B型烟粉虱和温室粉虱热胁迫适应性及其分子生态机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
B型烟粉虱Bemisia tabaci(Gennadius)B-biotype和温室粉虱Trialeurodes vaporariorum Westwood都是我国重要的外来入侵害虫。两者虽为近缘种,但在生境适应过程中两者的种群优势关系产生了地域和季节性分化:在适宜寄主资源充分的生境中,种群间优势关系不以入侵生境的时间先后决定;温室粉虱主要在北方危害,而B型烟粉虱无论在北方还是在南方,均大发生,在有些地区或寄主上有B型烟粉虱逐步取代温室粉虱的趋势;在两种粉虱种群混合发生的北方,夏季高温季节以B型烟粉虱种群为主,春秋两季气候趋凉时温室粉虱种群上升为优势种群。结合两者在我国的地理分布和种群动态差异,我们推测两者对温度,特别是极端温度的适应性差异是导致两种粉虱种群动态存在差异的一个重要原因。因此我们研究了两种粉虱对热胁迫的适应性以及hsp70在B型烟粉虱抵抗高温中的作用,以期能够解释这种现象。主要结果如下:
     1.B型烟粉虱和温室粉虱卵、伪蛹和成虫的存活率均随着温度升高和暴露时间的延长呈现出下降的趋势。在相同的处理条件下,B型烟粉虱3个虫态的存活率均要高于温室粉虱。在37-41℃范围内高温对B型烟粉虱成虫的存活率没有显著影响;当温度上升到43℃和45℃时,成虫的存活率要低于卵和伪蛹。经过高温暴露后,温室粉虱卵的存活率要高于其它2个虫态。
     2.B型烟粉虱和温室粉虱都是雌虫的耐热性高于雄虫。在相同的处理条件下,B型烟粉虱雌虫的耐热性要高于温室粉虱;雄虫中也观察到相似的现象。
     3.非致死高温驯化可以显著的提高B型烟粉虱成虫对极端高温的抵抗力,在37℃驯化30min,B型烟粉虱成虫在45℃下的存活率由44.0%上升到63.9%;但高温驯化对温室粉虱成虫的耐热性没有显著提高。
     4.短时高温暴露对B型烟粉虱和温室粉虱成虫的产卵前期没有显著影响,两种粉虱都是在2天左右开始产卵。短时高温暴露对B型烟粉虱成虫的产卵量没有显著影响;温室粉虱的产卵量随着暴露温度的升高迅速下降,在43℃下暴露1h后仅有极少量的卵产出。两种粉虱成虫经过高温暴露后,产下的卵的孵化率和后代总的存活率均有所下降,温室粉虱成虫在43℃下暴露1h后产下的卵不能孵化;而B型烟粉虱成虫经过43℃和45℃高温暴露后,仍有一部分个体能够完成世代发育。高温暴露对温室粉虱后代性比没有显著影响;B型烟粉虱成虫经过43℃和45℃高温暴露后,其后代中雄虫比例显著增加。
     5.分别克隆了具有分子伴侣功能的B型烟粉虱和温室粉虱的热激蛋白基因hsp70 cDNA片段,比对结果表明,hsp70具有较高的保守性。
     6.成功构建了B型烟粉虱hsp70表达实时荧光定量检测体系,并检测了温度变化对B型烟粉虱hsp70表达的影响。结果表明,较缓和的高温对B型烟粉虱hsp70表达具有诱导作用,极端高温会抑制hsp70表达。在37-41℃范围内,hsp70的表达量随着温度的升高而升高,在41℃时达到最高峰;当温度升高到43℃和45℃,B型烟粉虱hsp70的表达量迅速降低。B型烟粉虱温室种群体内的hsp70表达量与温室内的温度有关:上午到中午随着气温的升高,B型烟粉虱体内hsp70表达量随之上升;傍晚气温降低时,hsp70表达量也随之下降。
     本研究揭示了两种粉虱对高温的适应性差异是导致两者在我国种群发生上存在季节性差异的一个重要原因;hsp70在B型烟粉虱抵抗高温过程中可能具有重要作用,这对揭示B型烟粉虱及其它入侵害虫的种群形成与扩张机制具有重要的科学价值,对B型烟粉虱的可持续控制具有重要的理论和实践意义。
Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum Westwood are both important invasive alien pests in China. These two sympatric whiteflies species diverged in regional population predominance in the process of habitat adaptation: population predominance is not decided by time order of their first invasion under condition that suitable host plants are available in their habitat; B. tabaci B-Biotype is tending to displace T. vaporariorum in many regions or on many host plants; T. vaporariorum causes extensive damage in the northern China, while B. tabaci B-Biotype explosive outbreak almost throughout the country from the south to north areas; population of B. tabaci B-Biotype is generally predominant in hot summer while T. vaporariorum toward the cool autumn or spring. So we hypothesize the adaptability of tolerance to thermal stress may be one of the important reasons that leads to two whitefly species interspecific differentiation in seasonal dynamics and distributions. The association between interspecific differentiation in thermal adaptation and the interspecific displacement was revealed in the level of biology and molecular biology. The main results of this study are as follows.
     1. The survivals of three developmental stages of two whitefly species decreased with the increase of temperature and the prolonging of heating period. Further, the survival rates of eggs, red-eyed nymphs and adults of B. tabaci B-biotype were higher than those of T. vaporariorum. There were significant differences when heat tolerance between these two whitefly species was compared. The survival rates of B. tabaci B-biotype adults were not significantly affected by the temperature varied from 37 to 41℃, however, the adult had the weakest tolerant ability to extremely high temperature, 43 and 45℃. In the case of T. vaporariorum, the egg had the highest heat tolerance among the three tested stages.
     2. In both whitefly species, the decreased survival due to the brief exposure of high temperature represented significant difference between female and male adults and females appeared higher survival than that of males. In addition, B-Biotype B. tabaci female adults had higher survival than that of T. vaporariorum at the same conditions. The similar phenomenon was also observed in male adults of two whitefly species.
     3. Acclimation at non- lethal high temperature significantly influenced heat tolerance of B. tabaci B-biotype, which can enhance its survival as high as 63.9% at 45℃. However, heat tolerance of T. vaporariorum adults were not significantly enhanced after acclimation at 37℃.
     4. Shorter period of exposure to high temperature had no influence on pre-oviposition period of two whitefly species and female adults began to lay eggs around 2 days. The female fecundities were not significantly different when B. tabaci biotype B adults were exposed to all temperatures. In contrast, the fecundities of T. vaporariorum declined with the increase of temperature, and only a few eggs were oviposited at 43℃. Survivals or hatch rates of the F1 nymphs of both whitefly species declined as the increase of temperature, and no T. vaporariorum nymphs were hatched at 43℃. Similarly, percentages of F1 offspring developed to adults for both whitefly species also declined as the increase of temperature. Sex ratios of the F1 offspring were not significantly affected for T. vaporariorum but were slightly affected for B. tabaci biotype B at the heat shock temperatures, 43 and 45℃.
     5. Heat shock protein 70 (hsp70) gene functioned as molecular chaperones was cloned, with a result of 3 partial cDNA sequences for B. tabaci biotype B and 2 partial cDNA sequences for T. vaporariorum. This showed that hsp70 gene family is evolutionarily conservative.
     6. The plasmid with hsp70 cDNA of B. tabaci B-biotype adults was used as a template. Based on GenBank, one TaqMan-MGB probe and the corresponding primers were designed to construct a series of standards for real-time fluorescence quantitative Real-time-PCR to detect the expression of hsp70 gene of adults B. tabaci B-biotype. High temperature can induce the expression of hsp70 gene in B. tabaci B-biotype adults. Within the range of 37 to 41℃, the expression level of hsp70 gene of B-Biotype B. tabaci adults rised with the increase of temperature. However, when temperature increased to 43℃and 45℃, the hsp70 gene expression level decreased sharply. The hsp70 gene expression level of B. tabaci B-biotype adults were changed in response to the diurnal temperature change. When air temperature increased from 34℃to 41℃, the hsp70 gene expression level increased dramatically. And the hsp70 gene expression level decreased when air temperature decreased to 33℃at nightfall.
     Our research indicated that the differences of thermal stress tolerance between B. tabaci B-biotype and T. vaporariorum was one of the main reasons that lead to the interspecific differentiation of geographic variation in distribution and seasonal dynamics. The molecular mechanism of B. tabaci B-biotype adaptation to thermal stress was revealed. The significance of heat tolerance was elucidated in insect evolutionary adaptation and distribution. The results also have theoretical and practical significance in explaining the population expanding mechanisms of biological invasion and prediction of population dynamics.
引文
1. Abd-Rabou S.,New records on whiteflies in Egypt.Egypt.J.Agric.Res.,1999,77:1143-1146.
    2. Ahearn G.A.,Changes in hemolymph properties accompanying heat death in the desert tenebrionid beetle Centrioptera muricata.Comparative Biochem.Physiol.,1970,33:845-857.
    3. Ait-Aissa S.,Porcher J.M.,Arrigo A.P.,Lambre C.,Activation of the hsp70 promoter by environmental inorganic and organic chemicals:relationships with cytotoxicity and lipophilicity.Toxicol.2000,145:147-157.
    4. Alamillo J.,Almoguera C.,Bartels D.,Jordano J.,Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum.Plant.Mol.Biol.1995,29:1093-1099.
    5. Alexandrov V.Y.,Cells,molecules and temperature:conformational flexibility of macromolecules and Ecological adaptation.Springer-Velag,NY.,1977.
    6. Anderson A.R.,Collinge J.E.,Hoffmann A.A.,Kellett M.,McKechnie S.W.,Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster.Heredity,2003,90:195-201.
    7. Anderson J.F.,Horsfall W.R.,Thermal stress and anomalous development of mosquitoes (Diptera:Culicidae).I.Effect of constant temperature of dimorphism of adults of Aedes stimulans.J.Experimental Biol,1963,154:67~107.
    8. Azab A.K.,Megahed M.M.,El-Mirsawi D.H.,On the biology of Bemisia tabaci (Genn.).Bull.Soc.Entomol.Egypt.,1971,55:305-315.
    9. Bale J.S.,Insects and low temperatures:from molecular biology to distributions and abundance.Philos.Trans.R.Soc.Lond.Ser.B.,2002,357:849-862.
    10. Bale J.S.,Masters G.J.,Hodkinson I.D.,Awmak C,Bezemer T.M.,Brown V.K.,Butterfield J.,Buse A.,Coulson J.C.,Farrar J.,Good J.G.,Harrington R.,Hartley S.,Jones T.H.,Lindroth R.L.,Press M.C.,Symrnioudis I.,Watt A.D.,Whittaker J.B.,Herbivory in global climate change research:direct effects of rising temperature on insect herbivores.Global Change Biology,2002,8:1-16.
    11. Banks G.K.,Colvin J.,Chowda R.V.,Maruthi M.N.,Muniyappa V.,Venkatesh H.M.,Kiran Kumar M.,Padma A.S.,Beitia F.J.,Seal S.E.,First report of the Bemisia tabaci B biotype in India and an associated tomato leaf curl virus disease epidemic.Plant Dis.2001,85:231.
    12. Barthell J.F.,Hranitz J.M.,Thorp R.W.,Shue M.K.,2002. High temperature responses in two exotic leafcutting bee species:Megachile apicalis and M.rotundata (Hymenoptera:Megachilidae).Pan-Pac.Entomol.,78,235-246.
    13. Basu A.N.,Bemisia tabaci (Gennadius):Crop pest and principal whitefly vector of plant viruses.Westview Press,New Delhi,1995.
    14. Basu N.,Todgham A.E.,Ackerman P.A.,Bibeau M.R.,Nakano K.,Schulte P.M.,Iwama G.K.,Heat shock protein genes and their functional significance in fish.Gene,2002,295,173-183.
    15. Beament J.W.L.,The waterproofing mechanism in arthropods-The effect of temperature on cuticle permeability in terresterial insects and ticks.J.Exp.Biol.,959,36:391-442.
    16. Bedford I.,Briddon R.W.,Brown J.K.,Rosell R.C.,Markham P.G.,Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions.Ann.Appl.Biol.1994,125:311-325.
    17. Bedford I.D.,Briddon R.W.,Markham P.G.,Brown J.K.,Rosell R.C.,Bemisia tabaci-biotype characterization and the threat of this whitefly species to agriculture.In:Brighton Crop Protection Conference-Pests and Diseases.BritishCrop Protection Council,Farnham,UK,1992.
    18. Bell C.H.,Effect of high temperatures on larvae of Ephestia elutella (Lepidoptera:Pyralidae) in diapause.J.Stored Product Research,1983,19:153-157.
    19. Bellows T.S.,Perring T.M.,Gill R.J.,Headrick D.H.,Description of a species of Bemisia (Homoptera:Aleyrodidae).Ann.Entomol.Soc.Am.,1994,87:195-206.
    20. Berdiales B.,Bernal J.J.,Saez E.,Woudt B.,Beitia F.,Rodrigues-Cerezo E.,Occurrence of cucurbit yellow stunting disorder virus (CYSDV) and beet pseudo-yellows virus in cucurbit crops in Spain and transmission of CYDV by two biotypes of Bemisia tabaci.Eur.J.Plant Pathol.,1999,105:211-215.
    21. Berrigan D.,Hoffmann A.A.,Correlations between measures of heat resistance and acclimation in two species of Drosophila and their hybrids.Biol.J.Linn.Soc,1998,64:449-462.
    22. Bettencourt B.R.,Feder F.E,,Cavicchi S.,Experimental evolution of hsp70 expression and thermotolerance in Drosophila melanogaster.Evolution,1999,53:484-492.
    23. Bettencourt B.R.,Kim I.,Hoffmann A.A.,Feder M.E.,Response to natural and laboratory selection at the Drosophila hsp70 genes.2002,Evolution 56:1796-1801.
    24. Bijlsma R.,Loeschcke V.,Environmental Stress,Adaptation and Evolution.Birkh(?)user Verlag,Basel,1997.
    25. Bird J.M.,Hodkinson I.D.,Species at the edge of their range:The significance of the thermal environment for the distribution of congeneric Craspedolepta species (Sternorrhyncha:Psylloidea) living on Chamerion angustifolium (Onagraceae).Eur.J.Entomol.,1999,96:103-109.
    26. Browder L.W.,Pollock M.,Heikkila J.J.,Wilkes J.,Wang T.,Krone P.,Ovsenek N.,Kloc M.,Decay of the oocyte-type heat-shock response of Xenopus laevis.Dev.Biol.,1987,124:19:1-9.
    27. Brown J.K.,Current status of Bemisia tabaci as a plant pest and virus vector in agro-ecosystems worldwide.FAO Plant Prot.Bull,1994,42:3-32.
    28. Brown J.K.,Frohlich D.R.,Rossell R.C.,The sweet potato or silverleaf whitefies:biotypes of Bemisia tabaci or a species complex?Ann.Rev.Entomol,1995,40:511-534.
    29. Butler G.D.Jr.,Henneberry T.J.,Bemisia tabaci (Gennadius),a pest of cotton in the southwestern United States.US Dept.Agric,Agric.Res.Serv.Tech.Bull.,1986,1701:19.
    30. Butler G.D.Jr,Henneberry T.J.,Clayton T.E.,Bemisia tabaci (Homoptera:Aleyrodidae):Development,oviposition,and longevity in relation to temperature.Ann.Entomol.Soc.Am.,1983,76:310-313.
    31. Butler G.D.Jr.,Henneberry T.J.,Wilson F.D.,Bemisia tabaci (Homoptera:Aleyrodidae) on cotton:adult activity and cultivar oviposition preference.J.Econ.Entomol.,1986,79:350-354.
    32. Byrne D.N.,Bellows T.S.,Whitefly biology.Annu.Rev.Entomol.1991,36:431-457.
    33. Camille P.Ecological and Evolutionary Responses to Recent Climate Change.Annu.Rev.Ecol.Evol.Syst,2006,37:637-69.
    34. Campbell B.C.,Stephen-Camphell J.D.,Gill,R.,Origin and radiation of whiteflies:an initial molecular phylogenetic assessment.In:Gerling D.,Mayer R.T.,eds.Bemisia:1995 Taxonomy,Biology,Damage,Control and Management.Intercept,UK,1996.
    35. Canon R.C.,The implications of predicted climate change for insect pests in the UK,with emphasis on non-indigenous species.Global Change Biology,1998,4:785-796.
    36. Cavicchi S.,Guerra D.,La Torre V.,Huey R.B.,Chromosomal analysis of heat-shock tolerance in Drosophila melanogaster evolving at different temper-atures in the laboratory.Evolution,1995,49:676-684.
    37. Charlotte D.F.,May P.M.,Nicole A.,Molecular cloning of a cDNA encoding the amphibian pleurodeles waltl 70-kDa heat-shock cognate protein.Biochem.Bioph.Res.Com.1997,238:159-164.
    38. Chen B.,Kang L.,Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis.CryoLetters,2002,23:173-182.
    39. Chen C.P.,Lee R.E.,Denlinger D.L.,A comparison of the response of tropical and temperate flies (Diptera:Sarcohagidae) to cold and heat stress.J.Comparative Physiol.(part B),1990,160:543-547.
    40. Chen C.P.,Lee R.E.,Denlinger D.L.,Cold shock and heat shock:A comparison of the protection generated by brief pretreatment at less severe temperatures.Physiol.Entomol.,1991,16:19-26.
    41. Chermiti B.,Braham M.,Cenis J.L.,Alonso C,Beitia F.,Albajes R.,Camero A.,Presence in Tunisia of the biotypes "B" and "non B" of Bemisia tabaci (homoptera:aleyrodidae) and of their associated parasitoids.Bull.OILB/SROP,1997,20:108-113.
    42. Cock M.J.W.,Bemisia tabaci:a literature survey on the cotton whitefly with an annotated bibliography.Ascot,UK,FAO/CAB,1986.
    43. Collins P.L.,Hightower L.E.,Newcastle disease virus stimulates the cellular accumulation of stress (heat-shock) messenger-RNAs and proteins.J.Virol.,1982,44:703-707.
    44. Cossins A.R.,Bowler K.,Temperature Biology of Animals.Chapman and Hall,NY.,1987.
    45. Costa H.S.,Brown J.K.,Variation in biological characteristics and esterase patterns among populations of Bemisia tabaci,and the association of one population with silverleaf symptom induction.Entomol.Exp.Appl.,1991,61:211-219.
    46. Costa H.S.,Johnson M.W.,Ullman D.E.,Omer A.D.,Tabashnik B.E.,Sweetpotato whitefly (Homoptera:Aleyrodidae):analysis of biotypes and distribution in Hawaii.Environ.Entomol.,1993,22:16-20.
    47. Craig E.A.,The heat shock response.CRC Crit.Rev.Biochem.,1985,18:239-280.
    48. Dahlgaard J.,Loeschcke V.,Effects of inbreeding in three life stages of Drosophila buzzatii after embryos were exposed to a high temperature stress.Heredity,1997,78:410-416.
    49. Dahlgaard J.,Loeschcke V.P.,Michalak J.,Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster.Fun.Ecol.,1998,12:786-793.
    50. Danks H.V.,The wider integration of studies on insect cold hardiness.Eur.J.Entomol.,1996,93:383-403.
    51. Dantsing E.M.,Shenderovska L.P.,Cotton whitefly.Zashch.Rast.,1988,12:40.
    52. De Barro P.J.,Driver F.,Trueman J.W.H.,Curran J.,Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Mol.Phylogenet.Evol.,2000,16:29-36.
    53. De Barro P.J.,Hart P.J.,Mating interactions between two biotypes of the whitefly,Bemisia tabaci (Hemiptera:Aleyrodidae) in Australia.Bull.Entomol.Res.,2000,90:103-112.
    54. De Barro P.J.,Liebregts W.,Carver M.,Distribution and identity of biotypes of Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae) in member countries of the secretariat of pacific community.Aust.J.Entomol.,1998,37:214-218.
    55. Deitch E.A.,Beck S.C.,Cruz N.C.,Demaio A.,Induction of heat-shock gene-expression in colonic epithelial-cells after incubation with Escherichia coli or endotoxin.Crit.Care.Med.,1995,23:1371-1376.
    56. Delatte H.,Reynaud B.,Granier M.,Thornary L.,Lett J.M.,Goldbach R.,Peterschmitt M.,A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera:Aleyrodidae) indigenous to the islands of the south-west Indian Ocean.Bull Entomol Res.2005,95:29-35.
    57. Demichelis S.,Bosco D.,Manino A.,Distribution of Bemisia tabaci (Hemiptera:Aleyrodidae) biotypes in Italy.Can.Entomol,2000,132:519-527.
    58. Denlinger D.L.,Joplin K.H.,Chen C.P.,Lee R.E.,Cold shock and heat shock.In:Lee R.E.,Denlinger D.L.,eds.Insects at low temperature.Chapman and Hall,NY,1991.
    59. Denlinger D.L.,Yocum G.D.,Physiology of heat sensitivity.In:Hallman G.J.,Denlinger D.L.eds.Thermal sensitivity in insects and application in integrated pest management.Westview Press,Boulder,Colorado,USA.,1998.
    60. Dennis S.H.,Agricultural insect pests of temperate regions and their control.Cambridge University Press,NY.,1987.
    61. Diagnostic protocols for regulated pests,Bemisia tabaci.Bulletin OEPP/EPPO Bulletin,2004,34:281-288.
    62. Diamant S.,Eliahu N.,Rosenthal D.,Goloubinoff P.,Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses.J.Biol.Chem.,2001,276:39586-39591.
    63. Dietz T.J.,Somero G.N.,The threshold induction temperature of the 90-kda heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys).Proc.Natl.Acad.Sci.USA.,1992,89:3389-3393.
    64. Drew B.,Miller D.,Toop T.,Hanna P.,Identification expressed HSP's in blacklip abalone (Haliotis rubra Leach) during heat and salinity stresses.J.Shellfish Res.,2001,20:695-703.
    65. Drost Y.C.,van Lenteren J.C.,van Roermund H.J.W.,Life-history parameters of Bemisia tabaci (Hemiptera:Aleyrodidae) in relation to temperature and host plant:a selective review.Bull.Entomol.Res.,1998,88:219-229.
    66. Dura,J.M.,Stage dependent synthesis of heat shock induced proteins in early embryos of Drosophila melanogaster.Mol.Gen.Genet.,1981,184:381-385.
    67. Ellsworth P.C.,Martinez-Carrillo J.L.,IPM for Bemisia tabaci:a case study from North America.Crop Protection,2001,20:853-869.
    68. Enkegaard A.Encarsia formosa parasitizing the poinsettia-strain of the cotton whitefly,Bemisia tabaci,on poinsettia:bionomics in relation to temperature.Entomol.Exp.Appl.,1993,69:251-261.
    69. Evgen'ev M.B.,Zatsepina O.G.,Garbuz D.,Lerman D.N.,Velikodvorskaya V.,Zelentsova E.,Feder M.E.,Evolution and arrangement of the hsp70 gene cluster in two closely related species of the virilis group of Drosophila.Chromosoma,2004,113:223-232.
    70. Fader S.C.,Yu Z.,Spotila J.R.,Seasonal variation in heat shock proteins (hsp70) in stream fish under natural conditions.J.Thermal Biol.,1994,19:335-341.
    71. Feder J.H.,Rossi J.M.,Solomon J.,Solomon N.,Lindquist S.,The consequences of expressing hsp70 in Drosophila cells at normal temperatures.Genes Dev.,1992,6:1402-1413.
    72. Feder M.E.,Blair N.,Figuras H.,Natural thermal stress and heat-shock protein expression in Drosophila larvae and pupae.Funct.Ecol.,1997,11:90-100.
    73. Feder M.E.,Carta(?)o N.V.,Milos L.,Krebs R.A.,Lindquist S.L.,Effect of engineering hsp70 copy number on hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster.J Exp Biol.,1996,199:1837-1844.
    74. Feder M.E.,Hoffmann G.E.,Heat-shock proteins,molecular chaperones,and the stress response:evolutionary and ecological physiology.Annu.Rev.Physiol.,1999,61:243-282.
    75. Feder M.E.,Krebs R.A.,Ecological and evolutionary physiology of heat shock proteins and the stress response in Drosophila:complementary insights from genetic engineering and natural variation.EXS.,1997,83:155-173.
    76. Fehrenbach E.,Niess A.H.,Role of heat shock proteins in the exercise response.Exerc.Immunol.Rev.,1999,5:57-77.
    77. Fransen J.J.,Bemisia tabaci in the Netherlands:Here to stay?Pestic.Sci.,1994,42:129-134.
    78. Frydenberg J.,Hoffmann A.A.,Loeschcke V.,DNA sequence variation and latitudinal associations in hsp23,hsp26 and hsp27 from natural populations of Drosophila melanogaster.Mol.Ecol.,2003,12:2025-2032.
    79. Gehring W.J.,Wehner R.,Heat Shock Protein Synthesis and Thermotolerance in Cataglyphis,an Ant from the Sahara Desert Biozentrum,University of Basel,Switzerland.Proc.Natl.Acad.Sci.USA.,1995,92:2994-2998.
    80. Gilchrist G.W.,Huey R.B.,The direct response of Drosophila melanogaster to selection on knockdown temperature.Heredity,1999,83:15-29.
    81. Ginzinger D.G.,Gene quantification using real-time quantitative PCR:An emerging technology hits the mainstream.Exp.Hematol.,2002,30:503-512.
    82. Gophna U.,Ron E.Z.,Virulence and the heat shock response.Int.J.Med.Microbiol.2003,292:453-461.
    83. Goto S.G.,Kimura M.T.,Heat-and cold-shock responses and temperature adaptations in subtropical and temperate species of Drosophila.J.Insect Physiol.,1998,44:1233-1239.
    84. Goto S.G.,Yoshida K.M.,Kimura M.T.,Accumulation of Hsp70 mRNA under environmental stresses in diapausing and nondiapausing adults of Drosophila triauraria.J.Insect Physiol.,1998,44:1009-1015.
    85. Greenspan R.J.,Finn J.A.Jr.,Hall J.C.,Acetylcholinesterase mutants in Drosophila and their effects on the structure and function of the central nervous system.J.Comparative Neurol.,1980,189:741-774.
    86. Guirao P.,Beitia F.,Cenis J.L.,Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera:Aleyrodidae).Bull.Entomol.Res.,1997,87:587-593.
    87. Gupta R.S.,Phylogenetic analysis of the 90 kDa heat shock family of protein sequences and an examination of the relationship among animals,plants,and fungi species.Mol.Biol.Evol.,1995,12:1063-1073.
    88. Hamilton E.W.,McNaughton S.J.,Coleman J.S.,Molecular,physiological,and growth responses to sodium stress in C-4 grasses from a soil salinity gradient in the Serengeti ecosystem.Am.J.Bot.,2001,88:1258-1265.
    89. Heinrich B.,The Hot-Blooded Insects.Harvard University Press,Cambridge,1993.
    90. Hendrix D.L.,Salvucci M.E.,Polyol metabolism in homopterans at high temperature:accumulation of mannitol in aphids (Aphididae:Homoptera) and sorbitol in whitefies (Aleyrodidae:Homoptera).Comp.Biochem.Physiol.,1998,120:487-494.
    91. Hepburn H.R.,Structure of the Integument.In:Kerkut G.A.,Gilbert,L.I.eds.Comprehensive insect physiology,biochemistry and pharmacology,vol.3. ,Pergamon Press,Oxford,1985.
    92. Hochachka P.W.,Somero G.N.,Biochemical Adaptation.Princeton University Press,Princeton,1984.
    93. Hodkinson I.D.,Bird J.,Miles J.E.,Bale J.S.,Lennon J.J.,Climatic signals in the life histories of insects:the distribution and abundance of heather psyllids (Strophingia spp.) in the UK.Fun.Ecol.,1999,13:83-95.
    94. Hoffman A.A.,Watson M.,Geographical variation in the acclimation responses of Drosophila to temperature extremes.Amer.Naturalist,1993,142:93-113.
    95. Hoffmann A.A.,Acclimation:increasing survival at a cost.Tree,1995,10:1-2.
    96. Hoffmann A.A.,Dagher H.,Hercus M.,Berrigan D.,Comparing different measures of heat resistance in selected lines of Drosophila melanogaster.J.Insect Physiol.,1997,43:393-405.
    97. Hoffmann A.A.,Parsons P.A.,Evolutionary Genetics and Environmental Stress.Oxford University Press,Oxford,1991.
    98. Hoffmann A.A.,Parsons P.A.,The analysis of quantitative variation in natural populations with isofemale strains.Genet.Select.Evol.,1988. 20:87-98.
    99. Hoffmann A.A.,S(?)rensen J.G.,Loeschcke V.,Adaptation of Drosophila to temperature extremes:bringing together quantitative andmolecular approaches.J.Thermal Biol.,2003,28:175-216.
    100. Horowitz A.R.,Gerling D.,Seasonal variation of sex ratio in Bemisia tabaci on cotton in Israel.Environ.Entomol.,1992,21:556-559.
    101. Horowitz A.R.,Population dynamics of Bemisia tabaci (Gennadius) with special emphasis on cotton fields.Agrie.Ecosyst.Environ.,1986,17:37-47.
    102. Horrell A.,Shuttleworth J.,Colman A.,Transcript levels and translational control of hsp70 synthesis in Xenopus oocytes.Genes Dev.,1987,1:433-444.
    103. Horsfall W.R.,Anderson J.F.,Brust R.A.,Thermal stress and anomalous development of mosquitoes (Diptera:Culicidae) Ⅲ.Aedes sierrensis.Can.Entomol.,1964,96:1369-1372.
    104. Huey R.B.,Crill W.D.,Kingsolver J.G.,Weber K.E.,A method for rapid measurement of heat or cold resistance of small insects.Funct.Ecol.,1992,6:489-494.
    105. Huey R.B.,Kingsolver J.G.,Evolution of resistance to high temperature in ectotherms.Amer.Naturalist,1993,142:21-46.
    106. Huey R.B.,Partridge L.,Fowler K.,Thermal sensitivity of Drosophila melanogaster responds rapidly to laboratory natural selection.Evolution,1991. 45:751-756.
    107. Human K.G.,Gordon D.M.,Exploitation and interference competition between the invasive Argentine ant,Linepithema humile,and native ant species.Oecologia,1996,105:405-412.
    108. Jenkins M.E.,Suzuki T.C.,Mount D.W.,Evidence that heat and ultraviolet radiation activate a common stress-response program in plants that is altered in the uvh6 mutant of Arabidopsis thaliana.Plant.Physiol.,1997,115:1351-1358.
    109. Jenkins N.L.,Hoffmann A.A.,Limits to the southern border of Drosophila serrata:cold resistance,heritable variation,and trade-off.Evolution,1999,53:1823-1834.
    110. Jinn T.L.,Chen Y.M.,Lin C.Y.,Characterization and physiological function of class I low molecular-mass,heat shock protein complex in soybean.Plant Physiol.,1995,108:693-701.
    111. Jinn T.L.,Wu S.H.,Yeh K.W.,Hsieh M.H.,Yeh Y.C.,Chen Y.M.,Lin C.Y.,Immunological kinship of class I low molecular weight heat shock proteins and thermostabilization of soluble proteins in vitro among plants.Plant Cell Physiol,1993,1055-1062.
    112. Jinn T.L.,Yeh Y.C.,Chen Y.M.,Lin C.Y.,Stabilization of soluble proteins in vitro by heat shock proteins-enriched ammonium sulfate fraction from soybean seedlings.Plant Cell Physiol.,1989,30:463-469.
    113. K(?)sgaard,C.W.,Vollmer,J.,Dahlgaard,J.,Loeschcke,V.,Heat induced male sterility in Drosophila buzzatii:genetic variation among populations for the duration of sterility.Drosophila Inf.Service,2000,83:5-8.
    114. Kaiser J.,Fighting back:stemming the tide of invading species.Science,1999,285:1836-1841.
    115. Kaufmann S.H.E.,Schoel B.,Heat shock proteins as antigens in immunity against infection and self.In:Morimoto R.I.,Tissie'res A.,Georgopoulos C.,eds.The biology of heat shock proteins and molecular chaperones.Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY.,1994.
    116. Khazaeli A.A.,Tatar M.,Pletcher S.D.,Curtsinger J.W.,Heat-induced longevity extension in Drosophila.I.Heat treatment,mortality,and thermotolerance.J.Gerontol:Biol.Sci.,1997,52:489-452.
    117. Kimura M.T.,Ohtsu T.,Yoshida T.,Awasaki T.,Lin F.J.,Climatic adaptations and distributions in the Drosophila takahashii species subgroup (Diptera:Drosophilidae).J.Nat.History,1994,28:401-409.
    118. Kiriyama M.T.,Oka M.,Takehana M.,Kobayashi S.,Expression of a small heat shock protein 27 (HSP27) in mouse skin tumors induced by UVB-irradiation.Biol.Pharm.Bull,2001,24:197-200.
    119. K(?)hler H.R.,Eckwert H.,The induction of stress proteins (hsp) in Oniscus asellus (Isopoda) as a molecular marker of multiple heavy metal exposure.2. Joint toxicity and transfer to field situations.Ecotoxicol.,1997,6:263-274.
    120. Kohler H.R.,Zanger M.,Eckwert H.,Einfeldt I.,Selection favours low Hsp70 levels in chronically metal-stressed soil arthropods.J.Evol.Biol.,2000,13:569-582.
    121. Krainacker D.A.,Carey J.R.,Maternal heterogeneity in primary sex ratio of three tetranyehid mites.Exp.Appl.Aearol.,1988,5:151-162.
    122. Krebs R.A.,Feder M.E.,Natural variation in the expression of the heat shock protein HSP70 in a population of Drosophila melanogaster and its correlation with tolerance of ecologically relevant thermal stress.Evolutions,1997a,51:173-179.
    123. Krebs R.A.,Bettencourt B.R.,Evolution of Thermotolerance and Variation in the Heat Shock Protein,Hsp70. Amer.Zool.,1999,39:910-919.
    124. Krebs R.A.,Feder M.E.,Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae.Cell Stress Chap.,1997b,2:60-71.
    125. Krebs R.A.,Feder M.E.,Experimental manipulation of the cost of thermal acclimation in Drosophila melanogaster.Biol.J.Linn.Soc.,1998,63:593-601.
    126. Krebs R.A.,Loeschcke V.,A genetic analysis of the relationship between life-history variation and heat-shock tolerance in Drosophila buzzatii.Heredity,1999,83:46-53.
    127. Krebs R.A.,Loeschcke V.,Resistance to thermal stress in preadult Drosophila buzzatii:variation among populations and changes in relative resistance across life stages.Biol.J.Linn.Soc.,1995,56:517-531.
    128. Kristensen T.N.,Dahlgaard J.,Loeschcke V.,Inbreeding affects Hsp70 expression in two species of Drosophila even at benign temperatures.Evol.Ecol.Res.,2002,4:1209-1216.
    129. Laskey R.A.,Honda B.M.,Mills A.D.,Finch J.T.,Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA.Nature,1978,275:416-420.
    130. Lee M.L.,Ahn S.B.,Cho W.S.,Morphological characteristics of Bemisia tabaci (Gennadius) (Homoptera:Aleyrodidae) and discrimination of their biotypes in Korea by DNA markers.Korean J.Appl.Entomol.,2000,39:5-12.
    131. Lee R.E.Jr.,Chen C.P.,Denlinger D.L.,A rapid cold hardening process in insects.Science,1987,238:1415-1417.
    132. Lepock J.R.,Cheng K.H.,Al-Qysi H.,Sim I.O.,Koch C.J.,Kruuv J.,Hyperthermia-induced inhibition of respiration and mitochondrial protein denaturation in CHL cells.Int.J.Hyperthermia,1987,3:123-132.
    133. Levins R.,Thermal acclimation and heat resistance in Drosophila species.Amer.Naturalist,1969,103:483-499.
    134. Li Q.B.,Haskell D.W.,Guy C.L.,Coordinate and noncoordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato.Plant.Mol.Biol.,1999,39:21-34.
    135. Lima L.H.C.,Campos L.,Moretzsoh N.M.C.,Navia D.,Oliveira M.R.V.,Genetic diversity of Bemisia tabaci (Genn.) populations in Brazil revealed by RAPD markers.Gen.Mol.Biol.,2002,25:217-223.
    136. Lima L.H.C.,Moretzohn M.C.,Oliveira M.R.V.,Survey of Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae) biotypes in Brazil using RAPD markers.Genet.Mol.Biol.,2000,23:1-5.
    137. Lindquist S.1986. The heat-shock response.Annual Review Biochem.,55:1151-1191.
    138. Liu T.X.,Oetting R.D.,Buntin G.D.,Evidence of interspecific competition between Trialeurodes vaporarioum (Westood) and Bemisia tabaci (Gennadius) (Homoptera:Aleyrodidae) on some greenhouse-grown plants.J.Entomol.Sci.,1994,29:55-65.
    139. Loeschcke V.,Krebs R.A.,Barker J.S.F.,Genetic variation for resistance and acclimation to high temperature stress in Drosophila buzzatii.Biol.J.Linn.Soc.,1994,52:83-92.
    140. Ma E.,Haddad G.G.,Anoxia regulates gene expression in the central nervous system of Drosophila melanogaster.Mol.Brain Res.,1997,46:325-328.
    141. Mack R.N., Simberloff D., Lonsdale W.M., Evans H., Clout M., Bazzaz F.A., Biotic invasion: Causes, epidemiology, global consequences, and control. Ecol. Applic., 2000, 10:689-710.
    142. Malcolm N.L., Molecular determinants of obligate psychrophily. Nature, 1969, 221: 1031-1033.
    143. Mark H., 1999. The Biology and Management of Silverleaf Whitefly, Bemisia argentifolii Bellows and Perring (Homoptera: Aleyrodidae) on Greenhouse Grown Ornamentals. [WWW document]. URL http://www.biocontrol.ucr.edu/bemisia.html.
    144. Markham P., Bedford J.D., Liu S., Frolich D.F., Rossel R., Brown J.K., The transmission of geminiviruses by biotypes of Bemisia tabaci (Gennadius). In: Gerling D., Mayer R.T., eds. Bemisia: 1995. Taxonomy, Biology, Damage, Control and Management. Intercept, UK, 1996.
    145. Martin N.A., Whitefly: biology, identification and life cycle. Crop and food research, 1999. http://www.crop.cri.nz
    146. Martinez J., Perez-Serrano J., Bernadina W.E., Rodriguez-Caabeiro F., Stress response to cold in Trichinella species. Cryobiol., 2001, 43: 293-302.
    147. McColl G., Hoffmann A.A., McKechnie S.W., Response to two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster. Genetics, 1996, 143: 1615-1627.
    148. Merino S., Martinez J., Barbosa A., Mφller A.P., de Lope F., Pérez J., Rodriguez-Caabeiro F., Increase in a heat-shock protein from blood cells in response of nestling House Martins (Delichon urbica) to parasitism: an experimental approach. Oecologia, 1998, 116:343-347.
    149. Morimoto R., Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones and negative regulators. Genes Dev., 1998, 12: 3788-3796.
    150. Morimoto R.I., Cells in stress: transcriptional activation of heat shock genes. Science, 1993, 259: 1409-1410.
    151. Morrison W.W., Milkman R., Modification of heat resistance in Drosophila by selection. Nature, 1978, 273: 49-50.
    152. Moseley P.L., Heat shock proteins and heat adaptation of the whole organism. J. Applied Physiol., 1997, 83:1413-1417.
    153. Mound L.A., Halsey S.H., 1978. Whitefly of the world. A systematic catalogue of the Aleyrodidae (Homoptera) with host plant and natural enemy data. London: British Museum (Natural History), 1978, 340.
    154. Mound L.A., Host-correlated variation in Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae.). Proc. R. Soc. Lond. (A), 1963, 38: 171-180.
    155. Muniz M., Gloria N., Differential variation in development of the B- and Q-biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on sweet pepper at constant temperatures. Environ. Entomol, 2001, 30: 720-727.
    156. Mutero A., Bride J.M., Pralavorio M., Fournier D., Drosophila melanogaster acetylcholinesterase: Identification and expression of two mutations responsible for cold- and heat-sensitive phenotypes. Mol. Gen. Genet., 1994, 243: 699-705.
    157. Nakai A.,Morimoto R.I.Characterization of a novel chicken heat shock transcription factor,heat shock factor 3,suggests a new regulatory pathway.Mol.Cell.Biol.,1993,13:1983-1997.
    158. Nakano K.,Iwama G.K.,The 70-kDa heat shock protein response in two intertidal sculpins,Okigocottus maculosus and O.snyderi:relationship of hsp70 and thermal tolerance.Comp.Biochem.Physiol.(part A),133:79-94.
    159. Nazir A.,Saxena D.K.,Chowdhuri D.K.,Induction of hsp70 in transgenic Drosophila:biomarker of exposure against phthalimide group of chemicals.Biochim.Biophys.Acta,2003,1621:218-225.
    160. Neven L.G.,Physiological responses of insects to heat.Postharv.Biol.Technol,2000,21:103-111.
    161. Oliveiraa M.R.V.,Henneberry T.J.,Anderson P.,History,current status,and collaborative research projects for Bemisia tabaci.Crop Protect.,2001,20:709-723.
    162. OTA (Office of Technology Assessment) Harmful non-indigenous species in the United States.Washington DC:OTA,US Congress,1993.
    163. Otsuka Y.,Takano T.S.,Yamazaki T.,Genetic variation in the expression of the six hsp genes in the presence of heat shock in Drosophila melanogaster.Genes Genet.Syst.,1997,72:19-24.
    164. Parsell D.A.,Lindquist S.,Heat shock proteins and stress tolerance.In:Morimoto R.I.,Tissieres A.,Georgopoulous C,eds.The Biology of Heat Shock Proteins and Molecular Chaperones.NY:Cold Spring Harbor Laboratory Press,1994.
    165. Parsell D.A.,Lindquist S.,The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins.Annu.Rev.Genet.,1993,27:437-496.
    166. Patton Z.J.,Krebs R.A.,The effect of thermal stress on the mating behavior of three Drosophila species.Physiol.Biochem.Zool.,2001,74:783-788.
    167. Perring T.M.,Cooper A.D.,Rodriguez R.J.,Farrar C.A.,Bellows T.S.Jr.,Identification of a whitefly species by genomic and behavioral studies.Science,1993a,259:74-77.
    168. Perring T.M.,Farrar C.A.,Bellows T.S,Cooper A.D.,Rodriguez R.J.,Evidence for a new species of whitefly UCR findings and implications.Calif.Agric.,1993b,47:7-8.
    169. Perring T.M.,The Bemisia tabaci species complex.Crop Protect.,2001,20:725-737.
    170. Petr K.,Karla A.,Ev(?)en W.,Stress proteins:nomenclature,division and functions.Biomed.Papers,2001,145:39-47.
    171. Pimentel D.,Lach L.,Zuniga R.,Morrison D.,Environmental and economic costs of non-indigenous species in the United States.BioScience,2000,50:53-65.
    172. Polla B.S.,A role for heat shock proteins in inflammation?Immunol.Today,1988,9:134-137.
    173. Quintero C.,Cardona C.,Ramirez D.,Jimenez N.,First report of biotype B of Bemisia tabaci (Homoptera:Aleyrodidae) in Colombia.Revista Colombiana de Entomologia.,1998,24:23-28.
    174. Quintero C.,Rendon F.,Garcia J.,Cardona C.,Lopez A.A.,Hernandez P.,Species and biotypes of whiteflies (Homoptera:Aleyrodidae) affecting annual crops in Colombia and Ecuador.Revista Colombiana de Entomologia.,2001,27:27-31.
    175. Ramos N.E.,Neto A.F.,Arsenio S.,Mangerico E.,Stigter L.,Fortunato E.,Fernandes J.E.,Lavadinho A.M.P.,Louro D.,Situation of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum in protected tomato crops in Algarve (Portugal).Bulletin OEPP/EPPO Bulletin,2002,32:11-15.
    176. Reiber C.L.,Birchard G.F.,Effect of temperature on metabolism and hemolymph pH in the crab Stoloczia abbotti.J.Thermal Biol.,1993,18:49-52.
    177. Reitz S.R.,Trumble J.T.,Competitive displacement among insects and arachnids.Annu.Rev.Entomol.,2002,47:435-465.
    178. Rinehart J.P.,Yocum G.D.,Denlinger D.L.,Developmental upregulation of inducible hsp70 transcripts,but not the cognate form,during pupal diapause in the flesh fly,Sarcophaga crassipalpis.Insect Biochem.Mol.Biol.,2000,30:515-521.
    179. Rinehart J.P.,Denlinger D.L.,Rivers D.B.,Upregulation of transcripts encoding select heat shock proteins in the flesh fly Sarcophaga crassipalpis in response to venom from the ectoparasitoid wasp Nasonia vitripennis.J.Invertebr.Pathol.,2002,79:62-63.
    180. Ritossa F.,A new puffing pattern induced by temperature shock and DNP in Drosophila.Experientia,1962,18:571-573.
    181. Ropp M.,Courgeon A.M.,Calvayrac R.,Bestbelpomme M.,The possible role of the superoxide ion in the induction of heat-shock and specific proteins in aerobic Drosophila cells during return to normoxia after a period of anaerobiosis.Can.J.Biochem.Cell Biol.1983,61:456-461.
    182. Ruesink J.L.,Parker I.M.,Groom M.J.,Kareiva P.M.,Reducing the risks of nonindigenous species introductions.Bioscience,1995,45:465-477.
    183. Russell L.M.,Hosts and distribution of five species of Trialeurodes (Homoptera:Aleyrodidae).Ann.Entomol.Soc.Amer.,1963,56:149-153.
    184. Russell L.M.,Synonyms of Bemisia tabaci (Gennadius) (Homoptera:Aleyrodidae).Bull.Brooklyn Entomol.Soc,1957,52:122-123.
    185. Russell L.M.,The North American species of whiteflies of the genus Trialeurodes.US Dep.Agric.Misc.Pub.,1948,635,1-85.
    186. Saavedra C.,Tung K.S.,Amberg D.C.,Hopper A.K.,Cole C.N.,Regulation of mRNA export in response to stress in Saccharomyces cerevisiae.Genes Dev.,1996,10:1608-1620.
    187. Salvucci M.E.,Hendrix D.L.,Wolfe G.R.,Effect of high temperature on the metabolic processes affecting sorbitol synthesis in the silverleaf whitefly,Bemisia argentifolii.J.Insect Physiol.,1999,45(1) :21-27.
    188. Salvucci M.E.,Sorbitol accumulation in whiteflies:evidence for a role in protecting proteins during heat stress.J.Therm.Biol.,2000,25:353-361.
    189. Salvucci M.E.,Stecher D.S.,Henneberry T.J.,Heat shock proteins in whiteflies,an insect that accumulates sorbitol in response to heat stress.J.Thermal Biol.,2000,25:363-371.
    190. Schuster D.J.,Mueller T.F.,Kring J.B.,Price J.F.,Relationship of the sweetpotato whitefly to a new tomato fruit disorder in Florida.HortScience,1990,25:1618-1620.
    191. Secker A.E.,Bedford I.A.,Markham P.G.,William M.E.C.,Squash,A reliable field indicator for the presence of B biotype of tobacco whitefly,Bemisia tabaci.In:Brighton Crop Protection Conference-Pests and Diseases.BritishCrop Protection Council,Farnham,UK.,1998.
    192. Sejerkilde M.,S(?)rensen J.G.,Loeschcke V.,Effects of cold-and heat-hardening on thermal resistance and Hsp70 expression in Drosophila melanogaster.J.Insect Physiol.,2003,49:719-726.
    193. Sherman M.Y.,Goldberg A.L.,Cellular defenses against unfolded proteins:A cell biologist thinks about neurodegenerative diseases.Neuron,2001,29:15-32.
    194. Shim J.K.,Jung D.O.,Park a J.W.,Kim D.W.,Ha D.M.,Lee K.Y.,Molecular cloning of the heat-shock cognate 70 (Hsc70) gene from the two-spotted spider mite,Tetranychus urticae,and its expression in response to heat shock and starvation.Comp.Biochem.Physiol.(Part B),2006,145:288-295.
    195. Shukla R M.,Chand G.,Saini M.L.,Effect of malathion resistance on tolerance to various environmental stresses in rust-red flour beetle (Tribolium castaneum).Indian J.Agric.Sciences,1989,59:778-780.
    196. Silbermann R.,Tatar M.,Reproductive costs of heat shock protein in transgenic Drosophla melanogaster.Evolution,2000,54:2038-2045.
    197. Silva S.C.,Behavior of the silverleaf whitefly (Bemisia argentifolii B&P) in the cotton crop on the coast of Hermosillo,Sonora.In:Proceedings of the International Cotton Pest Work Committee.California Dept.Food and Agric,Sacramento,1997.
    198. Skidmore R.,Gutierrez J.A.,Guerriero V.,Kregel K.C.,Hsp70 induction during exercise and heat-stress in rats-role of internal temperature.Am.J.Physiol.,1995,268:92-97.
    199. Skinner R.H.,Response of Bemisia argentifolii (Homoptera:Aleyrodidae) to water and nutrient stressed cotton.Environ.Entomol.,1996,25:401-406.
    200. Solomon J.M.,Rossi J.M.,Golic K.,McGarry T.,Lindquist S.,Changes in hsp70 alter thermotolerance and heat-shock regulation in Drosophila.The New Biologist,1991,3:1106-1120.
    201. Sonna L.A.,Fujita J.,Gaffin S.L.,Lilly C.M.,Invited review:effects of heat and cold stress on mammalian gene expression.J.Appl.Physiol.,2002,92:1725-1742.
    202. S(?)rensen J.G.,Dahlgaard J.,Loeschcke V.,Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii:down regulation of Hsp70 expression and variation in heat stress resistance traits.Funct.Ecol.,2001,15:289-296.
    203. S(?)rensen J.G.,Kristensen T.N.,Loeschcke V.,The evolutionary and ecological role of heat shock proteins.Ecol.Lett.,2003,6:1-13.
    204. S(?)rensen J.G.,Loeschcke V.,Larval crowding in Drosophila melanogaster induces Hsp70 expression,and leads to increased adult longevity and adult thermal stress resistance.J.Insect Physiol.,2001,47:1301-1307.
    205. S(?)rensen J.G.,Loeschcke V.,Natural adaptation to environmental stress via physiological clock-regulation of stress resistance in Drosophila.Ecol.Lett.,2002,5:16-19.
    206. S(?)rensen J.G.,Michalak P.,Justesen J.,Loeschcke V.,Expression of the heat-shock protein Hsp70 in Drosophila buzzatii lines selected for thermal resistance.Hereditas,1999,131:155-164.
    207. Spees J.L.,Chang S.A.,Snyder M.J.,Chang E.S.,Osmotic induction of stress-responsive gene expression in the lobster Homarus americanus.Biol.Bull.,2002,203:331-337.
    208. Stanley S.M.,Parsons P.A.,Spence G.E.,Weber L.,Resistance of species of the Drosophila melanogaster subgroup to environmental extremes.Aust.J.Zool.,1980,28:413-421.
    209. Steinert S.A.,Pickwell G.V.,Induction of Hsp70 proteins in mussels by ingestion of tributyltin.Mar.Environ.Res.,1993,35:89-93.
    210. Stephanou G.,Alahiotis S.N.,Non mendelian inheritance of "heat-sensitivity" in Drosophila melanogaster.Genetics,1983,103:93-107.
    211. Stone D.E.,Craig E.A.,Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae.Mol.Cell Biol,1990,10:1622-1632.
    212. Stratman R.,Markow I.A.,Resistance to thermal stress in desert Drosophila.Fun.Ecol.,1998,12:965-970.
    213. Sun W.N.,Montagu M.V.,Verbruggen N.,Small heat shock proteins and stress tolerance in plants.Biochim.Biophys.Acta.,2002,1577(1) :1-9.
    214. Tammariello S.P.,Rinehart J.P.,Denlinger D.L.,Desiccation elicits heat shock protein transcription in the flesh fly,Sarcophaga crassipalpis,but does not enhance tolerance to high or low temperatures.J.Insect Physiol,1999,45:933-938.
    215. Tatar M.,Evolution of senescence:Longevity and the expression of heat shock proteins.Amer.Zool.,1999,39:920-927.
    216. Tedengren M.,Olsson B.,Bradley B.,ZhouL.Z.,Heavy metal uptake,physiological response and survival of the blue mussel (Mytilus edulis) from marine and brackish waters in relation to the induction of heat-shock protein 70. Hydrobiologia,1999,393:261-269.
    217. Tissieres A.,Mitchell A.K.,Some new proteins induced by temperature shock in Drosophila.J.Mol.Biol.,1974,84:389-398.
    218. Tissieres A.,Mitchell H.K.,Tracy U.M.,Protein synthesis in salivary glands of Drosophila melanogaster:relation to chromosome puffs.J.Mol.Biol.,1974,84:389-398.
    219. Toscano N.C.,Castle S.J.,Henneberry T.J.,Prabhaker N.,Persistent silverleaf white.y exploits desert crop systems.Calif.Agr.,1998,52:29-33.
    220. Traboulsi R.,Bemisia tabaci:a report on its pest status with particular reference to the near east.FAO Plant Prot.Bull.,1994,42:33-58.
    221. Trautinger E,KindasMugge I.,Knobler R.M.,Honigsmann H.,Stress proteins in the cellular response to ultraviolet radiation.J.Photochem.Photobiol.B-Biol.,1996,35:141-148.
    222. Trotter E.W.,Kao C.M.F.,Berenfeld L.,Botstein D.,Petsko G.A.,Gray J.V.,Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae.J.Biol.Chem.,2002,277:44817-44825.
    223. Tsueda H.,Koji T.,Differences in spatial distribution and life history parameters of two sympatric whiteflies,the greenhouse whitefly (Trialeurodes vaporariorum Westwood) and the silverleaf whitefly (Bemisia argentifolii Bellows & Perring),under greenhouse and laboratory conditions.Appl.Entomol.Zool.,1998,33:379-383.
    224. Ulmasov H.A.,Karaev K.K.,Lyashko V.N.,Evgenev M.B.,Heat-shock response in camel (Camelus dromedarius) blood-cells and adaptation to hyperthermia.Comp.Biochem.Physiol.(part B),1993,106:867-872.
    225. van Lenteren J.C.,Noldus L.P.J.J.,Whitefly-plant relationships:behavioural and ecological aspects.In:Gerling D.,eds.Whiteflies:their bionomics,pest status and management.Intercept Ltd.,Andover,UK,1990,47-89.
    226. van Roermund H.J.W.,van Lenteren J.C.,Life-history parameters of the greenhouse whitefly,Trialeurodes vaporariorum and the parasitoid Encarsia formosa.Wageningen Agricultural University Papers,1992.
    227. Velazquez J.M.,Sonoda S.,Bugaisky G.,Lindquist L.,Is the major Drosophila heat shock protein present in cells that have not been heat shocked?J.Cell Biol.,1983,96:286-290
    228. Vollmer J.H.,Sarup P.,K(?)rsgaard C.W.,Dahlgaard J.,Loeschcke V.,Heat and cold induced male sterility in Drosophila buzzatii:genetic variation among populations for the duration of sterility.Heredity,2004,97:257-262.
    229. Wagner T.L.,Temperature-dependent development,mortality,and adult size of sweetpotato whitefly biotype B (Homoptera:Aleyrodidae) on cotton.Environ.Entomol.,1995,24:1179-1188.
    230. Wang K.,Tsai J.H.,Temperature effect on development and reproduction of silverleaf whitefly (Homoptera:Aleyrodidae).Ann.Entomol.Soc.Amer.,1996,89:375-384.
    231. Wang W.,Vinocur B.,Shoseyov O.,Altman A.,Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response,Trends Plant Sci.,2004,9:244-252.
    232. Werner I.,Nagel R.,Stress proteins HSP60 and HSP70 in three species of amphipodes exposed to cadmium,diazinon,dieldrin and flouranthene.Environ.Toxicol.Chem.,1997,16:2393-2403.
    233. Wheeler J.C.,King V.,Tower J.,Sequence requirements for upregulating expression of drosophila hsp70 transgenes during aging..Neurobiol.Aging,1999,20:545-553.
    234. Whelan J.A.,Russell N.B.,Whelan M.A.,A method for the absolute quantification of cDNA using real-time PCR.J.Immu.Meth.,2003,278(1-2) :261-269.
    235. White P.S.,Biodiversity and the exotic species threat.In:Tennessee Exotic Pest Plant Council.Exotic Pests of Eastern Forests.USDA Forest Service,Nashville,TN,1997.
    236. Whyard S.,Wyatt G.R.,Walker V.K.,The heat shock response in Locusta migratoria.J.Comp.Physiol.(Part B),1986,156:813-817.
    237. Wolfe G.R., Hendrix D.L., Salvucci M.E., A thermoprotective role for sorbitol in the silverleaf whitefly, Bemisia argentifolii. J. Insect Physiol., 1998, 44: 597-603.
    238. Wu X.X., Li Z.X., Hu D.X., Shen Z.R., Identification of Chinese opulations of Bemisia tabaci (Gennadius) by analyzing ribosomal ITS1 sequence. Progress in Natural Science, 2003, 13: 276-281.
    239. Xu R.M., Status of the occurrence and distribution of the sweet potato whitefly (Bemisia tabaci) in China. In Gerling D., Mayer R.T., eds. Bemisia: 1995. Taxonomy, biology, ecology, control and management. Andover. Intercept., 1996.
    240. Yang D.R., Lu X.F., Zhang W.G., He F.S., Biochemical changes in primary culture of skeletal muscle cells following dimethoate exposure. Toxicol., 2002, 174: 79-85.
    241. Yocum G.D., Denlinger D.L., Anoxia blocks thermotolerance and the induction of rapid cold hardening in the flesh fly, Sarcophaga crassipalpis. Physiol. Entomol., 1994, 19:152-158.
    242. Yocum G.D., Zdárek J., Joplin K.H., Lee R.E., Smith D.C., Manter K.D., Denlinger D.L., Alteration of the eclosion rhythm and eclosion behavior in the flesh fly, Sarcophaga crassipalpis, by low and high temperature stress. J. Insect Physiol., 1994, 40: 13-21.
    243. Yokomi R.K., Hoelmer K.A., Osborne L.S., Relationship between the sweetpotato whitefly and the squash silverleaf disorder. Phytopath., 1990, 80: 895-900.
    244. Zhao Q., Wang J.H., Levichkin I.V., Stasinopoulos S., Ryan M.T., Hoogenraad N.J., A mitochondrial specific stress response in mammalian cells. EMBO J., 2002, 21:4411-4419.
    245. 蔡蕾,于之的,王捷,王德辉,中国防治外来入侵物种的现状与管理评估.环境保护,2003,8:27-34.
    246. 陈兵,康乐,生物入侵及其与全球变化的关系.生态学杂志.2003,22:31-34.
    247. 陈兵,外来斑潜蝇对热胁迫的适应:温度、生理机制和生物地理分布.[博士学位论文].北京:中国科学院动物研究所,2003.
    248. 陈革,潘洁珍,甘礼珍,高温对家蚕蛹期生殖细胞与产卵质量的影响.蚕业科学,1986,12:110-113.
    249. 陈艳华,低温对B型烟粉虱和温室白粉虱生长发育的影响.[硕士学位论文].长沙:湖南农业大学,2006.
    250. 陈夜江,罗宏伟,黄建,杨阿龙,湿度对烟粉虱实验种群的影响.华东昆虫学报,2001,10(2):76-80.
    251. 褚栋,张友军,丛斌,徐宝云,吴青君,朱国仁,烟粉虱不同地理种群的MtDNA COI基因序列分析及其系统发育.中国农业科学,2005,38:76-85.
    252. 董志峰,生物安全问题.中国家禽,2001,23(21):19-20.
    253. 郜庆炉,薛香,段爱旺,日光温室内温度特点及其变化规律研究.灌溉排水学报,2003,22(6):50-53.
    254. 郭慧芳,陈长琨,李国清,陈文武,王荫长,高温胁迫影响雄性棉铃虫生殖力的生理机制.棉花学报,2002,14:85-90.
    255. 郭慧芳,陈长琨,李国清,高温胁迫对雄性棉铃虫生殖力的影响.南京农业大学学报,2000,23:30-33.
    256. 郭建英,万方浩,谢丙炎,陈万权,农林外来入侵物种名录及其信息分析.见:万方浩,郑小波,郭建英,重要农林外来入侵物种的生物学与控制.北京:科学出版社,2005.
    257. 胡敦孝,吴杏霞,研究烟粉虱和温室白粉虱的区别.植物保护,2001,27(5):15-18.
    258. 康乐,外来种入侵的生态学效应.科学时报,1999,4:2.
    259. 柯俊成,陈秋男,王重雄,烟草粉虱种群(Bemisia tabaci species complex)分类学综述.台湾昆虫,2002,22:307-341.
    260. 李凤荪,中国经济昆虫(中册).湖南农学院丛刊(第1号),1953.
    261. 李俊杰,桑润滋,田树军,冯志华,热激蛋白在动物应激中的应用.家畜生态,2004,25(3):44-46.
    262. 李振宇,解焱,中国外来入侵种.北京:中国林业出版社,2002.
    263. 李祖荫,李兆华,徐汝梅,温室白粉虱的研究:形态、生物学特性及各虫态历期.北京师范大学学报(自然科学版),1980,3/4:137-150.
    264. 林克剑,吴孔明,魏洪义,郭予元.温度和湿度对B型烟粉虱发育、存活和生殖的影响.植物保护学报,2004,31:166-172.
    265. 刘立云,海南发现B型烟粉虱.植物保护,2002,28(1):61.
    266. 刘世骐,森林昆虫和病原物的害与益.中国森林病虫,2001,1:30-33.
    267. 罗晨,王素芹,崔文清,张芝利,京郊粉虱与天敌的种群动态.当代昆虫学研究.中国昆虫学会成立60周年纪念大会暨学术讨论会论文集,2004,465-468.
    268. 罗晨,烟粉虱的寄主调查、生物学特性和分子系统学研究.[博士学位论文].北京:中国农业大学,2002.
    269. 罗晨,姚远,王戎疆,阎凤鸣,胡敦孝,张芝利,利用MtDNACOI基因序列鉴定中国烟粉虱的生物型.昆虫学报,2002,45:759-763.
    270. 罗晨,张君明,石宝才,张帆,张芝利,北京地区烟粉虱Bemisia tabaci(Gennadius)调查初报.北京农业科学(增刊),2000,18:42-47.
    271. 罗晨,张芝利,2000.烟粉虱Bemisia tabaci(Gennadius)研究概述.北京农业科学(增刊),18:4-13.
    272. 罗志义,章伟年,干国培,棉田烟粉虱种群动态及杀虫剂的影响.昆虫学报,1989,32:293-299.
    273. 马文斌,王道勇,赵丽君,乌海市温室粉虱发生规律及其防治实验.北京师范大学学报(自然科学版),1999,1:34-35.
    274. 邱宝利,任顺祥,肖燕,温硕洋,国内烟粉虱B生物型的分布其控制措施研究.华东昆虫学报,2003,12(2):27-31.
    275. 孙旭彤,张士璀,刘振辉,李红岩,热激蛋白研究概况及其在海洋生物中的研究进展.海洋科学,2002,26(6):24-27.
    276. 万方浩,郭建英,王德辉,中国外来入侵生物的危害与管理对策.生物多样性,2002a,10(1):119-125.
    277. 万方浩,郭建英,王德辉,中国外来入侵生物的现状、管理对策及风险评价体系。见:王德辉,Jeffery A.A.,生物多样性与外来入侵种管理国际研讨会论文集.北京:中国环境科学出版社,2002b.
    278. 万方浩,郑小波,郭建英,重要农林外来入侵物种的生物学与控制.北京:科学出版社,2005.
    279. 王枫,赵法汲,高俊生,HSP70高表达对K562细胞热耐力的影响.中国公共卫生,2000,16:687-688.
    280. 王福祥,美洲斑潜蝇的发生与综合防治.农业科技通讯,1997,2:34.
    281. 王海鸿,B型烟粉虱热休克蛋白基因的克隆和表达及其与胁迫耐受性关系的研究[博士学位论文].北京:中国农业科学院植物保护研究所,2005.
    282. 王荫长,陈长琨,卢中建,李国清,尤子平,高温对小地老虎和粘虫精子发生和形成的影响.昆虫学报,1996,39:253-259.
    283. 王荫长,昆虫生物化学.北京:中国农业出版社,2001.
    284. 王印来,温室粉虱的综合防治.昆虫知识,1981,18:278-279.
    285. 王子清,温室中常见粉虱的识别.昆虫知识,1979,16:171-173.
    286. 翁祖信,冯兰香,李宝栋,朱国仁,蔬菜病虫害诊断与防治.天津:天津科学技术出版社,1994.
    287. 吴孔明,徐广,郭予元,华北北部地区棉田烟粉虱成虫季节性动态.植物保护,2001,27(2):14-15.
    288. 吴杏霞,B型烟粉虱在我国的发生、分布及分子鉴定.[博士学位论文].北京:中国农业大学,2002.
    289. 向玉勇,李子忠,张帆,罗晨,烟粉虱和温室粉虱的研究进展.山地农业生物学报,2004,23(4):352-359.
    290. 徐海根,强胜,韩正敏,郭建英,黄宗国,孙红英,何舜平,丁晖,吴海荣,万方浩,中国外来入侵物种的分布与传入路径分析.生物多样性,2004,12(6):626-638.
    291. 阎凤鸣,李大建.粉虱分类的基本概况和我国常见种的识别.北京农业科学(增刊烟粉虱专辑),2000,18:20-30.
    292. 杨期和,叶万辉,邓雄,许凯扬.我国外来植物入侵的特点及入侵的危害.生态科学,2002,21:269-274.
    293. 袁媛,陈强,陈思祗,刘中来,实时荧光定量PCR技术及其在生命科学领域中的应用.海峡预防医学杂志,2006,12(4):18-20.
    294. 臧连生,B型对浙江本地非B型烟粉虱的竞争取代及其行为机制.[博士学位论文].杭州:浙江大学,2005.
    295. 臧连生,刘银泉,刘树生,一种适合粉虱实验观察的新型微虫笼.昆虫知识,2005,42:329-331.
    296. 张慧杰,张战备,雷逢进,张丽萍.重要经济害虫烟粉虱的发生.昆虫知识,2002,39:79-80.
    297. 张芝利.关于烟粉虱大发生的思考.北京农业科学(增刊烟粉虱专辑),2000,18:1-3.
    298. 赵莉,张荣,肖艳,崔元,黄伟,危害棉花的重要害虫烟粉虱在新疆发现.新疆农业科学,2000,1:27-28.
    299. 周福才,杜予州,孙伟,于淦军,龚伟荣,陆自强,任顺祥,江苏省烟粉虱寄主植物调查及其危害评价.扬州大学学报(农业与生命科学版),2003,24:71-78.
    300. 朱国仁,温室蔬菜害虫的鉴别与治理.中国蔬菜,1983,3:15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700