青藏高原沙蜥沿海拔梯度的生活史进化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爬行动物(特别是蜥蜴和蛇)之所以受到生态学家的青睐,是因为作为外温动物,它们高度依赖周围环境的气候条件,因此表现出许多环境诱导的生活史特征变异。爬行动物的生活史特征在种间以及种内不同种群间都存在差异,而海拔及其相关的环境因子是造成爬行动物生活史差异的主要因素。青藏高原地区地理环境独特,因此不同地区的自然环境存在较大的差异。这种独特的地理环境造就了青藏高原上生物分布及其特征的多样性,为进化生物学研究提供了理想的场地。本文以青藏高原上不同海拔分布的贵德沙蜥(Phrynocephalus putjatia)、青海沙蜥(Phrynocephalus vlangalii)、贵南沙蜥(Phrynocephalus guinanensis)和红尾沙蜥(Phrynocephalus erythrurus)等四种沙蜥的七个地理种群为研究对象,从形态学,种群生态学,繁殖生态学和分子生态学等方面综合研究不同海拔上高原沙蜥种间和种内的生活史特征的差异及其进化:探索不同海拔地区生活史特征变化的规律,验证这些变化趋势是否符合各种已知的生物地理学规律,并且进一步探讨不同海拔地区生活史特征差异形成的原因。
     贵德沙蜥、青海沙蜥、贵南沙蜥和红尾沙蜥这四种高原沙蜥中普遍存在两性形态特征的异形。其中雌性拥有较大的体长和腹长,而雄性具有较大的尾长、头部和四肢等特征。雄性蜥蜴的相对头部大小(头长和头宽)在幼体和成体之间没有显著差异,而成体雌性的相对头部特征小于幼体,表明成年雌性蜥蜴的头部特征的发育在成年后相对减慢。高原沙蜥两性异形可能是受到性选择和生育力选择两种压力共同作用的结果,也是蜥蜴体内各方面权衡后能量分配的差异导致的。
     种间比较时,四种沙蜥成体体长随海拔的升高而减小,这不符合Bergmann规律。高海拔物种选择较小的体型是对环境的适应性进化并且受到系统发生的影响。低温缺氧条件下,蜥蜴的体温维持和能量代谢受到影响,分配给生长的能量相对较少,这些压力都会使蜥蜴向小体型方向进化。尾长和头部特征随海拔的升高而减小,这符合Allen规律。较小的附肢特征具有较小的表面积,有利于蜥蜴充分利用环境温度,减少能量消耗保持身体相对恒定的温度。高原沙蜥种间和种群间雌雄体长的两性异形变化不符合Rensch规律。
     种内比较时,青海沙蜥和贵德沙蜥种内不同种群间,体长随海拔的升高而增大,符合Bergmann规律。这可能是不同地区的沙蜥出生体长和性成熟年龄差异引起的,主要是受到环境的影响。高海拔地区的贵德沙蜥和青海沙蜥与低海拔地区相比具有更小的尾长、头部特征和附肢长度,这符合Allen规律。青海沙蜥高海拔种群(玛多种群,MD)的雌性蜥蜴具有更大的相对腹长,而贵德沙蜥低海拔种群(贵德种群,GD)的雌性蜥蜴具有更大的相对腹长,种群间腹长的差异可能对后代大小产生一定的影响。而雄性蜥蜴的腹长在不同海拔之间没有显著差异。
     青藏高原沙蜥尾椎骨数目在雌雄之间没有显著差异,同时尾椎骨数目与体长没有显著相关性。另外,尾椎骨数目会随海拔的升高而减少,但是这种现象不能通过Jordan规律来解释。尾椎的差异可能受到遗传和系统发生的影响,温度也可能对在尾椎骨数目的变化有一定的影响。
     骨龄切片结果显示,青藏高原四种沙蜥参与繁殖个体的最大年龄为6龄,即度过6个冬眠期。采用Von Bertalanffy模型拟合体长的生长曲线,结果显示四种沙蜥雌雄体长在2龄之前没有显著差异,从3龄(性成熟)后雌雄体长开始出现显著差异。不同地理种群之间的生长率也存在差异。这些差异可能与蜥蜴生长和繁殖过程中能量分配的差异有关。青海沙蜥和贵德沙蜥低海拔种群性成熟年龄为2龄,高海拔地区为3龄。贵南沙蜥和红尾沙蜥的性成熟年龄为3龄。另外,四种沙蜥中雌性繁殖的优势年龄为3-4龄,但是青海沙蜥和贵德沙蜥低海拔种群3龄个体繁殖相对较多,而高海拔地区4龄个体繁殖相对较多。这些差异可能与不同海拔的温度环境有关。
     四种沙蜥实验室内产仔时间在6月29日到9月7日之间,随着海拔的升高产仔时间会推迟。种内高海拔种群繁殖雌性的平均体长和最小繁殖体长(性成熟体长)都大于低海拔种群。新生后代性比没有显著的性别偏移,同一种群不同年份之间也没有显著差异。
     种间和种内不同种群之间的繁殖生活史特征存在显著差异。青海沙蜥的平均窝仔数最大,而红尾沙蜥最小。各繁殖特征(窝仔数、后代大小、相对繁殖投入等)与海拔存在显著的相关性。相比低海拔地区,青海沙蜥高海拔地区的雌性产小窝大仔,且繁殖投入较小;而贵德沙蜥高海拔地区的雌性产小窝小仔,且繁殖投入较小。除了贵南种群和玛多种群,其它五个种群内都存在后代数量和大小之间权衡,但这种权衡关系不存在地区间差异。繁殖特征的差异受到遗传和环境的作用。
     四种沙蜥种间和种内遗传多样性存在显著的差异。线粒体DNA(ND2)的遗传多样性低于核DNA(RAG1)。遗传多样性受到环境因子的影响以及种群历史动态的影响。系统发生分析结果显示,ND2进化树得到3个进化枝,贵南和倒淌河种群处于贵德沙蜥分支中,且相互之间遗传距离非常小,没有达到种间遗传距离的水平,说明贵南和倒淌河的沙蜥在进化上属于贵德沙蜥,贵南沙蜥没有达到种的分类水平。而RAG1进化树中主分支不明确,倒淌河种群有一个单倍型与德令哈种群的一些单倍型在进化上比较相近。另外倒淌河蜥蜴的形态特征更加接近于青海沙蜥。这些都说明青海沙蜥和贵德沙蜥历史上可能发生过杂交事件,并且杂交使倒淌河沙蜥具有一部分青海沙蜥的核基因,从而导致倒淌河沙蜥生活史特征的特殊性。
     通过生活史特征和系统发生之间的比较分析显示,系统发生关系与种间形态特征和后代大小的变化趋势存在一致性,而与总体繁殖投入(窝仔数、窝仔重和相对窝仔重等)方面的变化趋势的一致性较差。因此,系统发生作用对不同物种间形态特征和后代大小的差异具有一定的影响,而对繁殖投入方面的影响较小,说明种间繁殖投入的差异可能还受到环境的影响。而系统发生作用对种内不同种群之间的生活史特征差异的影响较小,说明高原沙蜥种内生活史特征差异主要是受到环境影响。
     总之,青藏高原的隆升及其引起的环境因子的海拔差异是造成高原沙蜥种间、种内形态和繁殖对策等生活史特征差异和进化的主要原因。
Being ectothermic species, reptile (especially the lizards and snakes) life history traits are highly dependent on habitat conditions, thus exhibiting many life history variations induced by environmental factor. Therefore, they are favored by ecologjsts. Reptile life history traits often exhibit both interspecific and intraspecific variations, and elevation and related environmental factors contribute largely to the geographical variation. The geographical environment on Tibetan Plateau is unique, and there have great elevation drop and various habitat environments, which have contributions to current particular species distribution and diversity. Thus, it provided an ideal place for evolutionary biology studies. In this study, we chose seven populations belonging to four species of Phynocephalus (P. putjatia, P. vlangalii, P. guinanensis and P. erythrurus), which distributed in different altitudes, as object to study the life history traits variation and evolution in different altitudes from several aspects, including morphology, population ecology, reproductive ecology and molecular ecology. We intended to explore the life history variations of lizards from different altitudes and verify whether these variation trends conform to the known rules of biogeography, and to identify the sources of variation in life history.
     There are many differences in morphological traits were found between male and female in the four species. For adults, females have larger SVL and abdomen length than males, while males have larger tail length, relative head size and limb length in all the four Phrynocephalus. Relative head sizes are different in female between juveniles and adults, and adult female have smaller relative head size than juveniles, indicating that the development of female head is slow down after sexual maturity. The sexual size dimorphism (SSD) of these four Phynocephalus may be the result of a balance of sexual selection and fecundity selection, and also may be caused by the trade-off of energy allocation in vivo of lizards.
     Body size decreased with the increasing of altitude among species, which follows the converse to Bergmann's rule. The species at higher altitude with smaller body size is adaptive evolution on the environment and controled by the phylogeny. Under the condition of low temperature and hypoxia, the temperature maintenance and energy metabolism of lizard are under restrictions and energy for growth may relatively less, which make lizards evolve into smaller size. However, the higher altitude species had relative smaller tail length and head size which match the Allen's rule. Smaller appendages have smaller superficial area that would be conducive for lizard to make full use of the environment temperature and reduce energy consumption to keep the relatively constant temperature of body. The difference in male and female size among species allows rejection of Rensch's rule.
     Within P. putjatia and P. vlangalii, lizards from high altitude have larger body size than those from low altitude, which follows Bergmann's rule and may be the results of the differences in newborn body size and sexual maturely size among populations. The intraspecific difference may be under the influence of environment. Lizards from high altitude population have smaller tail length, head size and limb length, which follows Allen's rule. There is no difference in the relative abdomen length of male among altitudes. However, females from high altitude have larger relative abdomen length in P. vlangalii, but have smaller relative abdomen length in P. putjatia, than those from low altitude. The difference in abdomen length among populations may affect offspring size.
     The caudal vertebra number of Phrynocephalus has no difference between the genders, and has no significant correlation with body size, which indicated that the caudal vertebra number of Phrynocephalus is fixed after birth, and would not change with the increasing of body size. So this phenomenon could not be explained by the Jordan's rule. The variation of caudal vertebra number may be affected by genetic and phylogenetic factors, as well as temperature.
     Skeletochronology analysis showed that the oldest age of reproductive individual in the four Phrynocephalus was6yr (experience six hibernation). Body size was almost the same between the genders before2yr; however, the difference arisen at3yr. Females grew faster than males from2yr to3yr (before sexual maturity), and the other age stages have the same growth rate between the genders. The growth rate also differed among populations/species. The variation of growth rate may caused by the difference of energy allocation in the process of growth and reproduction. Within P. vlangalii and P. putjatia, the age at sexual maturity of lizards from low altitude was2yr and younger than that from high altitude (3yr). And the age at sexual maturity of P. guinanensis and P. erythrurus were3yr.3yr and4yr were the predominant age of females participated in reproduction.3yr females dominate at low altitude and4yr females dominate at high altitude. These differences may be related to the variation of environmental temperature at different altitudes.
     Females gave birth between29June and7September, and the birth dates of females from lower elevation were earlier than those from higher elevation. Within species, females from the higher elevation had larger SVL at sexual maturity and mean SVL. Female size and age have positive effect on litter size, litter mass and offspring size in three Phrynocephalus except for P. erythrurus. Newly born offspring have no gender-bending, and the sex ratios have no difference among years.
     Reproductive traits varied significantly among populations and species. Reproductive traits were correlated with elevation. Females from the higher elevation localities had a lower RLM than those from the lower elevations. In P. vlangalii, females from the high elevation produced fewer and larger offspring. However, in P. putjatia, females from the high elevation produced fewer and smaller offspring. Trade-offs between offspring size and number were detected in P. putjatia, P. vlangalii and P. guinanensis, but not in P. erythrurus.
     The genetic diversity varied among populations and species. MtDNA (ND2) genetic diversity was higher than nuclear DNA (RAG1). The genetic diversity of Phrynocephalus may be affected by environmental factors and the migration of population. ND2and RAG1data were used to establish cladogram tree. ND2tree revealed three clades, and the haplotypes from GN and DTH were in the clade of P. putjatia. The genetic distance among GN, DTH and other P. putjatia populations were smaller than that between species, which indicated that lizards from DTH and GN are P. putjatia, and P. guinanensis is not a species. The pattern of RAG1tree is not clear. A haplotype from DTH and some haplotypes from DLH mixed in a clade, indicating that the ancestors of P. putjatia and P. vlangalii might have hybridization. Hence, it is make sense that lizards from DTH have similar life history traits with P. vlangalii.
     Life history phylogenetic comparative analysis suggested that phylogeny had large effect on the interspecific variation of morphological characteristics and offspring size, and had little effect on total reproductive investment (litter size, litter mass and RLM), which may also affected by environmental factors. Phylogeny had little effect on the intraspecific variation of life history, indicating that the intraspecific variation of life history may mainly affected by environmental factors.
     In summary, the variation of environmental factors along elevation, which caused by the uplift of the Tibetan Plateau, may be the main force behind the variation and evolution of life history.
引文
1. Fox C.W., Roff D.A., Fairbaim D.J. Evolutionary ecology:Concepts and case studies. NewYork:Oxford University Press,2001.
    2. Stearns S.C. The evolution of life histories. New York:Oxford University Press,1992.
    3. Roff D.A. Life history evolution. Sunderland, MA:Sinauer Associates.2001.
    4. Ferguson GW., Fox S.F. Annual variation of survival advantage of large juvenile side-blotched lizards, Uta stansburiana:its causes and evolutionary significance. Evolution. 1984,38(2):342-349.
    5. Ferguson GW., Talent L.G. Life-history traits of the lizard Sceloporus undulatus from two populations raised in a common laboratory environment. Oecologia.1993,93(1):88-94.
    6. Sinervo B. The evolution of maternal investment in lizards:an experimental and comparative analysis of egg size and its effects on offspring performance. Evolution.1990,44(2):279-294.
    7. Roff D.A. The evolution of life histories:theory and analysis. London:Chapman & Hall, 1993.
    8. Einum S., Fleming I.A. Highly fecund mothers sacrifice offspring survival to maximize fitness. Nature.2000,405(6786):565-567.
    9. Pough F.H. The advantages of ectothermy for tetrapods. American Naturalist. 1980,115(1):92-112.
    10. Ray C. The application of Bergmann's and Allen's rules to the poikilotherms. J Morph. 1960,106(1):85-108.
    11. Niewiarowski P. Understanding geographic life-history variation in lizards. Lizard ecology: historical and experimental perspectives Princeton University Press, Princeton, NJ. 1994:31-49.
    12. Zamora-Abrego J.G, Zuniga-Vega J.J., de Oca A.N.M. Variation in Reproductive Traits within the Lizard Genus Xenosaurus. Journal of herpetology.2007,41:630-637.
    13. Wapstra E., Swain R. Geographic and annual variation in life-history traits in a temperate zone Australian skink. Journal of herpetology.2001,35:194-203.
    14. Wapstra E., Swain R., O'Reilly J.M., Montgomery W. Geographic variation in age and size at maturity in a small Australian viviparous skink. Copeia.2001,2001(3):646-655.
    15. McDowall R. Jordan's and other ecogeographical rules, and the vertebral number in fishes. Journal of biogeography.2007,35(3):501-508.
    16. Bergmann C. On the relations of size and thermo-economy in animals. Gottinger Studien. 1847,3:595-708.
    17. Ashton K.G., Tracy M.C., de Queiroz A. Is Bergmann's rule valid for mammals? The American Naturalist.2000,156(4):390-415.
    18. Meiri S., Dayan T. On the validity of Bergmann's rule. Journal of biogeography. 2003,30(3):331-351.
    19. Olalla-Tarraga M.A., Rodriguez M.A., Hawkins B.A. Broad-scale patterns of body size in squamate reptiles of Europe and North America. Journal of biogeography. 2006,33(5):781-793.
    20. Timofeev S.F. Bergmann's Principle and Deep-Water Gigantism in Marine Crustaceans. Biology Bulletin.2001,28(6):646-650.
    21. Allen J.A. The influence of physical conditions in the genesis of species. Radical Review. 1877,1:108-140.
    22. Alho J., Herczeg G, Laugen A., Rasanen K., Laurila A., Merila J. Allen's rule revisited: quantitative genetics of extremity length in the common frog along a latitudinal gradient. Journal of Evolutionary Biology.2011,24(1):59-70.
    23. Hamilton T. The adaptive significances of intraspecific trends of variation in wing length and body size among bird species. Evolution.1961,15(2):180-195.
    24. Steegmann Jr A.T. Human cold adaptation:an unfinished agenda. American Journal of Human Biology.2007,19(2):218-227.
    25. Millien V., Kathleen Lyons S., Olson L., Smith F.A., Wilson A.B., Yom-Tov Y. Ecotypic variation in the context of global climate change:revisiting the rules. Ecology Letters. 2006,9(7):853-869.
    26. Jordan D.S. Relations of temperature to vertebrae among fishes.1891.
    27. Lindsey C. Pleomerism, the widespread tendency among related fish species for vertebral number to be correlated with maximum body length. Journal of the Fisheries Board of Canada. 1975,32(12):2453-2469.
    28. Forsman A., Lindell L. The advantage of a big head:swallowing performance in adders, Vipera berus. Functional Ecology.1993:183-189.
    29. Forsman A., Shine R. Parallel geographic variation in body shape and reproductive life history within the Australian scincid lizard Lampropholis delicata. Functional Ecology. 1995,9(6):818-828.
    30. King R.B. Variation in brown snake(Storeria dekayi) morphology and scalation:sex, family, and microgeographic differences. Journal of herpetology.1997,31(3):335-346.
    31. Foster S., Baker J., Bell M. Phenotypic integration of life history and morphology:an example from three-spined stickleback, Gasterosteus aculeatus L. Journal of fish biology. 2006,41(sB):21-35.
    32. Adolph S.C., Porter W.P. Temperature, activity, and lizard life histories. American Naturalist. 1993,142(2):273-295.
    33. Shine R., Harlow P.S. Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology.1996,77(6):1808-1817.
    34. Losos J.B. Integrative approaches to evolutionary ecology:Anolis lizards as model systems. Annual Review of Ecology and Systematics.1994:467-493.
    35. Van Damme R., Bauwens D., Brafia F., Verheyen R.F. Incubation temperature differentially affects hatching time, egg survival, and hatchling performance in the lizard Podarcis muralis. Herpetologica.1992,48:220-228.
    36.林植华,计翔.孵化温湿度对北草蜥孵化卵和孵出幼体的影响.动物学研究.1998,19(6):439445.
    37. Brana F., Ji X. Influence of incubation temperature on morphology, locomotor performance, and early growth of hatchling wall lizards (Podarcis muralis). Journal of Experimental Zoology.2000,286(4):422-433.
    38. Qualla C.P., Shine R., Donnellan S., Hutchinsonm M. The evolution of viviparity within the Australian scincid lizard Lerista bougainvillii. Journal of Zoology.2009,237(1):13-26.
    39. Schwaner T.D. Population structure of black tiger snakes, Notechis ater niger, on offshore islands of South Australia. Biology of Australasian frogs and reptiles.1985:35-46.
    40. Darwin C. The descent of man and selection in relation to sex:London:John Murray,1871.
    41. Zhang X.D., Ji X., Luo L.G., Gao J.F., Zhang L. Sexual dimorphism and female reproduction in the Qinghai toad-headed lizard Phrynocephalus vlangalii. Acta Zoologica Sinica. 2005,51(6):1006-1012.
    42. Cooper W.E., Jr., Vitt L.J. Sexual Dimorphism of Head and Body Size in an Iguanid Lizard: Paradoxical Results. The American Naturalist.1989,133(5):729-735.
    43. Shine R., Mason R.T. Does large body size in males evolve to facilitate forcible insemination? A study on garter snakes. Evolution.2005,59(11):2426-2432.
    44. Olsson M., Shine R., Wapstra E., Ujvari B., Madsen T. Sexual dimorphism in lizard body shape:the roles of sexual selection and fecundity selection. Evolution.2002,56(7):1538-1542.
    45. Liu P., Zhao W., Liu Z., Dong B., Chen H. Sexual Dimorphism and Female Reproduction in Lacerta vivipara in Northeast China. Asiatic Herpetological Research.2008,11:98-104.
    46. Brana F. Sexual dimorphism in lacertid lizards:male head increase vs female abdomen increase? Oikos.1996:511-523.
    47.林植华,计翔.浙江丽水中国石龙子的食性,两性异形和雌性繁殖.生态学报.2000,20(2):304-310.
    48. Powell G.L., Russell A.P. Growth and sexual size dimorphism in Alberta populations of the eastern short-horned lizard, Phrynosoma douglassi brevirostre. Canadian journal of zoology. 1985,63(1):139-154.
    49.张永普,计翔.蓝尾石龙子的头部两性异形和食性.动物学报.2004,50(5):745-752.
    50.杜卫国,计翔.蓝尾石龙子的生长,两性异形及雌性繁殖.动物学研究.2001,22(4):279-286.
    51. Stamps J. Sexual size dimorphism in species with asymptotic growth after maturity. Biological Journal of the Linnean Society.1993,50(2):123-145.
    52.吴鹏飞,王跃招,郭海燕,王硕果,曾宗永,曾涛,et al.青海沙蜥的生长及两性生长差异.四川大学学报(自然科学版).2005,42(6):1252-1257.
    53. Johnson J.B., McBrayer L.D., Saenz D., Carpenter GC. Allometry, sexual size dimorphism, and niche partitioning in the Mediterranean gecko (Hemidactylus turcicus). The southwestern naturalist.2005,50(4):435-439.
    54. Dunham A.E. Populations in a fluctuating environment:the comparative population ecology of the iguanid lizards Sceloporus merriami and Urosaurus ornatus. University of Michigan Museum of Zoology.1981.
    55. Johnson G. Growth and survivorship as proximate causes of sexual size dimorphism in peninsula dragon lizards Ctenophorus fionni. Austral Ecology.2010,36(2):117-125.
    56. Shine R., Schwarzkopf L. The evolution of reproductive effort in lizards and snakes. Evolution.1992,46(1):62-75.
    57. Dunham A.E. Demographic and life-history variation among populations of the iguanid lizard Urosaurus ornatus:implications for the study of life-history phenomena in lizards. Herpetologica.1982:208-221.
    58. Grant B.W., Dunham A.E. Elevational covariation in environmental constraints and life histories of the desert lizard Sceloporus merriami. Ecology.1990,71:1765-1776.
    59. Tinkle D.W., Dunham A.E., Congdon J.D. Life history and demographic variation in the lizard Sceloporus graciosus:a long-term study. Ecology.1993,74:2413-2429.
    60. Rohr D.H. Demographic and life-history variation in two proximate populations of a viviparous skink separated by a steep altitudinal gradient. Journal of Animal Ecology. 1997,66(4):567-578.
    61. Shine R., Charnov E.L. Patterns of survival, growth, and maturation in snakes and lizards. American Naturalist.1992,139:1257-1269.
    62. Ryan T.J., Semlitsch R.D. Intraspecific heterochrony and life history evolution:decoupling somatic and sexual development in a facultatively paedomorphic salamander. Proceedings of the National Academy of Sciences.1998,95(10):5643-5648.
    63. Tinkle D.W., Ballinger R.E. Sceloporus undulatus:a study of the intraspecific comparative demography of a lizard. Ecology.1972,53:570-584.
    64. Dunham A.E. Food availability as a proximate factor influencing individual growth rates in the iguanid lizard Sceloporus merriami. Ecology.1978,59:770-778.
    65. Roff D.A. Life history evolution. Sunderland:Sinauer Associates,2002.
    66. Kozlowski J. Optimal allocation of resources to growth and reproduction:implications for age and size at maturity. Trends in Ecology & Evolution.1992,7(1):15-19.
    67. Stearns S.C. Life history evolution:successes, limitations, and prospects. Naturwissenschaften. 2000,87(11):476-486.
    68.聂海燕,刘季科,苏建平,张堰铭,张洪海.动物生活史进化理论研究进展.生态学报.2007,27(10):4267-4277.
    69. Sinervo B., Adolph S.C. Growth plasticity and thermal opportunity in Sceloporus lizards. Ecology.1994,75(3):776-790.
    70. Shine R. Reproduction in Australian elapid snakes Ⅱ. Female reproductive cycles. Australian Journal of Zoology.1977,25(4):655-666.
    71. Schwarzkopf L. Annual variation of litter size and offspring size in a viviparous skink. Herpetologica.1992,48(4):390-395.
    72. Lima S.L. Stress and decision making under the risk of predation:recent developments from behavioral, reproductive, and ecological perspectives. Advances in the Study of Behavior. 1998,27:215-290.
    73. Shine R. Life-history evolution in reptiles. Annual review of ecology, evolution, and systematics.2005,36:23-46.
    74. Brown G.P., Shine R. Reproductive ecology of a tropical natricine snake, Tropidonophis mairii (Colubridae). Journal of Zoology.2002,258(1):63-72.
    75. Madsen T., Shine R. Conflicting conclusions from long-term versus short-term studies on growth and reproduction of a tropical snake. Herpetologica.2001:147-156.
    76. Vitt L.J., Colli GR. Geographical ecology of a Neotropical lizard:Ameiva ameiva (Teiidae) in Brazil. Canadian journal of zoology.1994,72(11):1986-2008.
    77. Ballinger R.E., Congdon J.D. Food resource limitation of body growth rates in Sceloporus scalaris (Sauna:Iguanidae). Copeia.1980,1980(4):921-923.
    78. Fitch H. Reproductive cycles in lizards and snakes. Univ Kansas Mus Nat Hist Misc Publ. 1970,52:1-247.
    79. Shine R., Harlow P., Keogh J. The influence of sex and body size on food habits of a giant tropical snake, Python reticulatus. Functional Ecology.1998,12(2):248-258.
    80. Seigel R.A., Collins J.T., Novak S.S. Snakes:ecology and evolutionary biology. New York: Macmillan 1987.
    81. Lin L.H., MAO F., CHEN C., JI X. Reproductive traits of the gray ratsnake Ptyas korros from three geographically distinct populations. Current Zoology.2012,58(5):684-691.
    82. Ji X., DU W.G., LIN Z.H., LUO L.G Measuring temporal variation in reproductive output reveals optimal resource allocation to reproduction in the northern grass lizard, Takydromus septentrionalis. Biological Journal of the Linnean Society.2007,91(2):315-324.
    83. Du W.G, Ji X., Zhang Y.P., Xu X.F., Shine R. Identifying sources of variation in reproductive and life-history traits among five populations of a Chinese lizard (Takydromus septentrionalis, Lacertidae). Biological Journal of the Linnean Society.2005,85(4):443-453.
    84. Wilson B.S., Cooke D.E. Latitudinal variation in rates of overwinter mortality in the lizard Uta stansburiana. Ecology.2004,85(12):3406-3417.
    85. Dunham A.E., Miles D.B., Resnick D.N. Life history pattern in Squamate reptiles. New York: Alan R.Liss,1988.
    86. Bonnet X., Naulleau G, Shine R., Lourdais O. Short-term versus long-term effects of food intake on reproductive output in a viviparous snake, Vipera aspis. Oikos.2003,92(2):297-308.
    87. Beaupre S.J. Comparative ecology of the mottled rock rattlesnake, Crotalus lepidus, in Big Bend National Park. Herpetologica.1995,51(1):45-56.
    88. Zuffi M.A.L., Gentilli A., Cecchinelli E., Pupin F., Bonnet X., Filippi E., et al. Geographic variation of body size and reproductive patterns in Continental versus Mediterranean asp vipers, Vipera aspis. Biological Journal of the Linnean Society.2009,96(2):383-391.
    89. Olsson M., Shine R. The limits to reproductive output:offspring size versus number in the sand lizard (Lacerta agilis). The American Naturalist.1997,149(1):179-188.
    90. Charnov E.L., Downhower J.F. A trade-off-invariant life-history rule for optimal offspring size. Nature.1995,376(6539):418-419.
    91. Stearns S.C. Trade-offs in life-history evolution. Functional Ecology.1989,3(3):259-268.
    92. Ji X., Wang Z.W. Geographic variation in reproductive traits and trade-offs between size and number of eggs of the Chinese cobra (Naja atra). Biological Journal of the Linnean Society. 2005,85(1):27-40.
    93. Sakai S., Harada Y. Why do large mothers produce large offspring? Theory and a test. The American Naturalist.2001,157(3):348-359.
    94. Smith C.C., Fretwell S.D. The optimal balance between size and number of offspring. American Naturalist.1974,108:499-506.
    95. Madsen T., Shine R. Silver spoons and snake body sizes:prey availability early in life influences long-term growth rates of free-ranging pythons. Journal of Animal Ecology. 2000,69(6):952-958.
    96. Bernardo J. Experimental analysis of allocation in two divergent, natural salamander populations. American Naturalist.1994,143:14-38.
    97. Ji X., Brana F. Among clutch variation in reproductive output and egg size in the wall lizard (Podarcis muralis) from a lowland population of northern Spain. Journal of herpetology. 2000,34:54-60.
    98. Doughty P., Shine R. Reproductive energy allocation and long-term energy stores in a viviparous lizard (Eulamprus tympanum). Ecology.1998,79(3):1073-1083.
    99.计翔,杜卫国.蝘蜒头、体大小的两性异形和雌体繁殖.动物学研究.2000,21(5):349-354.
    100. Ford N.B., Seigel R.A. Phenotypic plasticity in reproductive traits:evidence from a viviparous snake. Ecology.1989,70:1768-1774.
    101.Bauwens D., Diaz-Uriarte R. Covariation of life-history traits in lacertid lizards:a comparative study. American Naturalist.1997,149:91-111.
    102. Wang Y., Weihong J., Zhao W., Yu N., Liu N. Geographic variation in clutch and egg size for the lizard Phynocephalus przewalskii (Squamata:Agamidae). Asian Herpetological Research. 2011,2(2):97-102.
    103.Madsen T., Shine R. Rain, fish and snakes:climatically driven population dynamics of Arafura filesnakes in tropical Australia. Oecologia.2000,124(2):208-215.
    104. Jin Y.T., Liu N.F. Altitudinal variation in reproductive strategy of the toad-headed lizard, Phynocephalus vlangalii in North Tibet Plateau (Qinghai). Amphibia-Reptilia. 2007,28(4):509-515.
    105. Jordan M.A., Snell H.L. Life history trade-offs and phenotypic plasticity in the reproduction of Galapagos lava lizards (Micrvlophus delanonis). Oecologia.2002,130(1):44-52.
    106. Niewiarowski P.H. Effects of supplemental feeding and thermal environment on growth rates of eastern fence lizards, Sceloporus undulatus. Herpetologica.1995,51:487-496.
    107. Smith S.A., Austin C.C., Shine R. A phylogenetic analysis of variation in reproductive mode within an Australian lizard (Saiphos equalis, Scincidae). Biological Journal of the Linnean Society.2001,74(2):131-139.
    108. Myers N., Mittermeier R.A., Mittermeier C.G., Da Fonseca GA., Kent J. Biodiversity hotspots for conservation priorities. Nature.2000,403(6772):853-858.
    109. Roy K., Valentine J.W., Jablonski D., Kidwell S.M. Scales of climatic variability and time averaging in Pleistocene biotas:implications for ecology and evolution. Trends in Ecology & Evolution.1996,11(11):458-463.
    110. Holder K., Montgomerie R., Friesen V. A test of the glacial refugium hypothesis using paterns fo mitochondrial and nuclear DNA sequence variation in rock ptarmigan. Evolution. 1999,53:1936-1950.
    111.马继雄,鲍敏.青海沙蜥和密点麻蜥生存环境的比较研究.青海师范大学学报:自然科学版.1999,(3):46-48.
    112.吴鹏飞,王跃招,朱波,曾宗永.若尔盖青海沙蜥——洞穴密度与深度的生态内涵.动物学研究.2004,25(4):311-315.
    113.吴鹏飞,王跃招,王硕果,曾涛,郭海燕,蔡红霞等.青海沙蜥(蜥蜴亚目:鬣蜥科)种群的年龄结构与性比.2002,39:1134-1139.
    114.黄族豪,刘遒发.青海沙蜥雌性生殖对策及进化.兰州大学学报(自然科学版).2002,38(6):99-103.
    115.金园庭,田仁荣,刘迺发.四种沙蜥的形态地理变异Bergmann和Allen规律的检验.动物学报.2006,52(5):838-845.
    116.王跃招,曾晓茂,方自力,刘志君,吴贯夫.西藏沙蜥属一新种—泽当沙蜥.动物学研究.1996,17(1):27-29.
    117.王跃招,曾晓茂,方自力,吴贯夫.西藏几种沙蜥的分类,演化,分布及其与古地史的关 系.动物学研究.1999,20:178-185.
    118.江耀明,黄庆云,赵尔宓.青海沙蜥一新亚种及其生态初步观察.动物学报.1980,26(2):178-183.
    119.王跃招,江耀明.青海沙蜥红原亚种分类地位的探讨.两栖爬行动物学论文集:110-1151992.
    120.金园庭,刘迺发,骆爽,马新年.青海高原沙蜥(Phrynocephalus)分类、系统发生——基于mtDNA的研究.国动物学会两栖爬行动物第十一辑.2007,11:9-14.
    121. Jin Y.T., Liu N.F. Ecological Genetics of Phrynocephalus vlangalii on the North Tibetan (Qinghai) Plateau:Correlation between Environmental Factors and Population Genetic Variability. Biochemical genetics.2008,46(9):598-604.
    122. Jin Y.T., Brown R.P., Liu N.F. Cladogenesis and phylogeography of the lizard Phrynocephalus vlangalii (Agamidae) on the Tibetan plateau. Mol Ecol. 2008,17(8):1971-1982.
    123.邱清波,杜宇,林炽贤.沙蜥属13种蜥蜴基于16S rRNA序列的系统发生关系.海南师范学院学报:自然科学版.20(4):350-354.
    124. Pang J., Wang Y., Zhong Y, Rus Hoelzel A., Papenfuss T.J., Zeng X., et al. A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol.2003,27(3):398-409.
    125. Guo X.G, Wang Y.Z. Partitioned Bayesian analyses, dispersal-vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae:Phrynocephalus):A re-evaluation. Mol Phylogenet Evol.2007,45(2):643-662.
    126. Noble D.W., Qi Y, Fu J. Species delineation using Bayesian model-based assignment tests:a case study using Chinese toad-headed agamas (genus Phrynocephalus). Bmc Evol Biol. 2010,10(1):1-15.
    127. Jin Y, Liu N., Li J. Elevational variation in body size of Phrynocephalus vlangalii in the North Qinghai-Xizang (Tibetan) Plateau. Belgian Journal of Zoology.2007,137(2):197.
    128.赵尔宓,赵肯堂,周开亚.中国动物志,爬行纲,第二卷,有鳞目,蜥蜴亚目.1999.
    129.陈强,韩昭雪.变色沙蜥繁殖的研究.兰州大学学报:自然科学版.1993,29(4):199-203.
    130.刘迺发,陈强,解雪梅.荒漠沙蜥繁殖生态研究.生态学报.1996,16(3):276-281.
    131.熊晔,王跃招.青海沙蜥红原亚种的骨骼系统解剖及分类意义探讨.动物分类学报.31(2):231-238.
    132.曾晓茂,王跃招,刘志君,方自力,吴贯夫,瑟奥多.杰.帕宾富斯,et al.九种沙晰的核型——兼论中国沙晰属核型演化.动物学报.1997,43(4):399-410.
    133. Zhao E.M., Adler K. Herpetology of China. Society of the Study of Amphibians and Reptiles. Oxford,Ohio, USA 1993.
    134.赵肯堂.中国沙蜥属概述及种类检索.两栖爬行动物学研究.贵阳:贵州科技出版社;1997.
    135.赵肯堂.沙蜥属的分类术语及中国沙蜥图鉴.铁道师院学报.1999,16:46-53.
    136.赵肯堂.中国沙蜥属的分类和分布研究.内蒙古大学学报(自然科学版).1979,2:111-121.
    137.王跃招,曾晓茂,方自力,吴贯夫,刘志君.沙蜥属一有效种贵德沙蜥及红原沙蜥的分类研究(蜥蜴亚目:鬣蜥科).动物分类学报.2002,27:372-383.
    138. Pope C.H. Natural history of Central Asia,V01.X. The Reptiles of China. New York: American Museum of Nature History; 1935.
    139. Bedriaga J.V. wissenschaflliche resultate der von N. M. Przewalski nach Central-Asien untemommenen Reisen,Zoologischer Theil, Amphibien and Reptilien. Annual Reports of the Zoological Museum of the Emper or Academy of Sciences(St Petersburg). 1905-1909,3:79-278.
    140.金园庭.青藏高原沙蜥的进化研究.博士学位论文.兰州:兰州大学,2008.
    141. Jin Y., Liu N. Phylogeography of Phrynocephalus erythrurus from the Qiangtang Plateau of the Tibetan Plateau. Mol Phylogenet Evol.2010,54(3):933-940.
    142. Jin Y.T., Brown R.P. Species history and divergence times of viviparous and oviparous Chinese toad-headed sand lizards (Phrynocephalus) on the Qinghai-Tibetan Plateau. Mol Phylogenet Evol.2013,60:259-268.
    143. Dunham A.E., Miles D.B. Patterns of covariation in life history traits of squamate reptiles: the effects of size and phylogeny reconsidered. The American Naturalist. 1985,126(2):231-257.
    144. Dunham A.E., Miles D.B., Reznick D.N. Life history patterns in squamate reptiles. Biology of the Reptilia.1988,16:441-522.
    145. Shine R. Relative clutch mass and body shape in lizards and snakes:is reproductive investment constrained or optimized? Evolution.1992,46(3):828-833.
    146. Cox R.M., Butler M.A., John-Alder H.B. The evolution of sexual size dimorphism in reptiles. Sex, size, and gender roles:evolutionary studies of sexual size dimorphism.2007:38.
    147. Ji X., Lin L.-H., Lin C.-X., Qiu Q.-B., Du Y. Sexual dimorphism and female reproduction in the many-lined sun skink (Mabuya multifasciata) from China. Journal of herpetology. 2006,40(3):351-357.
    148. Ji X., Zhou W.H., Zhang X.D. Sexual dimorphism and reproduction in the northern grass lizard Takydromus septentrionalis. Russia Journal of Herpetology.1998,5:44-48.
    149.许雪峰,计翔.山地麻蜥个体发育过程中头部两性异形和食性的变化.应用生态学报.2003,14(4):557-561.
    150. Barbadillo L.J., Bauwens D. Sexual dimorphism of tail length in lacertid lizards:test of a morphological constraint hypothesis. Journal of Zoology.1997,242(3):473-482.
    151. Ji X., Wang Y.Z., Wang Z. New species of Phrynocephalus (Squamata, Agamidae) from Qinghai, Northwest China. Zootaxa.2009,1988:61-68.
    152.张永普,计翔.北草蜥个体发育过程中头部两性异形及食性的变化.动物学研究.2000,21(3):181-186.
    153. Ji X., Qiu Q.-B., Diong C.H. Sexual dimorphism and female reproductive characteristics in the oriental garden lizard, Calotes versicolor, from Hainan, Southern China. Journal of herpetology.2002,36(1):1-8.
    154.李宏,计翔,屈彦福,高建芳,章玲.密点麻蜥的两性异形和雌性繁殖.动物学报.2006,52(2):250-255.
    155.刘洋,宋玉成,李文蓉,时磊.吐鲁番沙虎头,体大小的两性异形及其食性的季节性变化.2010.
    156.何南,武正军,蔡凤金,王振兴,于海,黄乘明.鳄蜥的两性异形.生态学杂志.2011,30(1):7-11.
    157. Wang Y, Wang H. Geographic variation and diversity in three species of Phrynocephalus in the Tengger Desert, western China. Asiat Herpetol Res.1993,5:65-73.
    158.赵伟.荒漠沙蜥的生活史进化.博士学位论文.兰州:兰州大学,2011.
    159.屈彦福.草原沙晰和变色沙晰生活史特征与热生态学的比较研究.硕士学位论文.南京:南京师范大学,2006.
    160.刘洋,时磊.奇台沙蜥生长过程中的两性异形.四川动物.2009,28(5):710-713.
    161. Ray C. The application of Bergmann's and Allen's rules to the poikilotherms. Journal of Morphology.2005,106(1):85-108.
    162. Angilletta Jr M.J., Niewiarowski P.H., Dunham A.E., Leache A.D., Porter W.P. Bergmann's clines in ectotherms:illustrating a life-history perspective with sceloporine lizards. The American Naturalist.2004,164(6):168-183.
    163.Mathies T., Andrews R.M. Thermal and reproductive biology of high and low elevation populations of the lizard Sceloporus scalaris:implications for the evolution of viviparity. Oecologia.1995,104(1):101-111.
    164. Etheridge R. Lizard Caudal Vertebrae. Copeia.1967,1967(4):699-721.
    165.郭砺,赵辰光.草原沙蜥(Phyrnocephalus frontalis)生殖策略的研究’.内蒙古大学学报:自然科学版.2001,32(2):214-216.
    166. Herrel A., De Grauw J. Head shape and bite performance in xenosaurid lizards. Journal of Experimental Zoology Part A:Comparative Experimental Biology.2001,290:101-107.
    167.Losos J.B. Ecomorphology, performance capability, and scaling of West Indian Anolis lizards: an evolutionary analysis. Ecological Monographs.1990,60(369-388).
    168. Van Damme R., Aerts P., Vanhooydonck B. Variation in morphology, gait characteristics and speed of locomotion in two populations of lizards. Biological Journal of the Linnean Society. 1998,63:409-427.
    169. Qi Y., Noble D., Fu J., Whiting M. Spatial and Social Organization in a Burrow-Dwelling Lizard (Phynocephalus vlangalii) from China.7(7):. PLoS ONE 2012,7(7):1-8.
    170.王硕果,曾宗永,吴鹏飞,蓝振江,王跃招.青海沙蜥的巢域研究.四川大学学报(自然科学版).2004,41:403-408.
    171. Arnold S.J., Bennett A.F. Behavioural variation in natural populations. V. Morphological correlates of locomotion in the garter snake (Thamnophis radix). Biological Journal of the Linnean Society.1988,34(2):175-190.
    172. King R.B. Sexual dimorphism in snake tail length:sexual selection, natural selection, or morphological constraint? Biological Journal of the Linnean Society.1989,38(2):133-154.
    173. Abouheif E., Fairbaim D.J. A comparative analysis of allometry for sexual size dimorphism: assessing Rensch's rule. American Naturalist.1997,149(3):540-562.
    174. Frydlova P., Frynta D. A test of Rensch's rule in varanid lizards. Biological Journal of the Linnean Society.2010,100(2):293-306.
    175. Cox R.M., Butler M.A., John-Alder H.B. The evolution of sexual size dimorphism in reptiles. Oxford:Oxford University Press,2007.
    176. Navas C.A. Herpetological diversity along Andean elevational gradients:links with physiological ecology and evolutionary physiology. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology.2002,133(3):469-485.
    177. Andrews R.M. Geographic variation in field body temperature of Sceloporus lizards. Journal of Thermal Biology.1998,23(6):329-334.
    178. Peters R.H. The ecological implications of body size. Cambridge:Cambridge University Press,1986.
    179. Dunham A.E., Miles D.B., Resnick D.N. Life history pattern in Squamate reptiles. In:Gans G, Pough F.H., editors. Biology of the Reptilia. New York:Alan R. Liss; 1988. p.441-522.
    180. Brown R.P., Griffin S. Lower selected body temperatures after food deprivation in the lizard Anolis carolinensis. Journal of Thermal Biology.2005,30(1):79-83.
    181. Hammond K.A., Szewczak J., Krdl E. Effects of altitude and temperature on organ phenotypic plasticity along an altitudinal gradient Journal of Experimental Biology. 2001,204(11):1991-2000.
    182. Moran E.F. Human adaptability. an introduction to ecological anthropology. Colorado westview press,2008.
    183.Hendry M.A., Wenburg J.K., Myers K.W., Hendry A.P. Genetic and phenotypic variation through the migratory season provides evidence for multiple populations of wild steelhead in the Dean River, British Columbia. Transactions of the American Fisheries Society. 2002,131(3):418-434.
    184.计翔,许雪峰,林植华.孵化温度对火赤链游蛇幼体特征的影响兼评剩余卵黄的功能.动物学研究.1999,20(5):342-346.
    185.唐晓龙.青藏高原两种沙蜥的代谢特征及其对环境的适应.博士学位论文.兰州:兰州大学,2013.
    186. Morrison C., Hero J.-M., Browning J. Altitudinal Variation in the Age at Maturity, Longevity, and Reproductive Lifespan of Anurans in Subtropical Queensland. Herpetologica. 2004,60(l):34-44.
    187. Zug G.R., Vitt L., Caldwell J.P. Herpetology:an introductory biology of amphibians and reptiles:Access Online via Elsevier,2001.
    188. Begon M., Parker GA. Should egg size and clutch size decrease with age? Oikos. 1986,47:293-302.
    189.孙儒泳编著.动物生态学原理(第三版).北京:北京师范大学出版社,2001.
    190.Halliday T.R., Verrell P. Body size and age in amphibians and reptiles. Journal of herpetology. 1988,22(3):253-265.
    191. Wake D.B., Castanet J. A skeletochronological study of growth and age in relation to adult size in Batrachoseps attenuatus. Journal of herpetology.1995,29(1):60-65.
    192.易祖盛,何海晏.骨龄学方法测定中国水蛇的年龄.动物学研究.2000,21(1):83-87.
    193. Castanet J., Smirina E., editors. Introduction to the skeletochronological method in amphibians and reptiles. Annales des sciences naturelles Zoologie et biologie animale; 1990: Elsevier.
    194. Francillon-Vieillot H., Arntzen J., Geraudie J. Age, growth and longevity of sympatric Triturus cristatus, T. marmoratus and their hybrids(Amphibia, Urodela):a skeletochronological comparison. Journal of herpetology.1990,24:13-22.
    195. Castanet J., Francillon-Vieillot H., Bruce R.C. Age estimation in desmognathine salamanders assessed by skeletochronology. Herpetologica.1996,52:160-171.
    196. Morrison C., Hero J.-M., Browning J. Altitudinal Variation in the Age at Maturity, Longevity, and Reproductive Lifespan of Anurans in Subtropical Queensland. Herpetologica.2004:34-44.
    197. Ma X.Y., Lu X., Merila J. Altitudinal decline of body size in a Tibetan frog. Journal of Zoology.2009,279(4):364-371.
    198.李文蓉,宋玉成,时磊.基于骨龄学方法鉴定吐鲁番沙虎的年龄.动物学杂志.2010,45(3):79-86.
    199. Johnston G. Growth and survivorship as proximate causes of sexual size dimorphism in peninsula dragon lizards Ctenophorus fionni. Austral Ecology.2011,36(2):117-125.
    200. Adolph S.C., Porter W.P. Growth, seasonally, and lizard life histories:age and size at maturity. Oikos.1996,77:267-278.
    201. Andrews R.M. Evolution of viviparity in squamate reptiles(Sceloporus spp.):a variant of the cold-climate model. Journal of Zoology.2000,250(2):243-253.
    202. Tinkle D.W. The concept of reproductive effort and its relation to the evolution of life histories of lizards. American Naturalist.1969,103:501-516.
    203. Van Damme R., Bauwens D., Verheyen R.F. The thermal dependence of feeding behaviour, food consumption and gut-passage time in the lizard Lacerta vivipara Jacquin. Functional Ecology.1991,5:507-517.
    204. Damme R., Bauwens D., Castilla A.M., Verheyen R.F. Altitudinal variation of the thermal biology and running performance in the lizard Podarcis tiliguerta. Oecologia. 1989,80(4):516-524.
    205. Shine R. "Costs" of Reproduction in Reptiles. Oecologia.1980,46(1):92-100.
    206. Seigel R.A., Ford N.B. Phenotypic plasticity in reproductive traits:geographical variation in plasticity in a viviparous snake. Functional Ecology.2001,15(1):36-42.
    207. Medina M., Gutierrez J., Scolaro A., Ibarguengoytia N. Thermal responses to environmental constraints in two populations of the oviparous lizard Liolaemus bibronii in Patagonia, Argentina. Journal of Thermal Biology.2009,34(1):32-40.
    208. Fitch H. Variation in clutch and litter size in New World reptiles. University of Kansas Museum of Natural History, Miscellaneous Publications 1985,76:1-76.
    209. Niewiarowski P.H. Energy budgets, growth rates, and thermal constraints:toward an Integrative approach to the study of life-history variation. The American Naturalist. 2001,157(4):421-433.
    210. Seigel R.A., Ford N.B. Phenotypic plasticity in the reproductive characteristics of an oviparous snake, Elaphe guttata:implications for life history studies. Herpetologica. 1991,41:301-307.
    211. Robert K.A., Thompson M.B. Sex determination:viviparous lizard selects sex of embryos. Nature.2001,412(6848):698-699.
    212. Tang X.L., Yue F., Yan X.F., Zhang D.J., Xin Y, Wang C., et al. Effects of gestation temperature on offspring sex and maternal reproduction in a viviparous lizard (Eremias midtiocellata) living at high altitude. Journal of Thermal Biology.2012,37(6):438-444.
    213. Ferguson GW., Bohlen C.H., Woolley H.P. Sceloporus undulatus:comparative life history and regulation of a Kansas population. Ecology.1980,61(2):313-322.
    214.张丽军,廖斌,王胜龙(译).分子生态学(Beebee,T.J.C.and Rowe,G. An introduction to molecular ecology)广州:中山大学出版社,2009.
    215. Wiens J.J. What is speciation and how should we study it? The American Naturalist. 2004,163(6):914-923.
    216. Avise J.C., Ball R. Principles of geneological concordance in species concepts and biological taxonomy. In:Futuyma, D.J., Antonovics, J. (Eds.), Oxford Surveys in Evolutionary Biology. Oxford:Oxford University Press,1990.
    217. De Queiroz K. Species concepts and species delimitation. Syst Biol.2007,56(6):879-886.
    218. Templeton A.R. Using phylogeographic analyses of gene trees to test species status and processes. Molecular Ecology.2001,10(3):779-791.
    219. Avise J.C., Arnold J., Ball R.M., Bermingham E., Lamb T., Neigel J.E., et al. Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics.1987,18:489-522.
    220. Gonzalez-Rodriguez A., Bain J., Golden J., Oyama K. Chloroplast DNA variation in the Quercus affinis CQ. laurina complex in Mexico:geographical structure and associations with nuclear and morphological variation. Molecular Ecology.2004,13(11):3467-3476.
    221. Hewitt GM. Speciation, hybrid zones and phylogeography-or seeing genes in space and time. Molecular Ecology.2001,10(3):537-549.
    222. Swenson N.G, Howard D.J. Clustering of contact zones, hybrid zones, and phylogeographic breaks in North America. American Naturalist.2005,166(5):581-591.
    223. Hickerson M.J., Meyer C.P. Testing comparative phylogeographic models of marine vicariance and dispersal using a hierarchical Bayesian approach. Bmc Evol Biol. 2008,8(1):322.
    224. Hey J., Nielsen R. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics.2004,167(2):747-760.
    225. Scheiner S.M. Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics.1993,24:35-68.
    226. Merrell D.J. Ecological Genetics. Longman, Londonl981.
    227. Sheppard P.M. Fluctuations in the selective value of certain phenotypes in the polymorphic land snail Cepaea nemoralis (L.). Heredity.1951,5(1):125.
    228. Bematchez L., Wilson C.C. Comparative phylogeography of Nearctic and Palearctic fishes. Molecular Ecology.1998,7(4):431-452.
    229. Randi E., Alkon P.U. Genetic structure of Chukar (Alectoris chukar) populations in Israel. The Auk.1994,111(2):416-426.
    230. Huang Z., Liu N., Luo S., Long J., Xiao Y. Ecological genetics of rusty-necklaced partridge {Alectoris magna):Environmental factors and population genetic variability correlations. Korean Journal of Genetics.2007,29(2):115-120.
    231.刘昌景,赵伟,周蓉,刘廼发.荒漠沙蜥遗传多样性的地理变异.动物学研究.2012,33(2):127-132.
    232.周蓉,李佳琦,李铀,施丽敏,房峰杰,刘迺发.环境因子对大石鸡种群遗传多样性的影响.兰州大学学报:自然科学版.2012,48(2):80-85.
    233. Wemeck F.D.P., Giugliano L.G, Collevatti R.G, Colli GR. Phylogeny, biogeography and evolution of clutch size in South American lizards of the genus Kentropyx (Squamata:Teiidae). Molecular Ecology.2009,18(2):262-278.
    234. Harvey P.H., Pagel M.D. Comparative method in evolutionary biology (POD). Oxford: Oxford University Press,1991.
    235. Miles D.B., Dunham A.E. Comparative analyses of phylogenetic effects in the life-history patterns of iguanid reptiles. American Naturalist.1992,139:848-869.
    236. Stearns S.C. The effects of size and phylogeny on patterns of covariation in the life history traits of lizards and snakes. American Naturalist.1984,123:56-72.
    237. Niewiarowski P.H., Angilletta M.J., Leache A.D. Phylogenetic comparative analysis of life-history variation among populations of the lizard Sceloporus undulatus:an example and prognosis. Evolution.2004,58(3):619-633.
    238. Losos J.B. Uncertainty in the reconstruction of ancestral character states and limitations on the use of phylogenetic comparative methods. Animal Behavior.1999,58:1319-1324.
    239. Doughty P. Statistical analysis of natural experiments in evolutionary biology:comments on recent criticisms of the use of comparative methods to study adaptation. The American Naturalist.1996,148(5):943-956.
    240. Brown W.M., Wright J.W. Mitochondrial DNA analyses and the origin and relative age of parthenogenetic lizards (genus Cnemidophorus). Science.1979,203(4386):1247-1249.
    241. Harrison R.G. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends in Ecology & Evolution.1989,4(1):6-11.
    242. Zardoya R., Meyer A. Phylogenetic Performance of Mitochondrial Protein-Coding Genes in Resolving Relationships Among Vertebrates. Mol Biol Evol.1996,13(7):933-942.
    243. Bensasson D., Zhang D.X., Hartl D.L., Hewitt G.M. Mitochondrial pseudogenes:evolution's misplaced witnesses. Trends in Ecology & Evolution.2001,16(6):314-321.
    244. Funk D.J., Omland K.E. Species-level paraphyly and polyphyly:frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual review of ecology, evolution, and systematics.2003:397-423.
    245. Willows-Munro S., Robinson T.J., Matthee C.A. Utility of nuclear DNA intron markers at lower taxonomic levels:Phylogenetic resolution among nine Tragelaphus spp. Mol Phylogenet Evol.2005,35(3):624-636.
    246. Sequeira F., Ferrand N., Harris D.J. Assessing the phylogenetic signal of the nuclear b-fibrinogen intron 7 in salamandrids (Amphibia:Salamandridae). Amphibia Reptilia. 2006,27(3):409-418.
    247. Matthee C.A., Burzlaff J.D., Taylor J.F., Davis S.K. Mining the mammalian genome for artiodactyl systematics. Syst Biol.2001,50(3):367-390.
    248. Boekhorst J., Snel B. Identification of homologs in insignificant blast hits by exploiting extrinsic gene properties. BMC bioinformatics.2007,8(1):356.
    249. Townsend T.M., Alegre R.E., Kelley S.T., Wiens J.J., Reeder T.W. Rapid development of multiple nuclear loci for phylogenetic analysis using genomic resources:an example from squamate reptiles. Mol Phylogenet Evol.2008,47(1):129-142.
    250.Schatz D.G., Oettinger M.A., Baltimore D. The V (D) J recombination activating gene, Rag-1. Cell.1989,59(6):1035-1048.
    251. Sullivan J., Lundberg J., Hardman M. A phylogenetic analysis of the major groups of catfishes (Teleostei:Siluriformes) using rag1 and rag2 nuclear gene sequences. Mol Phylogenet Evol.2006,41(3):636-662.
    252. Macey J.R., Schulte J.A. Phylogenetic relationships of toads in the Bufo bufo species group from the Eastern Escarpment of the Tibetan plateau:a case of vicariance and dispersal. Mol Phylogenet Evol.1998,9:80-87.
    253. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL_X Windows Interface:Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Research.1997,25(24):4876-4882.
    254. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution.2011,28(10):2731-2739.
    255. Harrigan R.J., Mazza M.E., Sorenson M.D. Computation vs. cloning:evaluation of two methods for haplotype determination. Molecular Ecology Resources.2008,8(6):1239-1248.
    256. Stephens M., Donnelly P. A Comparison of Bayesian Methods for Haplotype Reconstruction from Population Genotype Data. Am J Hum Genet.2003,73:1162-1169.
    257. Nylander J.A.A. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.2004.
    258. Swofford D.L. PAUP*. Phylogenetic analysis using parsimony (*and other methods).2002.
    259. Huelsenbeck J.P., Ronquist F. MRBAYES:Bayesian inference of phylogenetic trees. Bioinformatics.2001,17(8):754-755.
    260. Nielsen R., Wakeley J. Distinguishing Migration From Isolation:A Markov Chain Monte Carlo Approach. Genetics.2001,158(2):885-896.
    261.Frankel O.H., Soule M.E. Conservation and evolution. Cambridge, UK:Cambridge University Press,1981.
    262. McNeely J.A., Miller K.R., Reid W.V.C., Mittermeier R.A., Werner T.B. Conserving the World's Biological Diversity. Switzerland:Washington D.C. and Gland,1990.
    263. Humphries C.J., Williams P.H., Vane-Wright R.I. Measuring biodiversity value for conservation. Annual Review of Ecology and Systematics.1995,26:93-111.
    264. Frankham R., Ballou J.D., Briscoe D.A. Introduction to conservation genetics. Cambridge: Cambridge University Press,2002.
    265. Garcia-Ramos G., Kirkpatrick M. Genetic models of adaptation and gene flow in peripheral populations. Evolution.1997:21-28.
    266. Lesica P., Allendorf F.W. When are peripheral populations valuable for conservation? Conservation Biology.1995,9(4):753-760.
    267.汪永庆,张知彬,徐来祥.中心区和边缘区大仓鼠种群的遗传多样性.科学通报.2001,46(19):1644-1650.
    268. Karron J.D. A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. Evolutionary Ecology. 1987,1(1):47-58.
    269. Rowe G, Beebee T.J.C. Population on the verge of a mutational meltdown? Fitness costs of genetic load for an amphibian in the wild. Evolution.2003,57(1):177-181.
    270.Garner T.W.J., Pearman P.B., Angelone S. Genetic diversity across a vertebrate species'range: a test of the central-peripheral hypothesis. Molecular Ecology.2004,13(5):1047-1053.
    271. Hoffmann A.A., Blows M.W. Species borders:ecological and evolutionary perspectives. Trends in Ecology & Evolution.1994,9(6):223-227.
    272. Soule M. The epistasis cycle:a theory of marginal populations. Annual Review of Ecology and Systematics.1973,4:165-187.
    273. Nevo E. Genetic variation and climatic selection in the lizard Agama stellio in Israel and Sinai. TAG Theoretical and Applied Genetics.1981,60(6):369-380.
    274. Huang Z., Liu N., Zhou T., Ju B. Effects of environmental factors on the population genetic structure in chukar partridge (Alectoris chukar). Journal of arid environments. 2005,62(3):427-434.
    275. Ehrlich P.R., Roughgarden J. The science of ecology:Macmillan New York,1987.
    276. Jin Y., Brown R. Species history and divergence times of viviparous and oviparous Chinese toad-headed sand lizards (Phrynocephalus) on the Qinghai-Tibetan Plateau. Mol Phylogenet Evol.2013,68(2):259-268.
    277. Forsman A., Shine R. The adaptive significance of colour pattern polymorphism in the Australian scincid lizard Lampropholis delicata. Biological Journal of the Linnean Society. 1995,55(4):273-291.
    278. Cott H. Colouration in Animals. London:Methuen; 1966.
    279. Godfrey D., Lythgoe J., Rumball D. Zebra stripes and tiger stripes:the spatial frequency distribution of the pattern compared to that of the background is significant in display and crypsis. Biological Journal of the Linnean Society.1987,32(4):427-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700