冬小麦关键生长发育期遥感提取及其在长势监测和作物估产中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业正在由传统农业向由遥感技术等高科技为特征的高科技农业发展,高科技农业技术成果也正在迅速的向农业的各个领域渗透。随着遥感技术的发展,利用遥感技术对农作物的发育期、长势、产量等进行识别与监测已成为可能;遥感技术为现代化农业的发展提供了实时快捷和准确的大范围资料。本文使用MODIS-EVI数据与冬小麦长势和产量数据,研究冬小麦生长变化与EVI变化的关系。找到利用EVI数据识别冬小麦关键发育期的方法。基于识别发育期,建立冬小麦遥感长势监测模型和估产模型。使用相同发育期EVI数据对冬小麦进行长势监测和产量估算。
     在研究冬小麦关键发育期遥感识别方法时,首先,选择合适的Savitzky-Golay滤波方法对EVI时间序列进行平滑处理,获取整个发育期冬小麦冠层的EVI;然后,分别使用最大变化斜率法、窗口极值法与转折点法识别冬小麦返青期、抽穗期、成熟期。研究结果表明:基于2029个冬小麦观测数据进行遥感识别发育期的平均绝对偏差为11.2天,均方根误差为13.94天。其中返青期有548个数据,平均绝对偏差为10.59天,均方根误差为12.84天;抽穗期数据766个,平均绝对偏差11.05天,均方根误差14.07天;成熟期715个数据,平均绝对偏差9.26天,均方根误差14.57天。验证结果表明使用遥感数据识别冬小麦发育期是可行的,识别数据是可以用于研究中的。
     基于识别发育期数据,使用2006-2010年遥感数据监测冬小麦长势,并且利用研究区遥感图像和地面站点数据比较基于识别发育期的长势监测方法和未考虑发育期长势监测方法。基于发育期长势监测方法进行长势监测的遥感图像结果显示2010年大部分地区长势好于2009年,与实际情况相同。而未考虑发育期的遥感长势监测方法显示:2010年大部分地区冬小麦长势差于2009年,与实际情况不符合。在站点数据对比中,随机选择了7个站点,基于识别发育期长势监测结果的相关系数从0.51至0.86,呈明显的正相关性。而传统长势监测方法监测结果相关系数为-0.96到0.61。在区域和站点尺度上的比较都可以发现:与未考虑发育期的遥感长势监测方法相比,基于识别发育期的长势监测方法监测效果更好。
     分别基于三个主要发育期和全发育期建立了冬小麦估产模型,发现全发育期产量估产模型精度较高。通过相同方法的不同发育期对比发现:使用基于发育期EVI的遥感估产模型估产误差较小,返青期估产误差从-6.96%到5.84%,抽穗期估产误差从-6.73%到8.69%,成熟期估产精度误差为-7.87到4.7%,全发育期估产精度为-1.04%到1.57%。而使用未考虑发育期方法(即使用相同时间EVI进行遥感估产)估产,在儒略历70天时估产精度从-9.1%到10.74%,儒略历115天时估产精度从-7.17%到11.51%,儒略历165天时估产精度从-8.44%到9.14%,同时使用三个时间段估产精度从-11.34到6.27。通过比较可以发现,基于相同发育期EVI建立的遥感估产模型精度要好于未考虑发育期模型。通过不同方法的相同发育期对比发现:全发育期估产精度误差从-1.04%到1.57%,是误差最小的估产模型。冬小麦返青期、抽穗期、成熟期的发育情况好坏预示着冬小麦产量的高低,做好这三个主要发育期的管理工作对提高冬小麦产量有着重要的作用。
Agriculture has changed from traditional agriculture to high-tech agriculture. Remote sensing technology as one high-tech has become more important to agriculture. With the development of remote sensing technology to provide fast, accurate, large area, and high precision data, remote sensing based growing stage monitoring, growing status, yield estimation have become more and more important to fine agriculture, especially in China with a large pressure of population. This study researched the relationship of winter wheat growth and EVI data by using the MODIS-EVI data and the field data of winter wheat. Based on the detected growing stages, this study built the model of growth monitoring and yield prediction of winter wheat, which differs from traditional methods in that the EVI data in same stages was applied to monitor growth and estimate yield of winter wheat,.
     Savitzky-Golay Filter as an effective method was adopted to build high-quality EVI time series data. Then, the maximum variation of slope method, the window of extreme value method, and the turning point method were used to monitor planting time, heading time, and harvest time. The result shows that mean absolute deviation (ADE) for three growing stages was11.2day and RMSE was13.94days for all samples of2029winter wheat data. In addition, the error statistics in planting time had an ADE of10.59days and an RMSE of12.84days with a sample number of548. An ADE of11.05days and an RMSE of14.07days were obtained in heading time with a sample number of766. An error of ADE-9.26days and RMSE-14.57days was obtained in harvest time with a sample number of715data. The evaluation demonstrated that it was feasible to monitor growing stages by using remote sensing data.
     Based on the detected crop stage data, crop growth monitoring was carried out by using remote sensing data from2006to2010. Further evaluation by using field leaf erea index (LAI) shows that the new monitoring method by using the same stage'EVI data was better than traditional method by using same Julian day'EVI data. The new method gave an improved statistics with correlation coefficients ranging from0.51to0.86compared with field LAI data. However, traditional method had an wide variation of correlation coefficient of-0.96~0.61. Further monitoring result given by the new method showed that winter wheat in2010grew better than that in2009, which agrees well with field LAI data. But the traditional method showed that winter wheat grew in2010worse than that in2009, which contradicts with field LAI data. It can be concluded that compared with the traditional method, the new growth monitoring method, based on same growing stage, was better.
     As growth of winter wheat in planting time, heading time, and harvest time was important to the yield forming of winter wheat, this study built yield prediction models of winter wheat based on three key stages and all stages. The evaluation for six years shows that the yield prediction error changed from-6.96%to5.84%for planting time model, from-6.73%to6.89%for heading time model, and from-7.87%to4.7%for harvest time model, respectively. The error of yield prediction for all stage model varied from-1.04to1.57for six years, which indicates that the all stage model was the best. However, the traditional prediction model based on julian day of70,115, and165had an error of-9.1~10.74%,-7.17%to10.51%, and-11.34%to6.27%, respectively. The three time model based on julian date had an error of-11.34%6.27%for six years. Above comparison indicates that yield prediction models of winter wheat based on the same growing stage had a better performance than that based on the same julian day.
引文
[1]李京忠,薛冰.遥感技术教学实习与精准农业相结合初探[J].安徽农业科学,2011.39(29):18374-18375
    [2]王延颐,J.-P.Malingreau,应用NOAA-AVHRR对江苏省作物进行监测的可行性研究[J].环境遥感,1990,5(3):221-227
    [3]辛景峰,宇振荣.利用NOAA NDVI资料集监测冬小麦发育期的研究[J].环境遥感,2002,5(6):442-447
    [4]江东,王乃斌,杨小唤等.NDVI曲线与农作物长势的时序互动规律[J].生态学报,2002,22(2):247-252
    [5]王宏,李晓兵,莺歌等.基于NOAA NDVI的植被生长季模拟方法研究[J].地理科学进展.2006,25(6):21-25
    [6]孙华生,黄敬峰,彭代亮.利用MODIS数据识别水稻关键生长发育期[J].遥感学报,2009,13(6):1130-1137
    [7]闫峰,史培军,武建军,等.基于MODIS-EVI资料的河北省冬小麦发育期特征[J].生态学报,2008,28(9):4381-4387
    [8]鹿琳琳,郭华东.基于SPOT/VEGETATION时间序列的冬小麦物候提取方法[J].农业工程学报,2009,25(6):174-179
    [9]王蕊,李红军,雷玉平.基于多年MODIS NDVI分级的河北平原农田生产力评价中国生态农业学报2011,19(5):1175-1181
    [10]吴炳方,张峰,刘成林等.农作物长势综合遥感监测方法[J].遥感学报,2004,8(6):498-514
    [11]Tucker C J, Elgin J H, McMurtrey J E, et al. Monitoring corn and soybean crop development with hand-held radiometer spectral data[J].Remote Sensing of Environment,1979,8(3):237-248
    [12]Badhwar G D. Crop emergence date determination from spectral data[J]. Photogrammetric Engineering and Remote Sensing,1980,46(3):369-377
    [13]Gallo K P,Flesch T K. Large-area crop monitoring with the NOAA AVHRR:estimating the silking stage of corn development[J]. Remote Sensing of Environment,1989,27(1):73-80
    [14]Sakamoto T, Yokozawa M, Toritani H, et al. A crop phenology detection method using time-series MODIS data[J].Remote Sensing of Environment,2005,96(3-4):366-374
    [15]裴志远,郭琳,汪庆发.国家级作物长势遥感监测业务系统设计与实现农业工程学报2009,25(8):152:156
    [16]郭琳,孙卫东,王琼华等.基于组合核非线性退化模型的遥感图像复合分类农业工程学报 2008,24(10):145-150
    [17]王静,郭铌,王振国等.甘南草地地上部生物量遥感监测模型[J].干旱气象.2010,28(2):128-133
    [18]易秋香,黄敬峰,王秀珍.玉米叶绿素高光谱遥感估算模型研究[J].科技通报.2007,23(1):83-87
    [19]邢素丽,张广录,刘慧涛等.基于Landsat ETM数据的落叶松林生物量估算模式[J].福建林学院学报.2004,24(2):153-156
    [20]张峰,吴炳方,黄慧萍.泰国水稻种植区耕地信息提取研究[J].自然资源学报.2003,18(6):766-772
    [21]侯英雨,王建林.利用气象卫星数据估算全球作物总产研究[J].气象月刊.2005,31(8):18-21;
    [22]李卫国,李秉柏,王志明,等.作物长势遥感监测应用研究现状和展望[J].江苏农业科学.2006(3):12-15
    [23]张霞,张兵,卫征等MODIS光谱指数监测小麦长势变化研究[J].中国图像图形学报,2005,10(4):420-424
    [24]张树誉,李登科,颜胜安MODIS植被指数在关中农作物长势监测评估中的应用[J].山西农业科学.2006(4):71-73
    [25]刘惠敏,黄勇,荀尚培.基于MODIS冬小麦长势监测研究[J].气象科学.2007.27(2):188-195
    [26]范磊,程永政,刘婷等。基于MODIS资料的河南省冬小麦长势监测研究河南农业科学2009:8142-145
    [27]刘惠敏,黄勇,荀尚培.基于MODIS冬小麦长势监测研究[J].气象科学.2007.27(2):188-195
    [28]Zhang X Y, Friedl M A, Schaaf C B,et al. Monotoring vegetation phenology using MODIS[J].Remote Sensing of Environment,2002,84(3):471-475
    [29]杨邦杰,裴志远.农作物长势的定义与遥感监测[J].农业工程学报,1999,15(3):214-218
    [30]赵红.用气象卫星遥感数据对冬小麦苗情定量分类研究[J].2002,28(7):33-37
    [31]侯英雨,王建林,毛留喜等.美国玉米和小麦产量动态预测遥感模型[J].生态学杂志.2009,28(10):2142-2146
    [32]王建林,齐华,房全孝等.水稻、大豆、玉米光合速率的日变化及其对光强响应的滞后效应[J].华北农学报2007,22(2):119-124
    [33]王长耀,林文鹏,基于MODISEVI的冬小麦产量遥感预测研究[J].农业工程学报.2005,21(10):90-94
    [34]彭代亮,黄敬峰,王秀珍.基于MODIS-EVI区域植被季节变化与气象因子的关系[J]. 应用生态学报.2007,18(5):983-989
    [35]Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices [J].Remote Sensing Environment,2002,83(1):195-213
    [36]戈登.B.伯南生态气候学概念与应用[M]气象出版社
    [37]国家气象局.农业气象观测规范[M].北京:气象出版社,2003
    [38]Savitzky, A, Golay,M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry 1964,36(8):1627-1639.
    [39]黄耀欢,王建华,江东等.利用savitzky-golay滤波进行MODIS-EVI时间序列数据重构[J]信息科学报2009,34(12):1440-1443
    [40]Jin Chen,perjonsson, Masayuki Tamura.A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter Remote Sensing of Environment 2004,91(3-4):332-344
    [41]边金虎,李爱农,宋孟强等MODIS植被指数时间序列Savitzky-Golay滤波算法重构[J],遥感学报,2010,4(14):733-740
    [42]董丽淑.小麦返青期的管理[J],河南农业.2011,3(上):38
    [43]王冰.冬小麦中期管理技术要点[J],新疆农业科技.2010,3:12
    [44]蒙继华,吴炳方,杜鑫等.基于HJ-1A/1B资料的冬小麦成熟期遥感预测[J],农业工程学报,2011,27(3):225-231
    [45]胡楠,矫亮,李黎.遥感技术在玉米估产中的应用与研究[J].农业网络信息.2011,1:35-37
    [46]王堃,顾晓鹤,程耀东.基于变化向量分析的玉米收获期遥感监测[J].农业工程学报2011,27(2):180:18
    [47]马丽,顾晓鹤,徐新刚.地块数据支持下的玉米种植面积遥感测量方法[J].农业工程学报2009,25(8):147-151
    [48]李新磊,陈桂芬,焦鸿斌基于时序遥感资料的玉米种植面积提取方法研究[J].农业网络信息.2010,11:25:27
    [49]Fangfang Yu, Kevin P Pricea, James Ellisc,et al. Response of seasonal vegetation development to climatic variations in eastern central Asia Remote Sensing of Environment 2003,87(1):42-54
    [50]汪永钦,王信理,刘荣花.冬小麦生长和产量形成与气象条件关系及其动态模拟的研究[J].气象学报,1991,49(2):205-214
    [51]冯美臣,杨武德.不同株型品种冬小麦NDVI变化特征及产量分析[J].中国生态农业学 报.2011,19(1):87-92
    [52]李卫国,李正金.基于CBERS卫星遥感的冬小麦产量估测研究麦类作物学报[J].2010,30(5):915-919
    [53]任建强,陈仲新,唐华俊.基于MODIS-NDVI的区域冬小麦遥感估产——以山东省济宁市为例[J].应用生态学报.2006,17(12):2371-2375
    [54]王人潮,王秀珍,刘绍民.冬小麦遥感估产多种模型研究[J].浙江大学学报((农业与生命科学版).1999,25(5):519-523

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700