] Sunder A, Kramer M, Hanselmann R, Muhlaupt R, Frey H. Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. Angew. Chem. Int. Ed. 38: 3552-3555.
    [16] Manna A, Imae T, Aoi K. Okada M. Yogo T. Synthesis of Dendrimer-Passivated Noble Metal Nanoparticles in a Polar Medium: Comparison of Size between Silver and Gold Particles. Chem. Mater. 2001, 13: 1674-1681.
    [17] Brannonpeppas L. Controlled-release in the food and cosmetics industries. ACS Symp. Set. 1993, 520: 42-52.
    [18] Jung J, Perrut M. Particle design using supercritical fluids: literature and patent survey. J. Supercrit. Fluids 2001, 20: 179-219.
    [19] Schleicher L, Green BK. US Patent 2730456, 1956.
    [20] Wasan KM. Formulation and physiological and biopharmaceutical issues in the development of oral lipid-based drug delivery systems. Drug Dev. Ind. Pharm. 2001, 27: 267-276.
    [21] Iler RK. Multilayers of colloidal particles. J. Colloid Interface Sci. 1966, 21: 569-572.
    [22] Keller SW, Johnson SA, Brigham ES, Yonemoto EH, Mallouk TE. Photoinduced charge separation in multilayer thin films grown by sequential adsorption ofpolyelectrolytes. J. Am. Chem. Soc. 1995, 117: 12879-12880.
    [23] Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997, 277: 1232-1237.
    [24] Decher G, Hong JD. Buildup of ultrathin multilayer films by a self-assembly process. 1 Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol. Chem. Macromol. Symp. 1991, 46: 321-327.
    [25] Decher G, Lehr B, Lowack K, Lvov Y, Schmitt J. New nanocomposite films for biosensors-layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosensors & Bioelcetronics 1994, 9: 677-684.
    [26] Ruths J, Essler F, Decher G, Riegler H. Polyelectrolytes I: Polyanion/polycation multilayers at the alr/monolayer/water interface as elements for quantitative polymer adsorption studies and preparation of hetero-superlattices on solid surfaces. Langmuir 2000, 16: 8871-8878.
    [27] Pommersheim R, Schrezenmeir J, Voigt W. Immobilization of enzymes by multilayer microcapsules. Macromol. Chem. Phys. 1994, 195:1557-1567.
    [28] Chen YT, Somasundaran P. Preparation of novel core-shell nanocomposite particles by controlled polymer bridging. J. Am. Chem. Soc. 1998, 81:140-144.
    [29]Sukhorukov GB, Donath E, Lichtenfeld H, Knippel E, Knippel M, Budde A, Mowald H. Layer by-layer self assembly of polyelectrolytes on colloidal particles. Colloids Surfaces A 1998,137: 253-266.
    [30]Sukhorukov GB, Donath E, Davis SA, Lichtenfeld H, Caruso F, Popov VI, Mowald H. Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. Polym. Adv. Tech. 1998,9: 759-767.
    [31]Donath E, Sukhorukov GB, Caruso F, Davis SA, Mohwald H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed. 1998, 37: 2201-2205.
    [32] Caruso F, Caruso RA, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282: 1111-1114.
    [33]Voigt A, Lichtenfeld H, Sukhorukov GB, Zastrow H, Donath E, Baumler H, Mohwald H. Membrane Filtration for Microencapsulation and Microcapsules Fabrication by Layer-by-Layer Polyelectrolyte Adsorption. Ind. Eng. Chem. Res. 1999,38:4037-4043.
    [34] Sukhorukov GB. Multilayer Hollow Microspheres. MML Series 2002, 5: 111-147.
    [35]Estrela-Lopis I, Leporatti S, Moya S, Brandt A, Donath E, Mohwald H. SANS Studies of Polyelectrolyte Multilayers on Colloidal Templates. Langmuir 2002,18:7861-7866.
    [36]Gittins DI, Caruso F. Tailoring the Polyelectrolyte Coating of Metal Nanoparticles. J. Phys. Chem. B 2001, 105: 6846-6852.
    [37]Mayya KS, Gittins DI, Kibaj AM, Caruso F. Nanotubes Prepared by Templating Sacrificial Nickel Nanorods. Nano Lett. 2001, 1: 727-730.
    [38]Neu B, VoigtA, Mitlohner R, Leporatti S, Gao CY, Donath E, Kiesewetter H, Mohwald H, Meiselman HJ, Baumler H. Biological cells as templates for hollow microcapsules. J. Microencapsulation 2001, 18: 385-395.
    [39] Caruso F, Yang WJ, Trau D, Renneberg R. Microencapsulation of Uncharged Low Molecular Weight Organic Materials by Polyelectrolyte Multilayer Self-Assembly. Langmuir 2000, 16: 8932-8936.
    [40]Antipov AA, Sukhorukov GB, Donath E, Mohwald H. Sustained Release Properties of Polyelectrolyte Multilayer Capsules. J. Phys. Chem. B 2001, 105: 2281-2284.
    [41]Trau D, Yang WJ, Seydack M, Caruso F, Yu NT, Renneberg R. Nanoencapsulated Microcrystalline Particles for Superamplified Biochemical Assays. Anal Chem. 2002, 74: 5480-5486.
    [42] Dai ZF, Voigt A, Donath E, Mohwald H. Novel Encapsulated Functional Dye Particles Based on Alternately Adsorbed Multilayers of Active Oppositely Charged Macromolecular Species. Macromol. Rapid Commun. 2001, 22: 756-762.
    [43]Volodkin DV, Larionova NI, Sukhorukov GB. Protein Encapsulation via Porous CaCO_3 Microcapsules Templating. Biomacromolecules 2004, 5: 1962-1972.
    [44]Petrov AI, Gavryushkin AV, Sukhorukov GB. Effect of Temperature, pH and Shell Thickness on the Rate of Mg~(2+) and Ox(2-) Release from Multilayered Polyelectrolyte Shells Deposited onto Microcrystals of Magnesium Oxalate. J. Phys. Chem. B 2003, 107: 868-875.
    [45]Volodkin DV, Petrov AI, Prevot M, Sukhorukov GB. Matrix Polyelectrolyte Microcapsules: New System for Macromolecule Encapsulation. Langmuir 2004, 20: 3398-3406.
    [46]Dahne L, Baude B. Patent Application Az102004013637.8, 2004.
    [47] Yu AM, Wang YJ, Barlow E, Caruso F. Mesoporous Silica Particles as Templates for Preparing Enzyme-Loaded Biocompatible Microcapsules. Adv. Mater. 2005, 17: 1737-1741.
    [48] Wang YJ, Caruso F. Nanoporous Protein Particles Through Templating Mesoporous Silica Spheres. Adv. Mater. 2006, 18: 795-800.
    [49]Schüler C, Caruso F. Decomposable Hollow Biopolymer-Based Capsules. Biomacromolecules 2001, 2: 921-926.
    [50]Gittins DI, Caruso F. Multilayered Polymer Nanocapsules Derived from Gold Nanoparticle Templates. Adv. Mater. 2000, 12: 1947-1948.
    [51]Diaspro A, Silvano D, Krol S, Cavalleri O, Gliozzi A. Single Living Cell Encapsulation in Nano-organized Polyelectrolyte Shells. Langmuir 2002, 18: 5047-5050.
    [52]Donath E, Moya S, Neu B, Sukhorukov GB, Georgieva R, Voigt A, Baumler H, Kiesewetter H, Mohwald H. Hollow Polymer Shells from Biological Templates: Fabrication and Potential Applications. Chem. Eur. J. 2002, 8: 5481-5485.
    [53]Gao CY, Moya S, Lichtenfeld H, Casoli A, Fiedler H, Donath E, Mohwald H. The Decomposition Process of Melamine Formaldehyde Cores: The Key Step in the Fabrication of Ultrathin Polyelectrolyte Multilayer Capsules. Macromol. Mater. Eng. 2001, 286: 355-361.
    [54]Krasemann L, Tieke B. Selective Ion Transport across Self-Assembled Alternating Multilayers of Cationic and Anionic Polyelectrolytes. Langmuir 2000, 16: 287-290.
    [55]Krasemann L, Toutianoush A, Tieke B. Self-assembled polyelectrolyte multilayer membranes with highly improved pervaporation separation of ethanol/water mixtures. J. Membr. Sci. 2001, 181: 221-228.
    [56]Dubas ST, Schlenoff JB. Swelling and Smoothing of Polyelectrolyte Multilayers by Salt. Langmuir 2001, 17: 7725-7727.
    [57]Sukhorukov GB, Antipov AA, Voigt A, Donath E, Mohwald H. pH-Controlled Macromolecule Encapsulation in and Release from Polyelectrolyte Multilayer Nanocapsules. Macromol. Rapid Commun. 2001, 22: 44-46.
    [58]Ibarz G, Dahne L, Donath E, Mohwald H. Resealing of Polyelectrolyte Capsules after Core Removal. Macromol. Rapid Commun. 2002, 23: 474-478.
    [59] Moya S, Dahne L, Voigt A, Leporatti S, Donath E, Mohwald H. Polyelectrolyte multilayer capsules templated on biological cells: core oxidation influences layer chemistry. Colloids Surf. A 2001,183: 27-40.
    [60]Gao CY, Donath E, Mohwald H, Shen JC. Spontaneous Deposition of Water-Soluble Substances into Microcapsules: Phenomenon, Mechanism, and Application. Angew. Chem. Int. Ed. 2002, 41: 3789-3793.
    [61]Gao CY, Liu XY, Shen JC, Mohwald H. Spontaneous deposition of horseradish peroxidase into polyelectrolyte multilayer capsules to improve its activity and stability. Chem. Commun. 2002, 1928-1929.
    [62] Antipov AA, Shchukin D, Fedutik Y, Petrov AI, Sukhorukov GB, Mohwald H. Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Colloids Surf. A 2003, 224: 175-183.
    [63] Antipov AA, Sukhorukov GB, Leporatti S, Radtchenko IL, Donath E, Mohwald H. Polyelectrolyte multilayer capsule permeability control. Colloids Surf A 2002, 198:535-541.
    [64]Zhu HG, Stein EW, Lu ZH, Lvov YM, McShane MJ. Synthesis of Size-Controlled Monodisperse Manganese Carbonate Microparticles as Templates for Uniform Polyelectrolyte Microcapsule Formation. Chem. Mater. 2005, 17: 2323-2328.
    [65]Losche M, Schmitt J, Decher G, Bouwman WG, Kjaer K. Detailed Structure of Molecularly Thin Polyelectrolyte Multilayer Films on Solid Substrates as Revealed by Neutron Reflectometry. Macromolecules 1998, 31: 8893-8906.
    [66] Caruso F, Niikura K, Furlong DN, Okahata Y. 1. Ultrathin Multilayer Polyelectrolyte Films on Gold: Construction and Thickness Determination. Langmuir 1997, 13: 3422-3426.
    [67]Lutt M, Fitzsimmons MR, Li DQ. X-ray Reflectivity Study of Self-Assembled Thin Films of Macrocycles and Macromolecules. J. Phys. Chem. 5 1998,102:400-405.
    [68]Leporatti S, Voigt A, Mitlohner R, Sukhorukov GB, Donath E, Mohwald H. Scanning Force Microscopy Investigation of Polyelectrolyte Nano- and Microcapsule Wall Texture. Langmuir 2000, 16: 4059-4063.
    [69] Toxicity values for the ions used can be found in orange book of the United States Food and Drug Administration (USFDA)-/http://www.fda.gov/cder/ob/. [70]Petrov AI, Volodkin DV, Sukhorukov GB. Protein-Calcium Carbonate Coprecipitation: A Tool for Protein Encapsulation. Biotechnol. Prog. 2005, 21: 918-925.
    [71]Glinel K, Moussa A, Jonas A, Laschesky A. Influence of Polyelectrolyte Charge Density on the Formation of Multilayers of Strong Polyelectrolytes at Low Ionic Strength. Langmuir 2002, 18: 1408-1412.
    [72]Dai ZF, Mohwald H. Highly Stable and Biocompatible Nafion-Based Capsules with Controlled Permeability for Low-Molecular-Weight Species. Chem. Eur. J. 2002, 8: 4751-4755.
    [73]Qiu XP, Donath E, Mohwald H. Permeability of Ibuprofen in Various Polyelectrolyte Multilayers. Macromol. Mater. Eng. 2001, 286: 591-597.
    [74]Jung BD, Hong JD, Voigt A, Leporatti S, Dahne L, Donath E, Mohwald H. Photochromic hollow shells: photoisomerization of azobenzene polyionene in solution, in multilayer assemblies on planar and spherical surfaces. Colloids Surf. A 2002, 198: 483-489.
    [75]Georgieva R., Moya S, Hin M, Mitlohner R, Donath E, Kiesewetter H, Mohwald H, Baumler H. Permeation of Macromolecules into Polyelectrolyte Microcapsules. Biomacromolecules 2002, 3: 517-524.
    [76]Berth G, Voigt A, Dautzenberg H, Donath E, Mohwald H. Polyelectrolyte Complexes and Layer-by-Layer Capsules from Chitosan/Chitosan Sulfate. Biomacromolecules 2002, 3: 579-590.
    [77]Qiu XP, Leporatti S, Donath E, Mohwald H. Studies on the Drug Release Properties of Polysaccharide Multilayers Encapsulated Ibuprofen Microparticles. Langmuir 2001, 17: 5375-5380.
    [78]Tiourina OP, Sukhorukov GB. Multilayer alginate/protamine microsized capsules: encapsulation of alpha-chymotrypsin and controlled release study. Int. J. Pharm. 2002,242: 155-161.
    [79]Dahne L, Baude B, Voigt A. WO2004/014540A1, 2003.
    [80]Rogach AL, Susha A, Caruso F, Sukhorukov GB, Kornwski A, Kershaw S, Mohwald H, Eychmüller A, Weller H. Nano- and Microengineering: 3-D Colloidal Photonic Crystals Prepared from Sub-m-sized Polystyrene Latex Spheres Pre-Coated with Luminescent Polyelectrolyte/Nanocrystal Shells. Adv. Mater. 2000, 12: 333-336.
    [81]Radtchenko IL, Sukhorukov GB, Gaponik N, Kornowski A, Rogach AL, Mohwald H. Core-Shell Structures Formed by the Solvent-Controlled Precipitation of Luminescent CdTe Nanocrystals on Latex Spheres. Adv. Mater. 2001, 13: 1684-1687.
    [82] Antipov AA, Sukhorukov GB, Fedutik YA, Hartmann J, Giersig M, Mohwald H. Fabrication of a Novel Type of Metallized Colloids and Hollow Capsules. Langmuir 2002, 18: 6687-6693.
    [83]Pastoriza-Santos I, Scholer B, Caruso F. Core-Shell Colloids and Hollow Polyelectrolyte Capsules Based on Diazoresins. Adv. Funct. Mater. 2001, 11: 122-128.
    [84]Zhang YJ, Yang SG, Guan Y, Cao WX, Xu J. Fabrication of Stable Hollow Capsules by Covalent Layer-by-Layer Self-Assembly. Macromolecules 2003, 36: 4238-4240.
    [85]Zhu HG, McShane MJ. Macromolecule Encapsulation in Diazoresin-Based Hollow Polyelectrolyte Microcapsules. Langmuir 2005, 21: 424-430.
    [86]Duchesne TA, Brown JQ, Guice KB, Nayak SR, Lvov YM, McShane MJ. In Proceedings of SPIE, Vol. 4524, 2002, S. 66-75.
    [87]Duchesne TA, Brown JQ, Guice KB, Lvov YM, McShane MJ. Encapsulation and stability properties of nanoengineered polyelectrolyte capsules for use as fluorescent sensors. Sens. Mater. 2002, 14: 293-308.
    [88]McShane MJ, Brown JQ, Guice KB, Lvov YM. Polyelectrolyte microshells as carriers for fluorescent sensors: Loading and sensing properties of a ruthenium-based oxygen indicator. J. Nanosci. Nanotechnol. 2002, 2: 411-416.
    [89]Radtkenko IL, Sukhorukov GB, Leporatti S, Khomutov GB, Donath E, Mohwald H. Assembly of Alternated Multivalent Ion/Polyelectrolyte Layers on Colloidal Particles. Stability of the Multilayers and Encapsulation of Macromolecules into Polyelectrolyte Capsules. J. Colloid Interface Sci. 2000, 230: 272-280.
    [90]Dai ZF, Voigt A, Leporatti S, Donath E, Dahne L, Mohwald H. Layer-by-Layer Self-Assembly of Polyelectrolyte and Low Molecular Weight Species into Capsules. Adv. Mater. 2001, 13: 1339-1342.
    [91]Caruso F. Nanoengineering of Particle Surfaces. Adv. Mater. 2001, 13: 11-22.
    [92] Caruso F, Caruso RA, Mohwald H. Production of Hollow Microspheres from Nanostructured Composite Particles. Chem. Mater. 1999, 11: 3309-3314.
    [93]De Geest BG, Dejugnat C, Sukhorukov GB, Braeckmans K, De Smedt SC, Demeester J. Self-Rupturing Microcapsules. Adv. Mater. 2005, 17: 2357-2361.
    [94] De Geest B, Vandenbroucke RE, Guenther AM, Sukhorukov GB, Hennink WE, Sanders NN, Joseph Demeester J, De Smedt SC. Intracellularly Degradable Polyelectrolyte Microcapsules. Adv. Mater. 2006, 18: 1005-1009.
    [95]Gaponik N, Radtchenko IL, Sukhorukov GB, Rogach Al. Luminescent Polymer Microcapsules Addressable by a Magnetic Field. Langmuir 2004, 20: 1449-1452.
    [96]Zebli B, Susha AS, Sukhorukov GB, Rogach AL, Parak WJ. Magnetic Targeting and Cellular Uptake of Polymer Microcapsules Simultaneously Functionalized with Magnetic and Luminescent Nanocrystals. Langmuir 2005, 21:4262-4265.
    [97] Fang M, Grant PS, McShane MJ, Sukhorukov GB, Golub VO, Lvov YM. Magnetic Bio/Nanoreactor with Multilayer Shells of Glucose Oxidase and Inorganic Nanoparticles. Langmuir 2002, 18: 6338-6344.
    [98]Fischlechner M, Zschornig O, Hofmann J, Donath E. Engineering Virus Functionalities on Colloidal Polyelectrolyte Lipid Composites. Angew. Chem. Int. Ed. 2005, 44: 2892-2895.
    [99] Leporatti S, Gao C, Viogt A, Donath E, Mohwald H. Shrinking of ultrathin polyelectrolyte multilayer capsules upon annealing: a confocal laser scanning microscopy and scanning force microscopy study. Eur. Phys. J. E 2001, 5:13-20.
    [100] Gao CY, Leporatti S, Moya S, Donath E, Mohwald H. Swelling and shrinking of polyelectrolyte microcapsules in response to changes in temperature and ionic strength. Chem. Eur. J. 2003, 9: 915-920.
    [101] Gao CY, Leporatti S, Moya S, Donath E, M6hwald H. Stability and Mechanical Properties of Polyelectrolyte Capsules Obtained by Stepwise Assembly of Poly(styrenesulfonate sodium salt) and Poly(diallyldimethyl ammonium) Chloride onto Melamine Resin Particles. Langmuir 2001, 17: 3491-3495.
    [102] Georgieva R, Moya S, Leporatti S, Neu B, Baumler H, Reichle C, Donath E, M6hwald H. Conductance and capacitance of polyelectrolyte and lipid-polyelectrolyte composite capsules as measured by electrorotation. Langmuir 2000, 16: 7075-7081.
    [103] Moya S, Donath E, Sukhorukov GB, Auch M, Baumler H, Lichtenfeld H, M6hwald H. Lipid coating on polyelectrolyte surface modified colloidal particles and polyelectrolyte capsules. Macromolecules 2000, 33: 4538-4544.
    [104] Moya S, Sukhorukov GB, Auch M, Donath E, Mohwald H. Microencapsulation of organic solvents in polyelectrolyte multilayer micrometer-sized shells. J. Colloid Interface Sci. 1999, 216: 297-302.
    [105] Hanai T, Haydon DA, Tayler J. The influence of lipid composition and of some adsorbed proteins on the capacitance of black hydrocarbon membranes. J. Theo. Biology 1965, 9: 422-432.
    [106] Baba T, Toshima Y, Minamikava H, Hato M, Suzuki K, Kamo N. Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids. Biochimica et biophysica Acta-Biomembranes 1999, 1421(1): 91-102
    [107] Dubas ST, Schlenoff JB. Polyelectrolyte Multilayers Containing a Weak Polyacid: Construction and Deconstruction. Macromolecules 2001, 34: 3736-3740.
    [108] Harris JJ, Stair JL, Bruening ML. Layered Polyelectrolyte Films as Selective, Ultrathin Barriers for Anion Transport. Chem. Mater 2000, 12: 1941-1946.
    [109] Harris JJ, Bruening ML. Electrochemical and in Situ Ellipsometric Investigation of the Permeability and Stability of Layered Polyelectrolyte Films. Langmuir 2000, 16: 2006-2013.
    [110] Farhat TR, Schlenoff JB. Ion Transport and Equilibria in Polyelectrolyte Multilayers. Langmuir 2001, 17: 1184-1192.
    [111] Steitz R, Leiner V, Siebrecht R, von Klitzing R. Influence of the ionic strength on the structure of polyelectrolyte films at the solid/liquid interface. Colloids Surf. A 2000, 163: 63-70.
    [112] Fery A, Scholer B, Cassagneau T, Caruso F. Nanoporous Thin Films Formed by Salt-Induced Structural Changes in Multilayers of Poly(acrylic acid) and Poly(allylamine). Langmuir 2001, 17: 3779-3783.
    [113] Ibarz G, Dahne L, Donath E, Mohwald H. Smart Micro- and Nanocontainers for Storage, Transport, and Release. Adv. Mater. 2001, 13: 1324-1327.
    [114] Tong WJ, Dong WF, Gao CY, Hohwald H. Charge-Controlled Permeability of Polyelectrolyte Microcapsules. J. Phys. Chem. B 2005, 109: 13159-13165.
    [115] von Klitzing R, Mohwald H. A Realistic Diffusion Model for Ultrathin Polyelectrolyte Films. Macromolecules 1996, 29: 6901-6906.
    [116] Lvov Y, Antipov AA, Mamedov A, Mohwald H, Sukhorukov GB. Urease encapsulation in nanoorganized microshells. Nano Lett. 2001, 1: 125-128.
    [117] Gao CY, Donath E, Moya S, Dudnik V, Mohwald H. Elasticity of hollow polyelectrolyte capsules prepared by the layer-by-layer technique. Eur. Phys. J. E 2001, 5:21-27.
    [118] Dai ZF, Dahne L, Mohwald H, Tiersch B. Novel Capsules with High Stability and Controlled Permeability by Hierarchic Templating. Angew. Chem. Int. Ed. 2002, 41: 4019-4022.
    [119] Dahne L, Leporatti S, Donath E, Mohwald H. Fabrication of Micro Reaction Cages with Tailored Properties. J. Am. Chem. Soc. 2001, 123: 5431-5436.
    [120] Gao CY, Moya S, Donath E, Mohwald H. Melamine Formaldehyde Core Decomposition as the Key Step Controlling Capsule Integrity: Optimizing the Polyelectrolyte Capsule Fabrication. Macromol. Chem. Phys. 2002, 203: 953-960.
    [121] Lulevich VV, Radtchenko IL, Sukhorukov GB, Vinogradova OI. Deformation Properties of Nonadhesive Polyelectrolyte Microcapsules Studied with the Atomic Force Microscope. J. Phys. Chem. B 2003, 107: 2735-2740.
    [122] Lulevich VV, Radtchenko IL, Sukhorukov GB, Vinogradova OI. Mechanical Properties of Polyelectrolyte Microcapsules Filled with a Neutral Polymer. Macromolecules 2003, 36: 2832-2837.
    [123] Lulevich VV, Andrienko D, Vinotradova OI. Elesticity of polyeletrolyte multilayer microcapsules. Elasticity of polyelectrolyte multilayer microcapsules. J. Chem. Phys. 2004, 120: 3822-3826.
    [124] Vinogradova OI, Andrienko D, Lulevich VV, Nordschild S, Sukhorukov GB. Young's Modulus of Polyelectrolyte Multilayers from Microcapsule Swelling. Macromolecules 2004, 37: 1113-1117.
    [125] Ibarz G, Dahne L, Donath E, Mohwald H. Controlled Permeability of Polyelectrolyte Capsules via Defined Annealing. Chem. Mater. 2002, 14: 4059-4062.
    [126] Shi XY, Caruso F. Release Behavior of Thin-Walled Microcapsules Composed of Polyelectrolyte Multilayers. Langmuir 2001, 17: 2036-2042.
    [127] Sukhorukov GB, Dahne L, Hartmann J, Donath E, Mohwald H. Controlled Precipitation of Dyes into Hollow Polyelectrolyte Capsules Based on Colloids and Biocolloids. Adv. Mater. 2000, 12: 112-115.
    [128] Sukhorukov GB, Susha AS, Davis S, Leporatti S, Donath E, Hartmann J, Mohwald H. Precipitation of inorganic salts inside hollow micrometer-sized polyelectrolyte shells. J. Colloid Interface Sci. 2002, 247: 251-254.
    [129] Radtchenko IL, Sukhorukov GB, Mohwald H. Incorporation of macromolecules into polyelectrolyte micro- and nanocapsules via surface controlled precipitation on colloidal particles. Colloids Surf. A 2002, 202: 127-133.
    [130] Gao CY, Mohwald H, Shen JC. Encapsulation by Swelling and Shinking Procedures. ChemPhysChem 2004, 5: 116-120.
    [131] Gaponik N, Radtchenko IL, Sukhorukov GB, Weller H, Rogach AL. Toward Encoding Combinatorial Libraries: Charge-Driven Microencapsulation of Semiconductor Nanocrystals Luminescing in the Visible and Near IR. Adv. Mater. 2002, 14: 879-882.
    [132] Radtchenko IL, Giersig M, Sukhorukov GB. Inorganic Particle Synthesis in Confined Micron-Sized Polyelectrolyte Capsules. Langmuir 2002, 18: 8204-8208.
    [133] Shchukin DG, Radtchenko IL, Sukhorukov GB. Synthesis of Nanosized Magnetic Ferrite Particles Inside Hollow Polyelectrolyte Capsules. J. Phys. Chem. B 2003, 107:86-90.
    [134] Wang B, Zhao QH, Wang F, Gao CY. Biologically-driven Assembled Arrays of Permeability-tunable Microreactors. Angew. Chem. Int. Ed. 2006, 45: 1560-1563.
    [135] Radtchenko IL, Sukhorukov GB, Mohwald H. A novel method for encapsulation of poorly water-soluble drugs: precipitation in polyelectrolyte multilayer shells. Int. J. Pharm. 2002, 242: 219-223.
    [136] Peyratout C, Mohwald H, Dahne L. Preparation of Photosensitive Dye Aggregates and Fluorescent Nanocrystals in Microreaction Containers. Adv. Mater. 2003, 15, 1722-1726.
    [137] Liu XY, Gao CY, Shen JC, Mohwald H. Multilayer Microcapsules as Anti-Cancer Drug Delivery Vehicle Deposition, Sustained Release, and in vitro Bioactivity. Macromol. Biosci. 2005; 5: 1209-1219.
    [138] Mao ZW, Ma L, Gao CY, Shen JC. Preformed microcapsules for loading and sustained release of ciprofloxacin hydrochloride. J. Controlled Release 2005; 104: 193-202.
    [139] Tong WJ, Dong WF, Gao CY, Mohwald H. Multilayer Capsules with Cell-like Topology Fabrication and Spontaneous Loading of Various Substances in Aqueous and Ethanol Solutions. Macromol. Chem. Phys. 20005,206: 1784-1790.
    [140] Dallüge R, Haberland A, Zaitsev S, Schneider M, Zastrow H, Sukhorukov GB, Bottger M. Characterization of structure and mechanism of transfection-active peptide-DNA complexes. Biochim. Biophys. Acta 2002, 1576: 45-52.
    [141] Caruso F, Trau D, Mohwald H, Renneberg R. Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules. Langmuir 2000, 16: 1485-1488.
    [142] Jin W, Shi XY, Caruso F. High Activity Enzyme Microcrystal Multilayer Films. J. Am. Chem. Soc. 2001, 123: 8121-8122.
    [143] Balabushevitch NG, Sukhorukov GB, Moroz NA, Volodkin DV, Larionova NI, Donath E, Mohwald H. Encapsulation of proteins by layer-by-layer adsorption of polyelectrolytes onto protein aggregates: Factors regulating the protein release. Biotechnol. Bioeng. 2001, 76: 207-213.
    [144] Bobreshova ME, Sukhorukov GB, Saburova EA, Elfimova LI, Shabarchina LI, Sukhorukov BI. Lactate dehydrogenase in interpolyelectrolyte complex. Function and stability. Biofizika 1999, 44: 813-820.
    [145] Tiourina OP, Antipov AA, Sukhorukov GB, Larionova NL, Lvov Y, MShwald H. Entrapment of alpha-chymotrypsin into hollow polyelectrolyte microcapsules. Macromol. Biosci. 2001, 1: 209-214.
    [146] Antipov AA, Shchukin DG, Fedutik YA, Zanaveskina I, Klechkovskaya V, Sukhorukov GB, Mohwald H. Urease-catalyzed carbonate precipitation inside the restricted volume of polyelectrolyte capsules. Macromol. Rapid Commun. 2003, 24: 274-277.
    [147] Yu AM, Gentle I, Lu GQ, Caruso F. Nanoassembly of biocompatible microcapsules for urease encapsulation and their use as biomimetic reactors. Chem. Commun. 2006, 2150-2152.
    [148] Weiss RB. The anthracyclines: will we ever find a better doxorubicin? Semin. Oncol. 1992,19: 670-686.
    [149] Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 2001, 53: 283-318.
    [150] Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Del. Rev. 2003, 55: 329-347.
    [151] Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Dev. Rev. 2003, 55:403-419.
    [152] Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 2004, 104: 6017-6084.
    [153] Sood, A, Panchagnula R. Peroral Route: An Opportunity for Protein and Peptide Drug Delivery. Chem. Rev. 2001,101: 3275-3304.
    [154] Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Del. Rev. 2001,47: 83-97.
    [155] Guo X, Szoka Jr. FC. Chemical Approaches to Triggerable Lipid Vesicles for Drug and Gene Delivery. Acc. Chem. Res. 2003, 36: 335-341.
    [156] H'ina AV, Varlamov VP. Chitosan-based polyelectrolyte complexes: A review. Appl. Biochem. Micro. 2005,41: 5-11.
    [157] Caruso F. Colloids and Colloid Assemblies, Wiley- VCH, Weinheim. 2004.
    [158] Peyratout C S, Dahne L. Tailor-Made Polyelectrolyte Microcapsules: From Multilayers to Smart Containers. Angew. Chem. Int. Ed. 2004,43: 3762-3783.
    [159] Khopade AJ, Caruso F. Stepwise Self-Assembled Poly(amidoamine) Dendrimer and Poly(styrenesulfonate) Microcapsules as Sustained Delivery Vehicles. Biomacromolecules 2002, 3: 1154-1162.
    [160] Sukhorukov GB, Fery A, Brumen M, M6hwald H. Physical chemistry of encapsulation and release. Phys. Chem. Chem. Phys. 2004,6: 4078-4089.
    [161] Wang T, Colfen H, Antonietti M. Nonclassical Crystallization: Mesocrystals and Morphology Change of CaCO_3 Crystals in the Presence of a Polyelectrolyte Additive. J. Am. Chem. Soc. 2005,127: 3246-3247.
    [162] Mann S, Archibald DD, Didymus JM, Douglas T, Heywood BR, Meldrum FC, Reeves NJ. Crystallization at inorganic-organic interfaces: Biomineral. Science 1993,261:1286-1292.
    [163] Orme CA, Noy A, Wierzbicki A, McBride MT, Grantham M, Teng HH, Dove PM, DeYoreo JJ. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 2001,411: 775-779.
    [164] Manoli F, Dalas E. Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol. J. Cryst. Growth 2000, 218: 359-364.
    [165] Jada A, Pefferkorn E. Smooth and rough spherical calcium carbonate particles. J. Mater. Sci. Lett. 2000,19: 2077-2079.
    [166] Jada A, Verraes A. Preparation and microelectrophoresis characterisation of calcium carbonate particles in the presence of anionic polyelectrolyte. Colloids Surf. A 2003,219:7-15.
    [167] Gower LB, Odom DJ. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 2000, 210: 719-734.
    [168] Yu SH, Colfen H. Bio-inspired crystal morphogenesis by hydrophilic polymers. J. Mater. Chem. 2004,14: 2124-2147.
    [169] Aizenberg J, Black AJ, Whitesides GM. Control of crystal nucleation by patterned self-assembled monolayers. Nature 1999,398: 495-498.
    [170] Addadi L, Weiner S. Interactions between Acidic Proteins and Crystals: Stereochemical Requirements in Biomineralization. Proc. Natl. Acad. Sci. U.S.A. 1985,82:4110-4114.
    [171] Sondi I, Matijevic E. Homogeneous precipitation of calcium carbonates by enzyme catalyzed reaction. J. Colloid Interface Sci. 2001,238: 208-214.
    [172] Meldrum FC. Calcium carbonate in biomineralisation and biomimetic chemistry. Int. Mater. Rev. 2003, 48: 187-224.
    [173] Kato T, Sugawara A, Hosoda N. Calcium carbonate-organic hybrid materials. Adv. Mater. 2002,14: 869-877.
    [174] Mendelsohn JD, Barrett CJ, Chan VV, Pal AJA, Mayes M, Rubner MR Fabrication of microporous thin films from polyelectrolyte multilayers. Langmuir 2000,16: 5017-5023.
    [175] Schlenoff JB. Charge Balance and Transport in Polyelectrolyte Multilayers, in: Multilayer Thin Films. Decher G, Shlenoff JB. Eds., Wiley-VCH, Weinheim, Germany, 2003, p. 99-132.
    [176] Shiratori SS, Rubner MF. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 2000, 33: 4213-4219.
    [177] Soo PL, Luo L, Maysinger D, Eisenberg A. Incorporation and Release of Hydrophobic Probes in Biocompatible Polycaprolactone-block-poly(ethylene oxide) Micelles: Implications for Drug Delivery. Langmuir 2002,18: 9996-10004.
    [178] Higuchi T. Mechanism of sustained-action medication: Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963, 52: 1145-1149.
    [179] Cremers HFM, Verrijk R, Noteborn HPJM, Kwon G, Bae YH, Kim SW, Feijen J. Adriamycin loading and release characteristics of albumin-heparin conjugate microspheres. J. Controlled Release 1994,29:143-155.
    [180] Choucair A, Soo PL, Eisenberg A. Active Loading and Tunable Release of Doxorubicin from Block Copolymer Vesicles. Langmuir 2005,21: 9308-9313.
    [181] Sawaya A, Fickat R, Renoit JP, Puisieux F, Benita S. Ion-exchange albumin microcapsules of doxorubicin: an in vitro release kinetic evaluation. J. Microencapsulation 1988, 5: 255-267.
    [182] Liu Z, Cheung R, Wu XY, Ballinger JR, Bendayan R, Rauth AM. A study of doxorubicin loading onto and release from sulfopropyl dextran ion-exchange microspheres. J. Controlled Release 2001,77: 213-224.
    [183] Shenoy DB, Sukhorukov GB. Engineered microcrystals for direct surface modification with layer-by-layer technique for optimized dissolution. Eur. J. Pharm. Biopharm. 2004, 58: 521 -527.
    [184] An ZH, Lu G, Mohwald H, Li JB. Self-assembly of human serum albumin (HSA) and L-alpha-dimyristoylphosphatidic acid (DMPA) microcapsules for controlled drug release. Chem. Eur. J. 2004, 10: 5848-5852.
    [185] Balabushevich NG, Tiourina OP, Volodldn DV, Larionova NI, Sukhorukov GB. Loading the multilayer dextran sulfate/protamine microsized capsules with peroxidase. Biomacromolecules 2003, 4:1191-1197.
    [186] Shenoy DB, Antipov AA, Sukhorukov GB, Mohwald H. Layer-by-layer engineering of biocompatible, decomposable core-shell structures. Biomacromolecules 2003, 4: 265-272.
    [187] Shenoy DB, Sukhorukov GB. Mierogel-based engineered nanostructures and their applicability with template-directed layer-by-layer polyelectrolyte assembly in protein encapsulation. Macromol. Biosci. 2005, 5:451-458.
    [188] Berthold A, Cremer K, Kreuter J. Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. J. Controlled Release 1996, 39: 17-25.
    [189] Felt O, Buri P, Gurny R. Chitosan: a unique polysac-charide for drug delivery.Drug Dev. Indust. Pharm. 1998, 24: 979-993.
    [190] Aynie I, Vauthier C, Chacun H, Fattal E, Couvreur P. Spongelike alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides. Antisense Nuc. Acid Drug Dev. 1999, 9: 301-312.
    [191] Lambert G, Fattal E, Couvreur P. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv. Drug Delev. Rev. 2001, 47: 99-112.
    [192] Leveque I, Rhodes KH, Mann S. Biomineral-inspired fabrication of semi-permeable calcium phosphate-polysaccharide microcapsules. J. Mater. Chem. 2002, 12(8): 2718-2180.
    [193] Kato Y, Onishi H, Machida Y. Contribution of chitosan and its derivatives to cancer chemotherapy. In Vivo 2005, 19(1): 301-310.
    [194] Lemoine D, Wauters F, Bouchend S, Preat V. Preparation and characterization of alginate microspheres containing a model antigen. Int. J. Pharm. 1998, 176(1): 9-19.
    [195] Cetinus SA, Oztop HN. Immobilization of catalase into chemically crosslinked chitosan beads. Enzyme Microb. Tech. 2003, 32(7): 889-894.
    [196] Gregor JE, Fenton E, Brokenshire G, Brink P, Sullivan BO. Interactions of calcium and aluminium ions with alginate. Water Res. 1996, 30(6): 1319-1324.
    [197] Heng PWS, Chan LW. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification. Biomaterials 2002, 23(5): 1319-1326.
    [198] Heng PWS, Chan LW, Jin Y. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. Int. J. Pharm. 2002, 242(1-2): 255-258.
    [199] Heng PWS, Chan LW, Lee HY. Production of alginate microspheres by internal gelation using an emulsification method. Int. J.. Pharm. 2002, 242(1-2): 259-262.
    [200] Hussain Q, Iqbal, J. Entrapment of concanavalin A-glycoenzyme complexes in calcium alginate gels. Biotechnol. Bioeng. 1985, 27(8): 1102-1107.
    [201] Kierstan M, Bucke C. The effect of medium composition on the acetone-butanol fermentation in continuous culture. Biotechnol. Bioeng. 1987, 29(3): 387-397.
    [202] Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels-review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 2004, 58(2): 409-426.
    [203] Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 2005, 12(1): 41-57.
    [204] Kuo SM, Niu GCC, Chang SJ, Kuo CH, Bair MS. A one-step method for fabricating chitosan microspheres. J. Appl. Polym. Sci. 2004, 94(5): 2150-2157.
    [205] Cho NH, Seong SY, Chun KH, Kim YH, Kwon IC, Ahn BY, Jeong SY. Novel mucosal immunization with polysaceharide-protein conjugates entrapped in alginate microspheres. J.. Controlled Release 1998, 53(1-3): 215-224.
    [206] Taqieddin E, Amiji M. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules. Biomaterials 2004, 25(10): 1937-1945.
    [207] Kumar MNVR. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46(1): 1-27.
    [208] Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J. Controlled Release 2004, 100(1): 5-28.
    [209] Welsh ER, Schauer CL, Qadri SB, Price RR. Chitosan cross-linking with a water-soluble, blocked diisocyinate. 1. Solid state. Biomacromolecules 2002, 3(6): 1370-1374.
    [210] Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44: 3358-3393.
    [211] Kok FN, Arica MY, Gencer O, Abak K, Hasirci V. Controlled release of aldicarb from carboxymethyl cellulose microspheres: in vitro and field applications. Pestic. Sci. 1999, 55: 1194-1202.
    [212] Ma L, Gao CY, Mao ZW, Zhou J, Shen JC, Hu XQ, Han CM. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003, 24: 4833-4841.
    [213] Feng J, Gao CY, Shen JC. Micropatteming biomacromolecules on aldehyde-enriched polyester surfaces by a microtransfer technique. Chem. Mater. 2004, 16: 1319-1322.
    [214] Horn D, Rieger J. Organic nanopartieles in the aqueous phase-theory, experiment, and use. Angew. Chem. Int. Ed. 2001, 40: 4331-4361.
    [215] Dash S, Kamruddin M, Ajikumar PK, Tyagi AK, Raj B. Nanoerystalline and metastable phase formation in vacuum thermal decomposition of calcium carbonate. Thermochim. Acta 2000, 363: 129-135.
    [216] 侯贵华,沈晓冬,许仲梓.氧化铜对碳酸钙热分解动力学过程的影响.硅酸盐学报.2005,33(1):109-114.
    [217] Rinaudo M, Pavlov G, Desbrieres J. Influence of acetic acid concentration on the solubilization of chitosan. Polymer 1999, 40: 7029-7032.
    [218] dos Santos DS, Bassi A, Rodrigues JJ. Jr, Misoguti L, Oliveira ON. Jr, Mendonea CR. Light-induced storage in layer-by-layer films of chitosan and an azo dye. Biomacromolecules 2003, 4:1502-1505.
    [219] dos Santos DS, Goulet PJG, Pieczonka NPW, Oliveira ON. Jr, Aroca RF. Gold nanopartiele embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering. Langmuir 2004, 20:10273-10277.
    [220] Kim SJ, Yoon SG, Lee YH, Kim SI. Bending behavior of hydrogels composed of poly(methaerylic acid) and alginate by electrical stimulus. Polym. Int. 2004, 53: 1456-1460.
    [221] Hoogeveen NG, Stuart MAC, Fleer GJ, Bohmer MR. Formation and Stability of Multilayers of Polyeleetrolytes. Langmuir 1996, 12: 3675-3681.
    [222] Tong W J, Gao CY, Mohwald. H. Manipulating the properties of polyelectrolyte microcapsules by glutaraldehyde cross-linking. Chem. Mater. 2005, 17: 4610-4616.
    [223] Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials 1996, 17:471-484.
    [224] Kurita K. Controlled functionalization of the polysaccharide chitin. Prog. Polm. Sci. 2001, 26: 1921-1971.
    [225] Yang Q, Dou FD, Liang B, Shen Q. Studies of cross-linking reaction on chitosan fiber with glyoxal. Carbohydrate Polym. 2005, 59: 205-210.
    [226] Xie WM, Xu PX, Wang W, Liu Q. Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydrate Polym. 2002, 50: 35-40.
    [227] dos Santos JE, Dockal ER, Cavalheiro ETG. Synthesis and characterization of Schiff bases from chitosan and salicylaldehyde derivatives. Carbohydrate Polym. 2005, 60: 277-282.
    [228] Puttipipatkhachom S, Pongjanyakul T, Priprem A. Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminum silicate, and their physical characteristics. Int. J. Pharm. 2005, 293:51-62.
    [229] Guan YL, Shao L, Yao KD. A study on correlation between water state and swelling kinetics of chitosan-based hydrogels. J. Appl. Poly. Sci. 1996, 61: 2325-2335.
    [230] Monteiro OAC, Airoldi C. Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system, J. Biol. Macromol. 1999, 26: 119-128.
    [231] Sampaio S, Taddei P, Monti P, Buchert J, Freddi G Enzymatic grafting of chitosan onto Bombyx moil silk fibroin: kinetic and IR vibrational studies. J. Biotech. 2005, 116: 21-33.
    [232] Kim SR, Yuk SH, Jhon MS. A semi-interpenetrating network system for a polymer membrane. Eur. Polym. J. 1997, 33: 1009-1014.
    [233] Rembaum A, Levy J, Gupta A, Margel S. Reaction of polyglutaraldehyde with proteins. Polym. Prepr. Am. Chem. Soc. Div. Polym. 1978, 19: 648-650.
    [234] Monsan P, Puzo G, Mazarguil H. Mechanism of glutaraldehyde protein bond formation. Biochemie 1975, 57: 1281-1292.
    [235] Karttkstis KK, Thompson EHZ, Whiles JA, Rosenfeld RJ. Deciphering the fluorescence signature of daunomycin and doxorubicin. Biophys. Chem. 1998, 73:249-263.
    [236] Tong WJ, Song HQ, Gao CY, Mohwald H. Equilibrium Distribution of Permeants in Polyelectrolyte Microcapsules Filled with Negatively Charged Polyelectrolyte: The Influence of Ionic Strength and Solvent Polarity. J. Phys. Chem. B 2006, 110: 12905-12909.
    [237] Peppas NA, Khare AR. Preparation, structure and diffusional behavior of hydrogel in controlled release. Adv. Drug Delivery Rev. 1993, 11: 1-35.
    [238] Fujimoto J, Petri DFS. Adsorption Behavior of Carboxymethylcellulose on Amino-Terminated Surfaces. Langmuir, 17: 56-60.
    [239] Liu PF, Zhal ML, Li JQ, Peng J, Wu JL. Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat. Phys. Chem. 2002, 63: 525-528.
    [240] Bajpai AK, Girl A. Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. React. Func. Polym. 2002, 53: 125-141.
    [241] Khraishen M, Holland C, Creany C, Harris P, Parolis L. Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths. Int. J. Miner. Process. 2005, 75: 197-206.
    [242] Howell SB. Clinical applications of a novel sustained-release injectable drug delivery system: DepoFoam technology. Cancer J. 2001, 7(3): 219-227.
    [243] McCarron PA , Woolfson AD, Keating SM. Sustained release of 5-fluorouracil from polymeric nanoparticles. J. Pharm. Pharmacol. 2000, 52(12): 1451-1459.
    [244] 周剑寅,王效民,张其清.化疗药缓释制剂局部治疗肝癌的研究进展.国外医学外科学分册.2005,32(4):270-274.
    [245] Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB. The liposomal formulation ofdoxorubicin. Methods Enzymol. 2005, 391: 71-97.
    [246] Reddy LH. Drug delivery to tumours: recent strategies. J. Pharm. Pharmacol. 2005, 57(10): 1231-1242.
    [247] Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004, 56: 185-229.
    [248] Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B. Doxorubicin-induced Apoptosis in Endothelial Cells and Cardiomyocytes Is Ameliorated by Nitrone Spin Traps and Ebselen. J. Biol. Chem. 2000, 275: 33585-33592.
    [249] Conklin KA. Coenzyme Q10 for Prevention of Anthracycline-Induced Cardiotoxicity. Intgr. Cancer Ther. 2005, 4: 110-130.
    [250] Pratt G, Wiles ME, Rawstron AC, Davies FE, Fenton JAL, Proffitt JA, Child JA, Smith GM, Morgan GJ. Liposomal daunorubicin: In vitro and in vivo efficacy in multiple myeloma. Hematol. Oncol. 1998,16:47-55.
    [251] Konopa J. G2 block induced by DNA crosslinking agents and its possible consequences. Biochem. Pharmacol. 1988, 37: 2303-2309.
    [252] Skladanowski A, Konopa J. Adriamycin and daunomycin induce programmed cell death (apoptosis) in tumor cells. Biochem. Pharmacol. 1993, 46: 375-382.
    [253] Bartolomeo S, Spinedi A. Differential Chemosensitizing Effect of Two Glucosylceramide Synthase Inhibitors in Hepatoma Cells. Biochem. Biophys. Res. Commun. 2001,288: 269-274.
    [254] Uray IP, Davies PJA, Fesüs L. Pharmacological Separation of the Expression of Tissue Transglutaminase and Apoptosis after Chemotherapeutic Treatment of HepG2 Cells. Mol. Pharmacol. 2001,59: 1388-1394.
    [255] Lee HJ, Wang CJ, Kuoa HC, Chou FP, Jean LF, Tseng TH. Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK. Toxicol. Appl. Pharmacol. 2005, 203: 124-131.
    [256] Wen J, Zhang YW, Chen XQ, Shen LB, Li GC, Xu M. Enhancement of diallyl disulfide-induced apoptosis by inhibitors of MAPKs in human HepG2 hepatoma cells. Biochem. Pharmacol. 2004,68: 323-331.
    [257] Aydin HH, Celik HA, Deveci R, Karacah S, Saydam G, Omay SB, Batur Y. Induction of apoptosis by fatty acid ethyl esters in HepG2 cells. Food Chem. Toxicol. 2005,43:139-145.
    [258] Bengtsson M, Karlsson HJ, Westman G, Kubista M. A new minor groovebinding asymmetric cyanine reporter dye for real-time PCR. Nucleic Acids Res. 2003,31(8): e45.
    [259] Pattyn F, Speleman F, De-Paepe A, Vandesompele J. RTPrimerDB: the real2timePCR primer and probe database. Nucleic Acids Res. 2003,31:122-123.
    [260] Antony AC. The biological chemistry of folate receptors. Blood 1992, 79: 2807-2820.
    [261] Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 2002,29:23-39.
    [262] Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J. Biol. Chem. 1994,269: 3198-3204.
    [263] Lee RJ, Low PS. Folate-mediated cell targeting of liposome-entrapped doxorubicin in vitro. Biochim. Biophys. Acta Biomembranes 1995, 1233: 134-144.
    [264] Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN. Folate-Receptor-Mediated Delivery of InP Quantum Dots for Bioimaging Using Confocal and Two-Photon Microscopy. J. Am. Chem. Soc. 2005, 127(32):11364-11371.
    [265] Nayak S, Lee H, Chmielewski J, Lyon LA. Folate-Mediated Cell Targeting and Cytotoxicity Using Thermoresponsive Microgels. J. Am. Chem. Soc. 2004, 126: 10258-10259.
    [266] Kam NWS, O'Connell M, Wisdom JA, Dai Hj. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005, 102: 11600-11605.
    [267] Stella B, Arpieco S, Peracchia MT, Desmaele D, Hoebeke J, Renoir M, d'Angelo J, Cattel L, Couvreur P. Design of Folie Acid-Conjugated Nanoparticles for Drug Targeting. J. Pharm. Sci. 2000, 89: 1452-1464.
    [268] Gref R, Minamitake Y, Peracchia MT, Langer R.1996. PEG-coated biodegradable nanospheres for intravenous drug administration. In Cohen S, Bernstein H, editors. Microparticulate systems forthe delivery of proteins and vaccines, New York: Marcel Dekker, pp 279-306.
    [269] Peracchia MT, Desmaele D, Couvreur P, d'Angelo J. Synthesis of a novel poly(MePEG cyanoacrylate-co-alkyl eyanoacrylate) amphiphilic copolymer for nanoparticle technology. Macromolecules 1997, 30: 846-851.
    [270] Kern W, Iwabuchi S, Sato H, Bohmer V. A convenient synthesis of α,ω-diarnino substituted oligo(oxyethylene)s. Die Makromol. Chem. 1979, 180: 2539-2542.
    [271] Harris JM, Struck EC, Case MG, Paley MS, Yalpani M, Alstine JM, Brooks DE. Synthesis and characterization of poly(ethylene glycol) derivatives. J. Polym. Sci: Polym. Chem. Ed. 1984, 22: 341-352.
    [272] Nakajima K, Hirano Y, Iida T, Nakajima A. Adsorption of Plasma Proteins on Arg-Gly-Asp-Ser Peptide-Immobilized Poly(vinyl alcohol) and Ethylene-Acrylic Acid Copolymer Films. Polym. J. 1990, 22(11): 985-990.
    [273] 冯杰.浙江大学博士学位论文.2004.
    [274] Kenausis GL, Volrols J, Elbert DL, Huang NP, Hofer R, Ruiz-Taylor L, Textor M, Hubbell JA, Spencer ND. Poly(L-lysine)-g-Poly(ethylene glycol) Layers on Metal Oxide Surfaces: Attachment Mechanism and Effects of Polymer Architecture on Resistance to Protein Adsorption. J. Phys. Chem. B 2000, 104: 3298-3309.
    [275] Huang NP, Michel R, Voros J, Textor M, Hofer R, Rossi A, Elbert DL, Hubbell JA, Spencer ND. Poly(L-lysine)-g-poly(ethylene glycol) Layers on Metal Oxide Surfaces: Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption. Langmuir 2001, 17: 489-498.
    [276] Griesser HJ, Chatelier RC, Gengenbach TR, Johnson G, Steele JG. Growth of human cells on plasma polymers: Putative role of amine and amide groups. J. Biomater. Sci. Polymer Edn. 1994, 5: 531-554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700