实时定量PCR分析肠道正常菌群及其在实验性肝损伤研究中的初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前研究显示肝脏和肠道微生态不仅在解剖结构上,而且在功能上都存在着密切的关系。肠道内寄居着种类繁多,数量巨大的细菌,是机体内最大的储菌库和内毒素池,是内源性感染和内毒素血症的主要来源。在正常情况下,肠道正常菌群与黏膜表面的粘蛋白、sIgA、完整的肠黏膜结构及肠壁免疫细胞共同构成了肠道的黏膜屏障系统,阻止了肠道细菌,内毒素向肠外移位。在某些病理情况下如重型肝炎,肝硬化,严重烧伤,小肠移植等均可以出现肠道微生态失衡,肠壁屏障功能损伤,细菌移位以及肠源性内毒素血症。
     近来实验研究和临床资料多集中于肝衰竭、肝硬化对肠道微生态的影响,但主要基于直肠粪便样本的分析,结果显示双歧杆菌、乳杆菌等有益菌下降而肠杆菌等有害菌升高的趋势。有关肝损伤的肠道微生态变化研究资料不多,各肠段正常菌群数量和分布规律未见报道。临床上对肠道正常菌群的定量分析主要采用传统分析方法,但费时、易受操作影响,近几年来有研究采用基于16S rRNA基因有关的实时定量PCR(Real-Time PCR)技术定量分析肠道菌群演替规律,资料不多且缺乏比较。为进一步弄清肝损伤时肠道微生态变化及大肠各节段正常菌群分布规律,我们采用种属特异性探针结合Real-Time PCR技术,定量分析正常和肝损伤动物模型的不同大肠节段微生态状况,设计进行了如下实验。
     第一部分:Real-Time PCR检测不同肠段肠道正常菌群及与传统培养结果的比较
     材料与方法
     1.研究对象SD大鼠6只,雌雄各半,体重150±10g。
     2.研究标本新鲜粪便
     3.研究方法
     3.1传统培养方法定量分析肠道正常菌群。
     3.2含有肠道目标细菌特异性16S rRNA基因片段的质粒DNA构建、克隆建库及测序。
     3.3荧光定量PCR定性、定量分析大肠不同节段内容物目的细菌群。
     3.4 SPSS for Windows用于统计分析。
     结果
     传统培养方法分析正常大鼠不同节段肠道正常菌群显示,各分析菌群在空肠、回肠迅速升高,盲肠达到峰值,结肠和直肠各菌群数量较盲肠变化不明显(p>0.05)。小肠内容物总DNA采用试剂盒未能提取。Real-Time PCR分析显示,各分析目的菌群在盲肠、结肠和直肠检测结果变化不明显。两种检测方法检测结果相比较,各菌群数值在大肠各节段变化规律是一致的。
     第二部分:Real-Time PCR定量分析急性肝损伤模型肠道微生态状况及相关干预的影响
     实验分组:将SD大鼠分成五组(每组10只动物)
     ⑴正常对照组:正常大鼠,2ml灭菌水。
     ⑵对照组:急性肝损伤大鼠模型,2ml灭菌水。
     ⑶甘利欣组:急性肝损伤大鼠模型,甘利欣15mg/kg·d灌胃。
     ⑷肝生元组:急性肝损伤大鼠模型,GSY-1 45mg/kg·d灌胃。
     ⑸螺旋藻组:急性肝损伤大鼠模型,螺旋藻500mg/kg·d灌胃。
     各组于造模前5日开始灌胃,造模后48h处死动物采集标本,每组随机挑选3只雌鼠和3只雄鼠,共6只动物用于分析盲肠、结肠和直肠3个肠段正常菌群构成,并与传统方法结果比较。所有动物均检测血浆内毒素水平,肿瘤坏死因子水平,肝功能以及肝脏的病理改变。
     结果
     1.急性肝损伤对照组大鼠出现明显的肠道菌群紊乱,Real-Time PCR与传统方法定量分析盲肠、结肠和直肠内容物菌群状况,3个节段表现为肠杆菌科细菌和肠球菌的增加(与正常对照组比较P<0.01),双歧杆菌下降(与正常对照组比较P<0.01)。血清ALT,AST,血浆内毒素水平和肿瘤坏死因子α水平升高(与正常对照组比较P<0.01)。
     2.造模前给予甘利欣,肝生元和螺旋藻均可降低造模后2日的内毒素和肿瘤坏死因子水平(与对照组比较,P<0.01)。肝生元和螺旋藻组双歧杆菌数量增加(与对照组比较,P<0.01),肠球菌和杆菌降低(与对照组比较,P<0.01)。与对照组比较,甘利欣组调节菌群效果不明显(P>0.01)。在干预因素存在下,定量分析急性肝损伤动物模型不同肠段菌群,Real-Time PCR检测所获结果与应用传统方法获得的结果存在一致性。
     第三部分:Real-Time PCR定量分析慢性肝损伤模型肠道微生态状况及相关干预的影响
     实验分组:将SD大鼠分成五组(每组10只动物)
     ⑴正常对照组:正常大鼠,2ml灭菌水。
     ⑵对照组:慢性肝损伤大鼠模型,2ml灭菌水。
     ⑶甘利欣组:慢性肝损伤大鼠模型,甘利欣15mg/kg·d灌胃。
     ⑷肝生元组:慢性肝损伤大鼠模型,GSY-1 45mg/kg·d灌胃。
     ⑸螺旋藻组:慢性肝损伤大鼠模型,螺旋藻500mg/kg·d灌胃。
     各组于造模前3月前开始灌胃,皮下注射CCl4每周1次造模,剂量为0.2ml/kg;每次注射前CCl4用花生油稀释,浓度逐渐递增,即每2周递增5%,依次为5%、10%、15%、20%、25%、30%;连续3个月,共注射12次。末次造模后48h处死动物采集标本,每组随机挑选3只雌鼠和3只雄鼠,共6只动物用于分析盲肠、结肠和直肠3个肠段正常菌群构成。所有动物均检测血浆内毒素水平,肿瘤坏死因子水平,肝脏纤维化,肝功能以及肝脏的病理改变。
     结果
     1.实验性慢性肝损伤对照组大鼠出现明显的肠道菌群紊乱,Real-Time PCR与传统方法定量分析盲肠、结肠和直肠内容物菌群状况,3个节段均表现为肠杆菌科细菌和肠球菌的增加(与正常对照组比较P<0.01),双歧杆菌下降(与正常对照组比较P<0.01)。血清ALT,AST,血浆内毒素水平和肿瘤坏死因子α水平升高(与正常对照组比较P<0.01),PLD、TGF-β1和HA三个肝纤维化指标亦非常显著增高(P<0.01)
     2.造模前给予甘利欣,肝生元和螺旋藻均可降低造模后2日的内毒素和肿瘤坏死因子水平(与对照组比较,P<0.01)。肝生元和螺旋藻组双歧杆菌数量增加(与对照组比较,P<0.01),肠球菌和杆菌降低(与对照组比较,P<0.01)。与对照组比较,甘利欣组调节菌群效果不明显(P>0.01)。在干预因素存在下,定量分析慢性肝损伤动物微生态,Real-Time PCR检测结果与传统方法结果存在一致性。
     结论
     应用Real-Time PCR技术分析证实,急性和慢性肝损伤后均存在较明显的肠道微生态的紊乱;而肝生元和螺旋藻能在一定程度上改善实验性肝损伤后肠道菌群失衡,增加肠道的定植抗力,降低血内毒素水平,起到一定护肝作用。
     本研究结果提示,Real-Time PCR技术分析不同肠大肠节段正常菌群所获得的结果,在正常动物,实验性肝损伤动物模型以及干预因素存在条件下,与传统培养方法有很好的一致性,且具有便捷、省时等优点,可成为肠道菌群紊乱及相关干预效果的评价体系之一,并有望成为一种客观分析肠道正常菌群变化规律的常规方法。
Recent studies showed that intestinal microecology and liver tie up closely not in anatomical structure but also in functional status, they can influenced each other. It can exacerbate the injury of the liver and subsequently induce various complications. Recent experiments and clinic trials are mainly concerned with the effect of hepatic failure, liver cirrhosis on the intestinal flora and based on the specimen examination of rectum feces, and yield out the decrease of beneficial bacteria like Bifidobacterium and Lactobacillus whereas the increase of harmful bacteria like Enterobacteriaceae. Datas of the intestinal flora changes related to chronic hepatic injury are rare, and the colony number and distribution of intestinal flora haven’t been reported yet. Thus the present experiment is designed as follows:
     Materials and Methods
     Part one: Quantitative Analysis of Intestinal Flora Status in Different Large Intestinal Segments of SD Rats By Real-Time PCR
     Animals and Sample:
     SD rats, male vs. female 1:1, weight 150±10g, were enrolled in this study. The fresh faeces were analyzed as samples.
     Methods:
     1. Quantitative analysis of intestine flora by traditional method.
     2. Standard plasmid DNAs containing different interest fragments according to the aim of investigation were constituted and transformed into DH5αcells(E.coli)
     3. The real-time PCR was established with SYBR GreenⅠ, and we quantified the targeted faecal bacteria of all subjects.
     4. All results were analyzed by SPSS(Version 10.0).
     Results
     The results analyzed by traditional method showed that intestine flora in the Normal Group reached the peak in almost equivalent amount in the following three segments: the caecum, the colon and the rectum, which consistents with the results by other researches. The results analyzed by real-time PCR showed intestine flora were equivalent amount in the following three segments: the caecum, the colon and the rectum. The results were relative to that from traditional culture method.
     Part two: Quantitative Analysis of Intestinal Flora in Rats with Acute Hepatic Injury By Real-Time PCR and Effect of“GANSHENGYUAN”or Spirulina on it
     Experiment design: SD mice were divided into five group(Normal group, Model group,“GANLIXIN”(GLX) group,“GANSHENGYUAN”(GSY-1) group and Spirulina group), each group contained 10 rats. Normal group received 2m1 sterile water by gavage from 5th day before injection of 25% CCl4(5ml/kg). While GLX group received GLX (15mg/kg·d ), GSY-1 group received GSY-1(45mg/kg·d), Spirulina group received Spirulina (500mg/kg·d ). Gavage lasts until the sacrifice of the animals.
     Specimen collection was collected on the 2th day after injection of 25% CCl4(5ml/kg) (n=10). The rat was sacrificed and liver enzyme, plasma endotoxin, tumour necrosis factorα(TNF-α) and liver histological changes were measured. Six mice of each group were random selected for investigating bacterial counts in different intestinal segments (caecum, colon, and rectum).
     Result
     Model group showed a decrease of Bifidobacterium counts and a increase of Enterobacteriaceae and Enterococcus in intestine fragments: caecum, colon, and rectum. This results analyzed by traditional method were similar to those from real-time PCR. The levels of the plasma endotoxin and TNF-αincreased.
     Pretreatment with GLX, GSY-1 and Spirulina can both lowed the levels of the plasma endotoxin and TNF-α48h after injection of 25% CCl4(5ml/kg). In GSY-1 group and Spirulina group showed a increase in Bifidobacterium counts and a decrease in Enterobacteriaceae and Enterococcus; GLX, GSY-1 and Spirulina can lowed the levels of the plasma endotoxin and TNF-α24h after acute liver injury, which were associated with decreased liver function such as ALT, AST and DBIL.
     Part three: Quantitative Analysis of Intestinal Flora in Rats with Chronic Hepatic Injury By Real-Time PCR and Effect of GSY-1 or Spirulina on it
     Experiment design: SD mice were divided into five group(Normal group, Model group, GLX group, GSY-1 group and Spirulina group), each group contain 10 mice. Four groups except Normal group were subcutaneously injected with CCl4, diluted with peanut oil in advance, at a dosage 0.2ml/kg. The concentration of CCl4 ascended 5%: 5%, 10%, 15%, 20%, 25%, 30%. CCl4 injection lasted 3 months, totally 12 times. Normal group received 2m1 sterile water by gavage from 5th day before injection of CCl4. While GLX group received GLX (15mg/kg·d ), GSY-1 group received GSY-1(45mg/kg·d), Spirulina group received Spirulina (500mg/kg·d ). Gavage lasts until the sacrificed of the animals.
     Specimen collection was collected on the 2th day after injection of 25% CCl4(5ml/kg) (n=10). The rat were sacrificed and liver enzyme, plasma endotoxin, tumour necrosis factorα(TNF-α) and liver histology were investigated. 6 mice were random selected for investigating bacterial counts in different intestine segments (caecum, colon, and rectum).
     Model group showed a decrease of Bifidobacterium counts and a increase of Enterobacteriaceae and Enterococcus in intestine fragments: caecum, colon, and rectum. This results analyzed by traditional method were similar to that from real-time PCR. The levels of the plasma endotoxin and TNF-αwere increased, t the levels of PLD,TGF-β1 and HA were also increased.
     Pretreatment with GLX, GSY-1 and Spirulina can both lowed the levels of the plasma endotoxin, TNF-α, PLD, TGF-β1 and HA. In GSY-1 group and Spirulina group showed a increase in Bifidobacterium counts and a decrease in Enterobacteriaceae and Enterococcus; GLX, GSY-1 and Spirulina can lowed the levels of the plasma endotoxin and TNF-α24h after chronic liver injury.
     Results
     According to quantitative analysis by real-time PCR, the results of intestinal flora were consistent with the results by traditional culture.
     The above results also showed that disturbance of intestinal flora was observed in rats with acute or chronic liver injury. The elevation of plasma endotoxin and TNF-αwas also found. Supplemented with prebiotics, probiotics or symbiotics, such as GSY-1 and Spirulina, can decrease the levels of plasma endotoxin liver injury through improving intestinal microflora. Real-Time PCR is an effective method to analyze the intestinal flora.
引文
1. Farrell RJ, LaMont JT. Microbial factors in inflammatory bowel disease. Gastroenterol Clin North Am, 2002,31:41-62.
    2. Sartor RB. The influence of normal microbial flora on the development of chronic mucosal inflammation. Res Immunol, 1997,148:567-576.
    3. Biancone L, Monteleone I, Del Vecchio Blanco G, et al. Resident bacterial flora and immune system. Dig Liver Dis, 2002,34 Suppl 2: 37-43.
    4. Simon GL, Gorbach SL. Intestinal flora in health and disease. Gastroenterology, 1984,86:174-193.
    5.康白.微生态学原理.第一版.大连:大连出版社,2002. 219-243.
    6. Weisburg WG, Barns SM, Pelletier DA, et al. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 1991,173:697-703.
    7. Kreader CA. Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution. Appl Environ Microbiol, 1995,61:1171-1179.
    8. Kaufmann P, Pfefferkorn A, Teuber M, et al. Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR. Appl Environ Microbiol, 1997,63:1268-1273.
    9. Suau A, Bonnet R, Sutren M, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol, 1999,65:4799-4807.
    10. Saito K, Miyake S, Moriya H, et al. Detection of the four sequence variations of MDR1 gene using TaqMan MGB probe based real-time PCR and haplotype analysis in healthy Japanese subjects. Clin Biochem, 2003,36:511-518.
    11. Stram Y, Kuznetzova L, Guini M, et al. Detection and quantitation of akabane and aino viruses by multiplex real-time reverse-transcriptase PCR. J Virol Methods, 2004,116:147-154.
    12. Reed JZ, Tollit DJ, Thompson PM, et al. Molecular scatology: the use of molecular genetic analysis to assign species, sex and individual identity to seal faeces. Mol Ecol,1997,6:225-234.
    13. Boom R, Sol CJ, Salimans MM, et al. Rapid and simple method for purification of nucleic acids. J Clin Microbiol, 1990,28:495-503.
    14. Bartosch S, Fite A, Macfarlane GT, et al. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol, 2004,70:3575-3581.
    15. Ott SJ, Musfeldt M, Ullmann U, et al. Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora. J Clin Microbiol, 2004,42:2566-2572.
    16. Song Y, Liu C,Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol, 2004,70:6459-6465.
    17. Lin MY, Chang FJ. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig Dis Sci, 2000,45:1617-1622.
    18. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 1995,125:1401-1412.
    19. Kanauchi O, Mitsuyama K, Araki Y, et al. Modification of intestinal flora in the treatment of inflammatory bowel disease. Curr Pharm Des, 2003,9:333-346.
    20. Wasser S, Tan CE. Experimental models of hepatic fibrosis in the rat. Ann Acad Med Singapore, 1999,28:109-111.
    21. Soni MG, Mehendale HM. Role of tissue repair in toxicologic interactions among hepatotoxic organics. Environ Health Perspect, 1998,106 Suppl 6:1307-1317.
    22.刘克辛.肝疾患基础及其实验动物模型.北京:中国医药科技出版社,2003. 44.
    23. Basu S. Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology, 2003,189:113-127.
    24. Ohta Y, Nishida K, Sasaki E, et al. Attenuation of disrupted hepatic active oxygen metabolism with the recovery of acute liver injury in rats intoxicated with carbon tetrachloride. Res Commun Mol Pathol Pharmacol, 1997,95:191-207.
    25. Nishida K, Ohta Y, Kongo M, et al. Response of endogenous reduced glutathione through hepatic glutathione redox cycle to enhancement of hepatic lipid peroxidation with the development of acute liver injury in mice intoxicated with carbon tetrachloride. Res Commun Mol Pathol Pharmacol, 1996,93:198-218.
    26. Arosio B, Santambrogio D, Gagliano N, et al. Glutathione pretreatment lessens the acute liver injury induced by carbon tetrachloride. Pharmacol Toxicol, 1997,81: 164-168.
    27. Nishida K, Ohta Y,Ishiguro I. Gamma-glutamylcysteinylethyl ester attenuates progression of carbon tetrachloride-induced acute liver injury in mice. Toxicology, 1998,126:55-63.
    28. Marra F, DeFranco R, Grappone C, et al. Expression of monocyte chemotactic protein-1 precedes monocyte recruitment in a rat model of acute liver injury, and is modulated by vitamin E. J Investig Med, 1999,47:66-75.
    29. Nakamura T, Akiyoshi H, Shiota G, et al. Hepatoprotective action of adenovirus-transferred HNF-3gamma gene in acute liver injury caused by CCl(4). FEBS Lett, 1999,459:1-4.
    30. Kaido T, Yamaoka S, Tanaka J, et al. Continuous HGF supply from HGF-expressing fibroblasts transplanted into spleen prevents CCl4-induced acute liver injury in rats. Biochem Biophys Res Commun, 1996,218:1-5.
    31. Pinzani M, Milani S, Grappone C, et al. Expression of platelet-derived growth factor in a model of acute liver injury. Hepatology, 1994,19:701-707.
    32. Date M, Matsuzaki K, Matsushita M, et al. Differential regulation of activin A for hepatocyte growth and fibronectin synthesis in rat liver injury. J Hepatol, 2000,32:251-260.
    33. Yamada Y, Fausto N. Deficient liver regeneration after carbon tetrachloride injury in mice lacking type 1 but not type 2 tumor necrosis factor receptor. Am J Pathol, 1998,152:1577-1589.
    34. Neubauer K, Eichhorst ST, Wilfling T, et al. Sinusoidal intercellular adhesion molecule-1 up-regulation precedes the accumulation of leukocyte functionantigen-1-positive cells and tissue necrosis in a model of carbontetrachloride-induced acute rat liver injury. Lab Invest, 1998,78:185-194.
    35.张孝卫,耿秀兰,黄丽华,等.四氯化碳致大鼠、小鼠肝损伤的对比实验.基础医学与临床, 2003,23:351-352.
    36. Bozkurt S, Ersoy E, Tekyn HE, et al. The cytoprotective effect of iloprost against carbon tetrachloride induced necrosis in rat liver. Res Commun Mol Pathol Pharmacol, 1997,95:343-346.
    37.吴仲文,李兰娟,等.慢性重型肝炎患者肠道定植抗力变化的研究.中华肝脏病杂志, 2001,9:329-330.
    38. Bourlioux P, Koletzko B, Guarner F, et al. The intestine and its microflora are partners for the protection of the host: report on the Danone Symposium "The Intelligent Intestine," held in Paris, June 14, 2002. Am J Clin Nutr, 2003,78:675-683.
    39.朱坚胜,李兰娟,等.急性肝功能衰竭大鼠胃肠道细菌培养结果分析.中国微生态学杂志, 2001,13:316-317.
    40.邵祥稳,李克勤,等.慢性重型肝炎患者肠道菌群、血浆内毒素相关性研究与微生态制剂的调节.中国现代医学杂志, 2002,12:54-58.
    41.李海燕,董礼阳,杨景云.急性肝衰竭小鼠肠道菌群变化的研究.实用医学杂志, 2005,21:2128-2129.
    42. Xing HC, Li LJ, Xu KJ, et al. Protective role of supplement with foreign Bifidobacterium and Lactobacillus in experimental hepatic ischemia-reperfusion injury. J Gastroenterol Hepatol, 2006,21:647-656.
    43.韩宇.微生态制剂治疗肝硬化肠功能紊乱患者的临床观察.中国微生态学杂志, 2007,19:74-77.
    44.李丽秋,桂金秋.中药提取物水苏糖对实验性肝硬化大鼠血浆内毒素及肠道菌群的影响.中国微生态学杂志, 2006,18:107-109.
    45.石昕,屈铁男,李广成,等.微生态制剂在肝硬化肠功能紊乱患者的治疗作用.中国微生态学杂志, 2005,17:303.
    46.邵祥稳,张庆华.肝硬化腹泻患者肠道S1gA变化与微生态制剂的调节.陕西医学杂志, 2003,32:789-790.
    47. Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg, 1996,20:411-417.
    48. Chesta J, Defilippi C,Defilippi C. Abnormalities in proximal small bowel motility in patients with cirrhosis. Hepatology, 1993,17:828-832.
    49.林进乾.肝硬化肠道菌群失调及矫治对策.临床内科杂志, 2000,17:83-84.
    50.邵祥稳,张庆华,等.微生态调节剂治疗肝硬化自发性腹膜炎临床研究.中华医院感染学杂志, 2002,12:677-678.
    51.康白,袁杰利.微生态学原理.大连:大连出版社,2002. 224-228.
    52.熊德鑫.现代肠道微生态学.北京:中国科学技术出版社,2003. 38-39.
    53. Bengmark S, Garcia de Lorenzo A,Culebras JM. Use of pro-, pre- and synbiotics in the ICU--future options. Nutr Hosp, 2001,16:239-256.
    54. Lievin V, Peiffer I, Hudault S, et al. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut, 2000,47:646-652.
    55. Christensen HR, Frokiaer H,Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol, 2002,168:171-178.
    56. Knight DJ, Girling KJ. Gut flora in health and disease. Lancet, 2003,361:1831.
    57. Fisher BJ, Leighton CC, Vujovic O, et al. Results of a policy of surveillance alone after surgical management of pediatric low grade gliomas. Int J Radiat Oncol Biol Phys, 2001,51:704-710.
    58. Nikawa H, Makihira S, Fukushima H, et al. Lactobacillus reuteri in bovine milk fermented decreases the oral carriage of mutans streptococci. Int J Food Microbiol, 2004,95:219-223.
    59. Kaplan H, Hutkins RW. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl Environ Microbiol, 2000,66:2682-2684.
    60.曾峥.乳果糖干预治疗对亚临床肝性脑病病程的影响.中华医学杂志, 2003,83:1126-1129.
    61. Liu Q, Duan ZP, Ha DK, et al. Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology, 2004,39:1441-1449.
    62. Adawi D, Ahrne S,Molin G. Effects of different probiotic strains of Lactobacillus and Bifidobacterium on bacterial translocation and liver injury in an acute liver injury model. Int J Food Microbiol, 2001,70:213-220.
    63. Chiva M, Soriano G, Rochat I, et al. Effect of Lactobacillus johnsonii La1 and antioxidants on intestinal flora and bacterial translocation in rats with experimental cirrhosis. J Hepatol, 2002,37:456-462.
    64. Kasravi FB, Adawi D, Molin G, et al. Effect of oral supplementation of lactobacilli on bacterial translocation in acute liver injury induced by D-galactosamine. J Hepatol, 1997,26:417-424.
    65. Vollaard EJ, Clasener HA. Colonization resistance. Antimicrob Agents Chemother, 1994,38:409-514.
    66. Rayes N, Seehofer D, Hansen S, et al. Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. Transplantation, 2002,74:123-127.
    67. Rayes N, Seehofer D, Theruvath T, et al. Supply of pre- and probiotics reduces bacterial infection rates after liver transplantation--a randomized, double-blind trial. Am J Transplant, 2005,5:125-130.
    1. Macpherson AJ. IgA adaptation to the presence of commensal bacteria in the intestine. Curr Top Microbiol Immunol, 2006,308:117-136.
    2. Nechvatal JM, Ram JL, Basson MD, et al. Fecal collection, ambient preservation, and DNA extraction for PCR amplification of bacterial and human markers from human feces. J Microbiol Methods, 2008,72:124-132.
    3. Frantzen MA, Silk JB, Ferguson JW, et al. Empirical evaluation of preservation methods for faecal DNA. Mol Ecol, 1998,7:1423-1428.
    4. Kurose N, Masuda R,Tatara M. Fecal DNA analysis for identifying species and sex of sympatric carnivores: a noninvasive method for conservation on the Tsushima Islands, Japan. J Hered, 2005,96:688-697.
    5. Paxinos E, McIntosh C, Ralls K, et al. A noninvasive method for distinguishing among canid species: amplification and enzyme restriction of DNA from dung. Mol Ecol, 1997,6:483-486.
    6. Masuda R, Yoshida MC. Two Japanese wildcats, the Tsushima cat and the Iriomote cat, show the same mitochondrial DNA lineage as the leopard cat Felis bengalensis. Zoolog Sci, 1995,12:655-659.
    7. Kohn M, Knauer F, Stoffella A, et al. Conservation genetics of the European brown bear--a study using excremental PCR of nuclear and mitochondrial sequences. Mol Ecol, 1995,4:95-103.
    8. Wasser SK, Houston CS, Koehler GM, et al. Techniques for application of faecal DNA methods to field studies of Ursids. Mol Ecol, 1997,6:1091-1097.
    9. Walsh PS, Metzger DA,Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 1991,10:506-513.
    10. Sjoholm MI, Dillner J,Carlson J. Assessing quality and functionality of DNA from fresh and archival dried blood spots and recommendations for quality control guidelines. Clin Chem, 2007,53:1401-1407.
    11. Yang JL, Wang MS, Cheng AC, et al. A simple and rapid method for extracting bacterial DNA from intestinal microflora for ERIC-PCR detection. World JGastroenterol, 2008,14:2872-2876.
    12. Abriouel H, Ben Omar N, Lopez RL, et al. Culture-independent analysis of the microbial composition of the African traditional fermented foods poto poto and degue by using three different DNA extraction methods. Int J Food Microbiol, 2006,111:228-233.
    13. Boom R, Sol CJ, Salimans MM, et al. Rapid and simple method for purification of nucleic acids. J Clin Microbiol, 1990,28:495-503.
    14. Alonso R, Nicholson PS,Pitt TL. Rapid extraction of high purity chromosomal DNA from Serratia marcescens. Lett Appl Microbiol, 1993,16:77-79.
    15. Heilig HG, Zoetendal EG, Vaughan EE, et al. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol, 2002,68:114-123.
    16. Walter J, Hertel C, Tannock GW, et al. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol, 2001,67:2578-2585.
    17. Waters SM, Murphy RA,Power RF. Characterisation of prototype Nurmi cultures using culture-based microbiological techniques and PCR-DGGE. Int J Food Microbiol, 2006,110:268-277.
    18. Moore JE, Lanser J, Heuzenroeder M, et al. Molecular diversity of Campylobacter coli and C. jejuni isolated from pigs at slaughter by flaA-RFLP analysis and ribotyping. J Vet Med B Infect Dis Vet Public Health, 2002,49:388-393.
    19. Jernberg C, Lofmark S, Edlund C, et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J, 2007,1:56-66.
    20. Leatherbarrow AJ, Hart CA, Kemp R, et al. Genotypic and antibiotic susceptibility characteristics of a Campylobacter coli population isolated from dairy farmland in the United Kingdom. Appl Environ Microbiol, 2004,70:822-830.
    21. Hopkins KL, Desai M, Frost JA, et al. Fluorescent amplified fragment length polymorphism genotyping of Campylobacter jejuni and Campylobacter coli strains and its relationship with host specificity, serotyping, and phage typing. J Clin Microbiol,2004,42:229-235.
    22. Hayashi H, Sakamoto M,Benno Y. Evaluation of three different forward primers by terminal restriction fragment length polymorphism analysis for determination of fecal Bifidobacterium spp. in healthy subjects. Microbiol Immunol, 2004,48:1-6.
    23. Lindstedt BA, Heir E, Vardund T, et al. Comparative fingerprinting analysis of Campylobacter jejuni subsp. jejuni strains by amplified-fragment length polymorphism genotyping. J Clin Microbiol, 2000,38:3379-3387.
    24. Ott SJ, Musfeldt M, Wenderoth DF, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut, 2004,53:685-693.
    25. Duthoit F, Callon C, Tessier L, et al. Relationships between sensorial characteristics and microbial dynamics in "Registered Designation of Origin" Salers cheese. Int J Food Microbiol, 2005,103:259-270.
    26. Matsuki T, Watanabe K, Fujimoto J, et al. Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol, 2002,68:5445-5451.
    27. Song Y, Kato N, Liu C, et al. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol Lett, 2000,187:167-173.
    28. Massi M, Vitali B, Federici F, et al. Identification method based on PCR combined with automated ribotyping for tracking probiotic Lactobacillus strains colonizing the human gut and vagina. J Appl Microbiol, 2004,96:777-786.
    29. Saito Y, Sakamoto M, Takizawa S, et al. Monitoring the cell number and viability of Lactobacillus helveticus GCL1001 in human feces by PCR methods. FEMS Microbiol Lett, 2004,231:125-130.
    30. Matsuki T. Development of quantitative PCR detection method with 16S rRNA gene-targeted genus- and species-specific primers for the analysis of human intestinal microflora and its application. Nippon Saikingaku Zasshi, 2007,62:255-261.
    31. Matsuki T, Watanabe K, Fujimoto J, et al. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol, 2004,70:167-173.
    32. Wang RF, Beggs ML, Robertson LH, et al. Design and evaluation of oligonucleotide-microarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiol Lett, 2002,213:175-182.
    33. Wang RF, Beggs ML, Erickson BD, et al. DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol Cell Probes, 2004,18:223-234.
    34.靳连群,李君文,晁福寰,等.基因芯片检测肠道致病菌技术的建立和应用.中华传染病杂志, 2004,22:24-26.
    35. Thomas JC, Desrosiers M, St-Pierre Y, et al. Quantitative flow cytometric detection of specific microorganisms in soil samples using rRNA targeted fluorescent probes and ethidium bromide. Cytometry, 1997,27:224-232.
    36. Vaahtovuo J, Korkeamaki M, Munukka E, et al. Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry. J Microbiol Methods, 2005,63:276-286.
    37. Moter A, Gobel UB. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods, 2000,41:85-112.
    38. Bartosch S, Fite A, Macfarlane GT, et al. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol, 2004,70:3575-3581.
    39. Ott SJ, Musfeldt M, Ullmann U, et al. Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora. J Clin Microbiol, 2004,42:2566-2572.
    40. Song Y, Liu C,Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol, 2004,70:6459-6465.
    1. Xing HC, Li LJ, Xu KJ, et al. Protective role of supplement with foreign Bifidobacterium and Lactobacillus in experimental hepatic ischemia-reperfusion injury. J Gastroenterol Hepatol, 2006,21:647-656.
    2. Osman N, Adawi D, Ahrne S, et al. Endotoxin- and D-galactosamine-induced liver injury improved by the administration of Lactobacillus, Bifidobacterium and blueberry. Dig Liver Dis, 2007,39:849-856.
    3. Adawi D, Kasravi FB, Molin G, et al. Effect of Lactobacillus supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model in the rat. Hepatology, 1997,25:642-647.
    4. Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg, 1996,20:411-417.
    5. Gunnarsdottir SA, Sadik R, Shev S, et al. Small intestinal motility disturbances and bacterial overgrowth in patients with liver cirrhosis and portal hypertension. Am J Gastroenterol, 2003,98:1362-1370.
    6. Chesta J, Defilippi C,Defilippi C. Abnormalities in proximal small bowel motility in patients with cirrhosis. Hepatology, 1993,17:828-832.
    7. Matsuki T, Watanabe K, Fujimoto J, et al. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol, 2004,70:7220-7228.
    8. Ott SJ, Musfeldt M, Ullmann U, et al. Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora. J Clin Microbiol, 2004,42:2566-2572.
    9. Matsuki T, Watanabe K, Fujimoto J, et al. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol, 2004,70:167-173.
    10. Hong JY, F Sato E, Hiramoto K, et al. Mechanism of Liver Injury during Obstructive Jaundice: Role of Nitric Oxide, Splenic Cytokines, and Intestinal Flora. J Clin BiochemNutr, 2007,40:184-193.
    11. Abe T, Arai T, Ogawa A, et al. Kupffer cell-derived interleukin 10 is responsible for impaired bacterial clearance in bile duct-ligated mice. Hepatology, 2004,40:414-423.
    12. Hao WL, Lee YK. Microflora of the gastrointestinal tract. Methods Mol Biol, 2004,268:491-502.
    13. Macpherson AJ. IgA adaptation to the presence of commensal bacteria in the intestine. Curr Top Microbiol Immunol, 2006,308:117-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700