核酸锁定原位杂交分析hsa-miR-96及hsa-miR-217在胰腺导管腺癌形成过程中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺导管腺癌(pancreatic ductal adenocarcinoma, PDAC)是一种高度侵袭性的肿瘤,临床症状出现晚,难以早期发现,多数病例发现时已属晚期,是实性肿瘤中预后最差的。如果在胰腺非浸润性癌前病变时期进行有效的干预,将大大提高胰腺癌的生存率。胰腺导管上皮内瘤变(pancreatic intraepithelial neoplasia, PanIN)是胰腺导管腺癌最常见最重要的癌前病变。
     miRNA是一种内源性非编码单链小分子RNA,长度19-24个核苷酸,成熟miRNA发挥癌基因或抑癌基因的作用。本课题组之前的研究中采用芯片技术及定量PCR均证实hsa-miR-96及hsa-miR-217在胰腺导管腺癌组织中呈低表达,功能研究提示hsa-miR-96及hsa-miR-217发挥抑癌基因的作用。因此我们提出了这样一个问题:hsa-miR-96及hsa-miR-217在胰腺导管腺癌最重要的癌前病变(胰腺导管上皮内瘤变)中是否就出现了表达的异常?hsa-miR-96及hsa-miR-217在胰腺导管腺癌形成过程中是否起到一定的作用?对于这些问题目前还没有文献报道。
     本研究在课题组之前研究结果的基础上用核酸锁定原位杂交(Locked Nucleic Acid In situ Hybridization LNA-ISH)的方法检测了hsa-miR-96及hsa-miR-217在胰腺导管腺癌及胰腺导管上皮内瘤变的定位表达情况,以此来了解hsa-miR-96及hsa-miR-217在胰腺导管腺癌癌变过程中的作用,以及在胰腺导管腺癌早期诊断中的潜在作用。
     目的:研究hsa-miR-96及hsa-miR-217在胰腺癌的癌变过程中的表达以及在胰腺导管腺癌诊断的潜在作用。
     方法:(1)收集2008年-2010年北京协和医院手术切除的胰腺石蜡标本,其中病理切片完整的191例,包括胰腺导管腺癌119例、慢性胰腺炎22例及其他的胰腺良恶性肿瘤47例,并进行随访,随访时间为17-50个月,失访2例。。对所有病例的临床资料及病理切片进行重新回顾整理,对PanIN病变进行分级,统计不同类型胰腺病变PanIN的发生率。(2)选取伴有胰腺导管上皮内瘤变的胰腺石蜡标本,包括45例胰腺导管腺癌、10例慢性胰腺炎及5例其他类型胰腺肿瘤。用核酸锁定原位杂交的方法检测miRNA (hsa-miR-96及hsa-miR-217)的表达。所有结果应用SPSS Statistics统计软件进行数据分析。
     结果:(1)PanIN总发生率在其他类型胰腺肿瘤周边组织、慢性胰腺炎及胰腺导管腺癌的癌旁胰腺组织逐渐升高(分别为24.0%,12/50;54.5%,12/22;70.6%,84/119),三者之间存在显著性差异。胰腺导管腺癌的癌旁胰腺组织中高级另PanIN的发生率(31.1%,37/119)明显高于慢性胰腺炎(0%,0/22)或其他类型良恶性肿瘤周边组织(2%,1/50))(P<0.05)。PanIN的发生率与年龄有相关性,经统计学分析不同年龄组的PanIN发生率有显著性差异(P<0.05)。PanIN随着年龄增加发生率升高。男女性别间的PanIN发生率没有显著性差异。(2)hsa-miR-96和hsa-miR-217的表达随着PanIN级别的升高而降低。hsa-miR-96在PanIN-1、PanIN-2、PanIN-3及导管腺癌中的表达分别为91.3%(22/23)、70.6%(12/17)、22.2%(4/18)及31.1%(14/45)。hsa-miR-217在PanIN--1、PanIN-2、PanIN-3及导管腺癌中的表达分别为95.7%(22/23)、70.6%(12/17)、27.8%(5/18)及42.2%(19/45)。hsa-miR-96及hsa-miR-217在PanIN-2/3中的表达与正常胰腺组织及PanIN-1的表达有统计学差异(P<0.01)。(3)hsa-miR-96及hsa-miR-217在胰腺导管腺癌肿瘤细胞的阳性率分别为31.1%及42.2%,而在对应癌旁胰腺组织及慢性胰腺炎中全部有阳性或弱阳性表达,差异具有显著性(P<0.05)。(4) hsa-miR-96及hsa-miR-217在胰腺导管腺癌间质纤维母细胞的表达率分别为22.2%和24.4%,较慢性胰腺炎中的77.8%和66.7%亦明显降低(P=0.003)。(5)hsa-miR-96及hsa-miR-217阴性表达与阳性表达之间Kaplan-Meier生存分析,阴性组与阳性组之间生存均无统计学差异。
     结论:(1)胰腺导管腺癌癌旁组织中发现PanIN特别是高级另IJPanIN的检出率明显高于慢性胰腺炎或其他类型良恶性肿瘤周边组织,支持PanIN是胰腺导管腺癌最常见的癌前病变。(2)在胰腺导管腺癌的癌前病变(PanIN-2/PanIN-3)发现hsa-miR-96及hsa-miR-217的异常表达,提示hsa-miR-96及hsa-miR-217可能在胰腺癌的形成过程中起到重要的作用、可能是胰腺癌早期诊断的潜在生物学标记物。(3) hsa-miR-96及hsa-miR-217在胰腺导管腺癌与慢性胰腺炎存在差异表达。(4)miRNA在胰腺导管腺癌及慢性胰腺炎中的表达差异不仅存在于上皮细胞,间质纤维母细胞间也存在显著差异,这可能为胰腺导管腺癌的微环境研究提供新思路。
Background
     Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive tumor which is difficult to be early detected because the clinical symptoms usually appear too late. Most cases are diagnosed at an advanced stage, and the prognosis is the worst among all solid tumors. If effective interventions could be provided during non-invasive precancerous period, the survival rate of pancreatic cancer would be greatly improved. Pancreatic intraepithelial neoplasia (PanIN) is the most common non-invasive precursor lesion of PDAC.
     MicroRNAs (miRNAs) is an endogenous non-coding single-stranded small RNA of19to24nucleotides(nt) in length that function as a post-transcriptional regulating molecule. Mature miRNAs can function as oncogenes or tumor suppressor genes. In recent years, many studies have confirmed that many miRNAs are up-regulated or down-regulated in PDAC. Previous studies in this group have both indicated that hsa-miR-96and hsa-miR-217are down-regulated in PDAC using microarray technology and quantitative PCR. hsa-miR-96and hsa-miR-217may function as tumor suppressor genes. Whether hsa-miR-96and hsa-miR-217have been down-regulated in the most important non-invasive precursor lesion(PanIN) of PDAC, and play a potential role in carcinogenesis of PDAC, which has not yet been reported in the literatur. Based on the previouse study in our group, in this study the expression of hsa-miR-96and hsa-miR-217in PanIN and PDAC were analyzed using the method of locked nucleic acid in situ hybridization (LNA-ISH), with chronic pancreatitis and normal pancreatic tissue as reference control tissues.
     Objective:To study the role of hsa-miR-96and hsa-miR-217in pancreatic ductal adenocarcinoma development and potential role in diagnosis of PDAC.
     Methods:(1)191cases of paraffin-embedded pancreatic specimens, including119cases of PDAC,22cases of chronic pancreatitis and47cases of other pancreatic tumors were collected from the archives of the Department of Pathology, Peking Union Medical College Hospital from the year2008-2010. Follow up was made, and the time of follow-up was17-50months. All the clinical data were reviewed. And all available slides were evaluated for the presence, grade of PanIN lesions using the four-tier classification.
     (2)Paraffin-embedded pancreatic specimens contain with PanIN, including45cases of PDAC,10cases of chronic pancreatitis and cases of other pancreatic tumors were selected in this study. The miRNAs hsa-miR-96and hsa-miR-217were analyzed using locked nucleic acid in situ hybridization (LNA-ISH). The differences of miRNA expression among sample sets were analyzed with the Chi-squared test.
     Results:(1) There was a progressive increase from other types of pancreatic tumors to pancreatitis and to ductal adenocarcinoma in the frequency of overall pancreatic intraepithelial neoplasia lesions (24.0%,12/50;54.5%,12/22; and70.6%,84/119; respectively). The frequency of higher grade pancreatic intraepithelial neoplasia lesions (2and3) in ductal adenocarcinoma patients was31.1%(37/119), which was significantly higher than the one in chronic pancreatitis(0%,0/22) or other types pancreatic tumors(2%,1/50)(P<0.05). The frequency of PanIN was significant difference among the different age groups (P<0.05), and was increased with the age. There was no significant difference of the frequency of the PanIN between male and female gender.(2) There was a progressive reduce from PanIN-1, PanIN-2, to PanIN-3in the expression of hsa-miR-96(91.3%,22/23;70.6%,12/17; and22.2%,4/18; respectively) and hsa-miR-217(95.7%,22/23;70.6%,12/17;27.8%,5/18; respectively). The expressions of hsa-miR-96and hsa-miR-217in PanIN-2/3lesions were significantly different from normal pancreatic tissue and PanIN-1(P<0.01).(3) In PDAC,31.1%(14/45) and42.2%(19/45) of samples showed positive expression of hsa-miR-96and hsa-miR-217in tumor cells, respectively, whereas all corresponding adjacent normal pancreatic tissue and chronic pancreatitis samples were positive or weakly positive (P<0.05).(4)Positive expression of hsa-miR-96and hsa-miR-217was observed in the fibroblasts of22.2%(10/45) and24.4%(11/45) of PDAC, respectively, which was significantly lower than chronic pancreatitis (70%,7/10and60%,6/10). These differences were statistically significant (P=0.003).(5)There was no statistical difference in survival between the negative group and positive group of hsa-miR-96or hsa-miR-217.
     Conclusion:(1) The frequency of overall PanIN lesions and higher grade PanIN lesions (2and3) in PDAC were significantly higher than the one in chronic pancreatitisor other types pancreatic tumors.(2)hsa-miR-96and of hsa-miR-217abnormal expression was observed in early stage (PanIN-2/3) of PDAC.(2)These microRNAs(hsa-miR-96and hsa-miR-217) may play an important role in the development of PDAC and may serve as potential biomarker.(3)There was different expression of hsa-miR-96and hsa-miR-217between PDAC and chronic pancreatitis.(4) Down-regulation of hsa-miR-96and hsa-miR-217in PDAC exists not only in cancer cells, but also in the stromal fibroblasts, which maybe provide new ideas about the microenvironment of PDAC.
引文
[1]Cutts R J, Gadaleta E, Hahn S A, et al. The Pancreatic Expression database:2011 update[J]. Nucleic Acids Res,2011,39(Database issue):D1023-D1028.
    [2]Iovanna J, Neira J L. Pancreatic cancer:molecular, biochemical, chemopreventive, and therapeutic aspects[J]. ScientificWorldJournal,2010,10:1967-1970.
    [3]Malvezzi M, Bertuccio P, Levi F, et al. European cancer mortality predictions for the year 2012[J]. Ann Oncol,2012,23(4):1044-1052.
    [4]Pandol S, Gukovskaya A, Edderkoui M, et al. Epidemiology, risk factors, and the promotion of pancreatic cancer:role of the stellate cell[J]. J Gastroenterol Hepatol, 2012,27 Suppl 2:127-134.
    [5]Haugk B. Pancreatic intraepithelial neoplasia-can we detect early pancreatic cancer?[J]. Histopathology,2010,57(4):503-514.
    [6]Hruban R H, Takaori K, Canto M, et al. Clinical importance of precursor lesions in the pancreas[J]. J Hepatobiliary Pancreat Surg,2007,14(3):255-263.
    [7]Scarlett C J, Salisbury E L, Biankin A V, et al. Precursor lesions in pancreatic cancer:morphological and molecular pathology[J]. Pathology,2011,43(3):183-200.
    [8]Scarlett C J, Salisbury E L, Biankin A V, et al. Precursor lesions in pancreatic cancer:morphological and molecular pathology[J]. Pathology,2011,43(3):183-200.
    [9]Sipos B, Frank S, Gress T, et al. Pancreatic intraepithelial neoplasia revisited and updated[J]. Pancreatology,2009,9(1-2):45-54.
    [10]Hermanova M, Karasek P, Nenutil R, et al. Clinicopathological correlations of cyclooxygenase-2, MDM2, and p53 expressions in surgically resectable pancreatic invasive ductal adenocarcinoma[J]. Pancreas,2009,38(5):565-571.
    [11]Yamada N, Nishida Y, Yokoyama S, et al. Expression of MUC5AC, an early marker of pancreatobiliary cancer, is regulated by DNA methylation in the distal promoter region in cancer cells[J]. J Hepatobiliary Pancreat Sci,2010,17(6):844-854.
    [12]Hong S M, Heaphy C M, Shi C, et al. Telomeres are shortened in acinar-to-ductal metaplasia lesions associated with pancreatic intraepithelial neoplasia but not in isolated acinar-to-ductal metaplasias [J]. Mod Pathol,2011,24(2):256-266.
    [13]Du T, Zamore P D. Beginning to understand microRNA function[J]. Cell Res, 2007,17(8):661-663.
    [14]Standart N, Jackson R J. MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation[J]. Genes Dev, 2007,21(16):1975-1982.
    [15]Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005,120(1):15-20.
    [16]Volinia S, Calin G A, Liu C G, et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acad Sci U S A, 2006,103(7):2257-2261.
    [17]Farazi T A, Spitzer J I, Morozov P, et al. miRNAs in human cancer[J]. J Pathol, 2011,223(2):102-115.
    [18]Szafranska A E, Davison T S, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma[J]. Oncogene,2007,26(30):4442-4452.
    [19]Bloomston M, Frankel W L, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis[J]. JAMA,2007,297(17):1901-1908.
    [20]Zhang Y, Li M, Wang H, et al. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis [J]. World J Surg, 2009,33(4):698-709.
    [21]Lee E J, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer[J]. Int J Cancer,2007,120(5):1046-1054.
    [22]Habbe N, Koorstra J B, Mendell J T, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia[J]. Cancer Biol Ther,2009,8(4):340-346.
    [23]Ryu J K, Hong S M, Karikari C A, et al. Aberrant MicroRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma[J]. Pancreatology, 2010,10(1):66-73.
    [24]Yu S, Lu Z, Liu C, et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer[J]. Cancer Res,2010,70(14):6015-6025.
    [25]Zhao W G, Yu S N, Lu Z H, et al. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS[J]. Carcinogenesis,2010,31(10):1726-1733.
    [26]Hruban R H, Takaori K, Klimstra D S, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms[J]. Am J Surg Pathol,2004,28(8):977-987.
    [27]Brockie E, Anand A, Albores-Saavedra J. Progression of atypical ductal hyperplasia/carcinoma in situ of the pancreas to invasive adenocarcinoma[J]. Ann Diagn Pathol,1998,2(5):286-292.
    [28]Brat D J, Lillemoe K D, Yeo C J, et al. Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreas[J]. Am J Surg Pathol, 1998,22(2):163-169.
    [29]Sommers S C, Murphy S A, Warren S. Pancreatic duct hyperplasia and cancer[J]. Gastroenterology,1954,27(5):629-640.
    [30]Albores-Saavedra J, Weimersheimer-Sandoval M, Chable-Montero F, et al. The foamy variant of pancreatic intraepithelial neoplasia[J]. Ann Diagn Pathol, 2008,12(4):252-259.
    [31]Koorstra J B, Feldmann G, Habbe N, et al. Morphogenesis of pancreatic cancer:role of pancreatic intraepithelial neoplasia (PanINs)[J]. Langenbecks Arch Surg, 2008,393(4):561-570.
    [32]Klimstra D S, Longnecker D S. K-ras mutations in pancreatic ductal proliferative lesions[J]. Am J Pathol,1994,145(6):1547-1550.
    [33]Reichert M, Rustgi A K. Pancreatic ductal cells in development, regeneration, and neoplasia[J]. J Clin Invest,2011,121(12):4572-4578.
    [34]郑建明,朱明华,王炜,等.胰腺上皮内瘤变和胰腺癌中TGF-β/Smads信号通路相关基因的突变分析[J].第二军医大学学报,2005,26(10):4.
    [35]郑建明,朱明华,林万和,等.胰腺导管腺癌、慢性胰腺炎及正常胰腺组织中胰腺上皮内瘤变的比较研究[J].胰腺病学,2004,4(3):4.
    [36]Andea A, Sarkar F, Adsay V N. Clinicopathological correlates of pancreatic intraepithelial neoplasia:a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma[J]. Mod Pathol,2003,16(10):996-1006.
    [37]Recavarren C, Labow D M, Liang J, et al. Histologic characteristics of pancreatic intraepithelial neoplasia associated with different pancreatic lesions [J]. Hum Pathol, 2011,42(1):18-24.
    [38]Yonezawa S, Higashi M, Yamada N, et al. Precursor lesions of pancreatic cancer[J]. Gut Liver,2008,2(3):137-154.
    [39]Seeley E S, Carriere C, Goetze T, et al. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia[J]. Cancer Res, 2009,69(2):422-430.
    [40]Singh M, Maitra A. Precursor lesions of pancreatic cancer:molecular pathology and clinical implications [J]. Pancreatology,2007,7(1):9-19.
    [41]Hruban R H, Adsay N V, Albores-Saavedra J, et al. Pancreatic intraepithelial neoplasia:a new nomenclature and classification system for pancreatic duct lesions [J]. Am J Surg Pathol,2001,25(5):579-586.
    [42]Hisa T, Suda K, Nobukawa B, et al. Distribution of intraductal lesions in small invasive ductal carcinoma of the pancreas[J]. Pancreatology,2007,7(4):341-346.
    [43]Longnecker D S, Adsay N V, Fernandez-Del C C, et al. Histopathological diagnosis of pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms: interobserver agreement[J]. Pancreas,2005,31(4):344-349.
    [44]Gupta A, Mo Y Y. Detection of microRNAs in cultured cells and paraffin-embedded tissue specimens by in situ hybridization[J]. Methods Mol Biol, 2011,676:73-83.
    [45]Donnem T, Eklo K, Berg T, et al. Prognostic impact of MiR-155 in non-small cell lung cancer evaluated by in situ hybridization[J]. J Transl Med,2011,9:6.
    [46]Nelson P T, Dimayuga J, Wilfred B R. MicroRNA in Situ Hybridization in the Human Entorhinal and Transentorhinal Cortex[J]. Front Hum Neurosci,2010,4:7.
    [47]Qi L, Bart J, Tan L P, et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma[J]. BMC Cancer,2009,9:163.
    [48]Nielsen B S. MicroRNA in situ hybridization[J]. Methods Mol Biol, 2012,822:67-84.
    [49]Pena J T, Sohn-Lee C, Rouhanifard S H, et al. miRNA in situ hybridization in formaldehyde and EDC-fixed tissues[J]. Nat Methods,2009,6(2):139-141.
    [50]张晴,吴正升,张瑰红,等.miR-145在乳腺癌中表达及意义[J].临床与实验病理学杂志,2009,25(1):9-12.
    [51]Yamamichi N, Shimomura R, Inada K, et al. Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development [J]. Clin Cancer Res,2009,15(12):4009-4016.
    [52]朱益民,刘志明,历成杰,等.let-7a在胃黏膜、慢性萎缩性胃炎、胃癌组织中的表达及其对人胃癌细胞凋亡的影响[J].重庆医学,2010,39(8):921-923.
    [53]Kloosterman W P, Wienholds E, de Bruijn E, et al. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes[J]. Nat Methods, 2006,3(1):27-29.
    [54]Szafranska A E, Doleshal M, Edmunds H S, et al. Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues[J]. Clin Chem, 2008,54(10):1716-1724.
    [55]Tada M, Ohashi M, Shiratori Y, et al. Analysis of K-ras gene mutation in hyperplastic duct cells of the pancreas without pancreatic disease [J]. Gastroenterology, 1996,110(1):227-231.
    [56]Aguirre A J, Bardeesy N, Sinha M, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma[J]. Genes Dev, 2003,17(24):3112-3126.
    [57]Hingorani S R, Petricoin E F, Maitra A, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse[J]. Cancer Cell, 2003,4(6):437-450.
    [58]Jones S, Zhang X, Parsons D W, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses[J]. Science,2008,321(5897):1801-1806.
    [59]Tada M, Ohashi M, Shiratori Y, et al. Analysis of K-ras gene mutation in hyperplastic duct cells of the pancreas without pancreatic disease [J]. Gastroenterology, 1996,110(1):227-231.
    [60]Moskaluk C A, Hruban R H, Kern S E. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma[J]. Cancer Res, 1997,57(11):2140-2143.
    [61]Guerra C, Schuhmacher A J, Canamero M, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice[J]. Cancer Cell,2007,11(3):291-302.
    [62]Seux M, Iovanna J, Dagorn J C, et al. MicroRNAs in pancreatic ductal adenocarcinoma:new diagnostic and therapeutic clues[J]. Pancreatology, 2009,9(1-2):66-72.
    [63]Bartels C L, Tsongalis G J. MicroRNAs:novel biomarkers for human cancer[J]. Clin Chem,2009,55(4):623-631.
    [64]Bhatti I, Lee A, James V, et al. Knockdown of microRNA-21 Inhibits Proliferation and Increases Cell Death by Targeting Programmed Cell Death 4 (PDCD4) in Pancreatic Ductal Adenocarcinoma[J]. J Gastrointest Surg,2010.
    [65]Greither T, Grochola L F, Udelnow A, et al. Elevated expression of microRNAs 155, 203,210 and 222 in pancreatic tumors is associated with poorer survival [J]. Int J Cancer, 2010,126(1):73-80.
    [66]Hwang J H, Voortman J, Giovannetti E, et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer[J]. PLoS One,2010,5(5):e10630.
    [67]Giovannetti E, Funel N, Peters G J, et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity [J]. Cancer Res,2010,70(11):4528-4538.
    [68]Dillhoff M, Liu J, Frankel W, et al. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival [J]. J Gastrointest Surg, 2008,12(12):2171-2176.
    [69]du Rieu M C, Torrisani J, Selves J, et al. MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions[J]. Clin Chem,2010,56(4):603-612.
    [70]Bachem M G, Schunemann M, Ramadani M, et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells [J]. Gastroenterology,2005,128(4):907-921.
    [71]Masamune A, Shimosegawa T. Signal transduction in pancreatic stellate cells[J]. J Gastroenterol,2009,44(4):249-260.
    [72]Lonardo E, Frias-Aldeguer J, Hermann P C, et al. Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness[J]. Cell Cycle,2012,11(7):1282-1290.
    [73]Shimizu K, Hashimoto K, Tahara J, et al. Pancreatic stellate cells do not exhibit features of antigen-presenting cells[J]. Pancreas,2012,41(3):422-427.
    [74]Shen J, Wan R, Hu G, et al. miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro[J]. Pancreatology, 2012,12(2):91-99.
    [75]Qian Z Y, Peng Q, Zhang Z W, et al. Roles of Smad3 and Smad7 in rat pancreatic stellate cells activated by transforming growth factor-beta 1[J]. Hepatobiliary Pancreat Dis Int,2010,9(5):531-536.
    [76]Xu Z, Vonlaufen A, Phillips P A, et al. Role of pancreatic stellate cells in pancreatic cancer metastasis [J]. Am J Pathol,2010,177(5):2585-2596.
    [77]Gao Z, Wang X, Wu K, et al. Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/CXCR4 axis[J]. Pancreatology,2010,10(2-3):186-193.
    [1]Esposito I, et al. Hypothetical progression model of pancreatic cancer with origin in the centroacinar-acinar compartment[J]. Pancreas,2007,35(3):212-217
    [2]Zhu L, et al. Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia[J]. Am J Pathol,2007,171(1):263-273
    [3]Rovira M, et al. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas [J]. Proc Natl Acad Sci U S A,2010, 107(1):75-80
    [4]Gidekel FS, et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras[J]. Cancer Cell,2009,16(5):379-389
    [5]Hruban RH, et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer:consensus report and recommendations [J]. Cancer Res,2006, 66(1):95-106
    [6]Hruban RH, et al. Pancreatic intraepithelial neoplasia:a new nomenclature and classification system for pancreatic duct lesions[J]. Am J Surg Pathol,2001, 25(5):579-586
    [7]Zhu L, et al. Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia[J]. Am J Pathol,2007,171(1):263-273
    [8]Means AL, et al. Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates[J]. Development, 2005,132(16):3767-3776
    [9]Habbe N, et al. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice[J]. Proc Natl Acad Sci USA,2008,105(48):18913-18918
    [10]Sipos B, et al. Pancreatic intraepithelial neoplasia revisited and updated[J]. Pancreatology,2009,9(1-2):45-54
    [11]Brockie E, et al. Progression of atypical ductal hyperplasia/carcinoma in situ of the pancreas to invasive adenocarcinoma[J]. Ann Diagn Pathol,1998,2(5):286-292
    [12]Brat DJ, et al. Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreas[J]. Am J Surg Pathol,1998,22(2):163-169
    [13]SOMMERS SC, et al. Pancreatic duct hyperplasia and cancer[J]. Gastroenterology, 1954,27(5):629-640
    [14]Albores-Saavedra J, et al. The foamy variant of pancreatic intraepithelial neoplasia[J]. Ann Diagn Pathol,2008,12(4):252-259
    [15]Koorstra JB, et al. Morphogenesis of pancreatic cancer:role of pancreatic intraepithelial neoplasia (PanINs)[J]. Langenbecks Arch Surg,2008,393(4):561-570
    [16]Klimstra DS, et al. K-ras mutations in pancreatic ductal proliferative lesions[J]. Am J Pathol,1994,145(6):1547-1550
    [17]Hruban RH, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms [J]. Am J Surg Pathol,2004,28(8):977-987
    [18]Reichert M, et al. Pancreatic ductal cells in development, regeneration, and neoplasia[J]. J Clin Invest,2011,121(12):4572-4578
    [19]Tada M, et al. Analysis of K-ras gene mutation in hyperplastic duct cells of the pancreas without pancreatic disease[J]. Gastroenterology,1996,110(1):227-231
    [20]Aguirre AJ, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma[J]. Genes Dev,2003,17(24):3112-3126
    [21]Hingorani SR, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse[J]. Cancer Cell,2003,4(6):437-450
    [22]Jones S, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses[J]. Science,2008,321(5897):1801-1806
    [23]Tada M, et al. Analysis of K-ras gene mutation in hyperplastic duct cells of the pancreas without pancreatic disease[J]. Gastroenterology,1996,110(1):227-231
    [24]Moskaluk CA, et al. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma[J]. Cancer Res,1997,57(11):2140-2143
    [25]Miyamoto Y, et al. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis[J]. Cancer Cell,2003,3(6):565-576
    [26]Mazur PK, et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma[J]. Proc Natl Acad Sci USA,2010,107(30):13438-13443
    [27]Means AL, et al. Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates[J]. Development, 2005,132(16):3767-3776
    [28]Miyamoto Y, et al. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis[J]. Cancer Cell,2003,3(6):565-576
    [29]Hald J, et al. Activated Notchl prevents differentiation of pancreatic acinar cells and attenuate endocrine development [J]. Dev Biol,2003,260(2):426-437
    [30]De La O JP, et al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia[J]. Proc Natl Acad Sci U S A,2008,105(48):18907-18912
    [31]Harley CB, et al. Telomeres and telomerase in aging and cancer[J]. Curr Opin Genet Dev,1995,5(2):249-255
    [32]Artandi SE, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice[J]. Nature,2000,406(6796):641-645
    [33]Gisselsson D, et al. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors[J]. Proc Natl Acad Sci U S A,2001,98(22):12683-12688
    [34]Hackett JA, et al. Balancing instability:dual roles for telomerase and telomere dysfunction in tumorigenesis[J]. Oncogene,2002,21(4):619-626
    [35]O'Hagan RC, et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes[J]. Cancer Cell,2002,2(2):149-155
    [36]Rudolph KL, et al. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans[J]. Nat Genet,2001,28(2):155-159
    [37]Shammas MA. Telomeres, lifestyle, cancer, and aging[J]. Curr Opin Clin Nutr Metab Care,2011,14(1):28-34
    [38]Abe T, et al. Genome-wide allelotypes of familial pancreatic adenocarcinomas and familial and sporadic intraductal papillary mucinous neoplasms [J]. Clin Cancer Res, 2007,13(20):6019-6025
    [39]Calhoun ES, et al. Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays[J]. Cancer Res,2006,66(16):7920-7928
    [40]Jones S, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses[J]. Science,2008,321(5897):1801-1806
    [41]van Heek NT, et al. Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia[J]. Am J Pathol,2002,161(5):1541-1547
    [42]Hong SM, et al. Telomeres are shortened in acinar-to-ductal metaplasia lesions associated with pancreatic intraepithelial neoplasia but not in isolated acinar-to-ductal metaplasias [J]. Mod Pathol,2011,24(2):256-266
    [43]Inoue H, et al. Isolation, characterization, and chromosomal mapping of the human insulin promoter factor 1 (IPF-1) gene[J]. Diabetes,1996,45(6):789-794
    [44]Park JH, et al. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1[J]. J Clin Invest,2008,118(6):2316-2324
    [45]Song SY, et al. Expansion of Pdxl-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha[J]. Gastroenterology,1999,117(6):1416-1426
    [46]Kawaguchi Y, et al. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors [J]. Nat Genet,2002,32(1):128-134
    [47]Miyatsuka T, et al. Persistent expression of PDX-1 in the pancreas causes acinar-to-ductal metaplasia through Stat3 activation[J]. Genes Dev,2006, 20(11):1435-1440
    [48]Gauthier SA, et al. Transcriptional regulation of neuropeptide and peptide hormone expression by the Drosophila dimmed and cryptocephal genes[J]. J Exp Biol,2006, 209(Pt 10):1803-1815
    [49]Zhu L, et al. Inhibition of Mistl homodimer formation induces pancreatic acinar-to-ductal metaplasia[J]. Mol Cell Biol,2004,24(7):2673-2681
    [50]Stanger BZ, et al. Pten constrains centroacinar cell expansion and malignant transformation in the pancreas[J]. Cancer Cell,2005,8(3):185-195
    [51]Du T, et al. Beginning to understand microRNA function[J]. Cell Res,2007, 17(8):661-663
    [52]Standart N, et al. MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation[J]. Genes Dev,2007, 21(16):1975-1982
    [53]Lewis BP, et al. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell,2005,120(1):15-20
    [54]Volinia S, et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acad Sci U S A,2006,103(7):2257-2261
    [55]Farazi TA, et al. miRNAs in human cancer[J]. J Pathol,2011,223(2):102-115
    [56]Szafranska AE, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma[J]. Oncogene,2007, 26(30):4442-4452
    [57]Bloomston M, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis [J]. JAMA,2007, 297(17):1901-1908
    [58]Zhang Y, et al. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis[J]. World J Surg,2009,33(4):698-709
    [59]Lee EJ, et al. Expression profiling identifies microRNA signature in pancreatic cancer[J]. Int J Cancer,2007,120(5):1046-1054
    [60]Habbe N, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia[J]. Cancer Biol Ther,2009,8(4):340-346
    [61]Ryu JK, et al. Aberrant MicroRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma[J]. Pancreatology,2010,10(1):66-73
    [1]Ali S, Almhanna K, Chen W, et al. Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer[J]. Am J Transl Res, 2010,3(1):28-47.
    [2]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science,2001,294(5543):853-858.
    [3]Kong Y, Han JH. MicroRNA:biological and computational perspective [J]. Genomics Proteomics Bioinformatics,2005,3(2):62-72.
    [4]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116(2):281-297.
    [5]Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets [J]. Proc Natl Acad Sci U S A, 2006,103(7):2257-2261.
    [6]Habbe N, Koorstra JB, Mendell JT, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia[J]. Cancer Biol Ther,2009,8(4):340-346.
    [7]Ryu JK, Hong SM, Karikari CA, et al. Aberrant MicroRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma[J]. Pancreatology, 2010,10(1):66-73.
    [8]du Rieu MC, Torrisani J, Selves J, et al. MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions[J]. Clin Chem,2010,56(4):603-612.
    [9]Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma[J]. Oncogene,2007,26(30):4442-4452.
    [10]Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis[J]. JAMA,2007,297(17):1901-1908.
    [11]Zhang Y, Li M, Wang H, et al. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis [J]. World J Surg, 2009,33(4):698-709.
    [12]Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer[J]. Int J Cancer,2007,120(5):1046-1054.
    [13]Zhao WG, Yu SN, Lu ZH, et al. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS[J]. Carcinogenesis,2010,31(10):1726-1733.
    [14]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116(2):281-297.
    [15]Bhatti I, Lee A, James V, et al. Knockdown of microRNA-21 inhibits proliferation and increases cell death by targeting programmed cell death 4 (PDCD4) in pancreatic ductal adenocarcinoma[J]. J Gastrointest Surg,2010,15(1):199-208。
    [16]Dillhoff M, Liu J, Frankel W, et al. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival [J]. J Gastrointest Surg, 2008,12(12):2171-2176.
    [17]Hwang JH, Voortman J, Giovannetti E, et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer[J]. PLoS One,2010,5(5):e10630.
    [18]Park JK, Lee EJ, Esau C, et al. Antisense inhibition of microRNA-21 or-221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma[J]. Pancreas,2009,38(7):e190-e199.
    [19]Lu Z, Liu M, Stribinskis V, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene[J]. Oncogene,2008,27(31):4373-4379.
    [20]Bhatti I, Lee A, James V, et al. Knockdown of microRNA-21 inhibits proliferation and increases cell death by targeting programmed cell death 4 (PDCD4) in pancreatic ductal adenocarcinoma[J]. J Gastrointest Surg,2011,15(1):199-208.
    [21]Greither T, Grochola LF, Udelnow A, et al. Elevated expression of microRNAs 155, 203,210 and 222 in pancreatic tumors is associated with poorer survival[J]. Int J Cancer, 2010,126(1):73-80.
    [22]Gironella M, Seux M, Xie MJ, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development[J]. Proc Natl Acad Sci U S A,2007,104(41):16170-16175.
    [23]Kong X, Du Y, Wang G, et al. Erratum to:detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients:miR-196a could be a potential marker for poor prognosis[J]. Dig Dis Sci,2010.56(2):602-9
    [24]Ma Y, Yu S, Zhao W, et al. miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2[J]. Cancer Lett, 2010,298(2):150-158.
    [25]Wang F, Xue X, Wei J, et al. hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations [J]. Br J Cancer, 2010,103(4):567-574.
    [26]Lu Z, Li Y, Takwi A, et al. miR-301a as an NF-kappaB activator in pancreatic cancer cells[J]. EMBO J,2011,30(1):57-67.
    [27]Park JK, Henry JC, Jiang J, et al. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor [J]. Biochem Biophys Res Commun,2011,406(4):518-23
    [28]Hao J, Zhang S, Zhou Y, et al. MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer[J]. Biochem Biophys Res Commun,2011.406(4):552-7
    [29]Hao J, Zhang S, Zhou Y, et al. MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer[J]. FEBS Lett,2011,585(1):207-213.
    [30]Zhang XJ, Ye H, Zeng CW, et al. Dysregulation of miR-15a and miR-214 in human pancreatic cancer[J]. J Hematol Oncol,2010,32;3:46.
    [31]Sureban SM, May R, Lightfoot SA, et al. DCAMKL-1 regulates epithelial-mesenchymal transition in human pancreatic cells through a miR-200a-dependent mechanism[J]. Cancer Res,2011,71(6):2328-2338.
    [32]Ho AS, Huang X, Cao H, et al. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer[J]. Transl Oncol,2010,3(2):109-113.
    [33]Jiang J, Lee EJ, Gusev Y, et al. Real-time expression profiling of microRNA precursors in human cancer cell lines[J]. Nucleic Acids Res,2005,33(17):5394-5403.
    [34]Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family[J]. Cell,2005,120(5):635-647.
    [35]Dangi-Garimella S, Strouch MJ, Grippo PJ, et al. Collagen regulation of let-7 in pancreatic cancer involves TGF-betal-mediated membrane type 1-matrix metalloproteinase expression[J]. Oncogene,2011,30(8):1002-1008.
    [36]Torrisani J, Bournet B, du Rieu MC, et al. let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression[J]. Hum Gene Ther,2009,20(8):831-844.
    [37]Li Y, Vandenboom TN, Wang Z, et al. miR-146a suppresses invasion of pancreatic cancer cells [J]. Cancer Res,2010,70(4):1486-1495.
    [38]Yan H, Wu J, Liu W, et al. MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells [J]. Hum Gene Ther, 2010,21(12):1723-1734.
    [39]Yu S, Lu Z, Liu C, et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer[J]. Cancer Res,2010,70(14):6015-6025.
    [40]Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells[J]. PLoS One,2009,4(8):e6816.
    [41]Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes[J]. RNA,2005,11(3):241-247.
    [42]Sood P, Krek A, Zavolan M, et al. Cell-type-specific signatures of microRNAs on target mRNA expression[J]. Proc Natl Acad Sci U S A,2006,103(8):2746-2751.
    [43]Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion[J]. Nature,2004,432(7014):226-230.
    [44]Olson P, Lu J, Zhang H, et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer[J]. Genes Dev,2009,23(18):2152-2165.
    [45]Roldo C, Missiaglia E, Hagan JP, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior[J]. J Clin Oncol,2006,24(29):4677-4684.
    [46]Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers[J]. Nature,2005,435(7043):834-838.
    [47]Albulescu R, Neagu M, Albulescu L, et al. Tissular and soluble miRNAs for diagnostic and therapy improvement in digestive tract cancers [J]. Expert Rev Mol Diagn, 2011,11(1):101-120.
    [48]Sadakari Y, Ohtsuka T, Ohuchida K, et al. MicroRNA expression analyses in preoperative pancreatic juice samples of pancreatic ductal adenocarcinoma[J]. JOP, 2010,11(6):587-592.
    [49]Giovannetti E, Funel N, Peters GJ, et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity[J]. Cancer Res,2010,70(11):4528-4538.
    [50]Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion[J]. Cancer Biol Ther,2010,10(8):748-757.
    [51]Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation[J]. Mol Cancer,2010,9:169.
    [52]Kong X, Du Y, Wang G, et al. Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients:miR-196a could be a potential marker for poor prognosis [J]. Dig Dis Sci,2010,56(2):602-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700