鱼类寄生泡吻棘头虫的系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡吻棘头虫是一类肠道内寄生虫,其终末宿主为鱼类。目前,全球已报道的泡吻棘头虫共有24种,在欧洲、亚洲、美洲、非洲和大洋洲都有分布。
     2010年7月,科研人员在我国新疆乌伦古湖(47°22'57.9"S;087°47'03.4"W)的东方欧鳊、高体雅罗鱼、鲤、鲫、丁(?)的肠道内发现了一种泡吻棘头虫,其感染率、感染强度(平均感染强度)分别为:26%、1-20(5);60%、1(1);100%、14-31(19);60%、1-40(15);25%、1-2(1.5)。经光学显微镜和扫描电镜观察,对其形态进行了详细的描述,命名为福海泡吻棘头虫。
     福海泡吻棘头虫躯干呈圆柱形,吻钩15-17纵列,每列9-12个吻钩;颈棒球杆状,颈部前缘、吻的后端形成一个大的球形泡;颈长与躯体长比值为0.5。两个吻腺大小几乎相等,末端逐渐变宽变粗。雄虫睾丸2个,前后排列;粘液腺6个,其后为2个粘液储存囊及1个薛氏囊;雄虫生殖系统长4.76-6.60mm(5.53),约占总体长的39-48%(42%)。卵梭形;子宫钟、子宫、阴道的长和宽分别为:378-540μm(475)×142-164μm(153)、1.93-2.40mm(2.12)×112-178μm(151)、220-428μm(336)×34-82μm(62):雌性生殖系统长2.67-3.10mm(2.93),约占总体长的17-26%(20%)。
     近年来,课题组对报道于云南高原湖泊中的3种泡吻棘头虫进行采样,但均未获成功。
     本研究对分布于欧洲、北美以及我国的共5种泡吻棘头虫的16个不同地理种群的泡吻棘头虫线粒体基因组的序列、结构、多态性、系统发育及可能的起源与分化时间进行了分析。这16个泡吻棘头虫线粒体基因组均由36个基因组成,其中蛋白编码基因12个、tRNA22个、rRNA2个。这些基因均由线粒体同一条链转录而来,且排列方向一致。不同种类线粒体基因组的蛋白编码基因及rRNA排列顺序完全相同;但tRNA排列顺序略有不同,不同物种间有1-3个位置上的差异。泡吻棘头虫不同密码子使用频率各不相同,且同一种密码子在不同种泡吻棘头虫中使用频率亦不相同。这些泡吻棘头虫的线粒体基因组中,密码子使用最为频繁的是TTA、GGG、GTG;氨基酸使用最为频繁是Val、Leu、Gly。滑动窗口分析结果表明:完整线粒体核苷酸的多态性呈现多区域分布,atp6区域是仅次于非编码区的高变区,其次为nad2、rrnS等区域,cox3、nad1和cob部分区域亦存在较高水平的变异度。系统发育树和线粒体基因排列顺序均支持Pomphorhynchus laevis和Pomphorhynchus tereticollis是两个不同物种的观点;从英格兰采集到的P. laevis与欧洲大陆分布的P. tereticollis聚为一支,而不与欧洲大陆的P. laevis聚为一支,表明英格兰的P. laevis与P. tereticollis的亲缘关系更近;福海泡吻棘头虫与欧洲大陆P. laevis亲缘关系最近。依据松散分子钟理论,推测泡吻棘头虫最近的共同祖先存在于晚侏罗世,距今152.66Ma; Pomphorhynchus bulbocolli(?)(?)Pomphorhynchus rocci最近的共同祖先存在于晚渐新世,距今23.9Ma; P. laevis和P. tereticollis最近的共同祖先存在于早古新世,距今65.44Ma。
     此外,本研究还克隆了隐藏新棘虫的线粒体基因组。隐藏新棘虫是一种寄生于黄鳝肠道内的棘头虫。其线粒体基因组为双链环状,T、G、A、C含量分别为40.8%、28.8%、20.7%、9.7%。线粒体36个基因中,蛋白编码基因12个,tRNA22个,rRNA2个,所有基因均由同一条链转录。12个蛋白编码基因共由10,041个碱基组成(不包括终止密码子),编码3,347个氨基酸。3种最常使用的氨基酸分别是Val(15.84%),Gly(10.82%)和Ser(10.60%)(Serl:5.64%, Ser2:4.96%),这3种氨基酸占总氨基酸的37.26%。使用最频繁的3种密码子分别为:TTT (8.98%)、TTG (7.40%)、GTT (6.92%).22个tRNA碱基长度变化从49(trnD)至69(trnC),这包括个2个trnL和2个trnSo
     始新棘头虫纲的隐藏新棘虫与古棘头虫纲的Leptorhynchoides thecatus线粒体基因的排列顺序完全相同,但它们与原棘头虫纲的Oncicola luehei有2处相邻的tRNA发生了位置交换,这2处tRNA分别为trnK, trn及trnS1、trnM。系统发育表明,始新棘头虫纲与古棘头虫纲聚为一类,这一类再与原棘头虫纲聚为一大类;棘头动物门3个不同的纲聚为一类后,再与轮虫蛭态目聚为一大类,这一大类再与轮虫单巢目形成姊妹群。然而,对棘头虫不同类群的亲缘关系,以及与不同类群轮虫的亲缘关系的阐明还有待更多的研究。
Acanthocephalans in the Pomphorhynchus are endoparasitic in fishes, with a total of24species recognized widely in literature. Species of Pomphorhynchus have been reported from plates of Pacific Ocean, Eurasia, Indian Ocean, Africa, and America.
     Pomphorhynchus fuhaiensis n. sp. was collected from the middle and posterior intestine of Abramis brama orientalis, Leuciscus idus, Cyprinus carpio, Carassius carassius and Tinca tinca, from Ulungur Lake (47°22'57.9"S;087°47'03.4"W) in Xinjiang Uygur Autonomous Region of China.6of23(26%) A. brama orientalis were infected with1-20(5) worms each,3of5(60%) L. idus infected with1(1) worms,4of4(100%) C. carpio with14-31(19) worms,3of5(60%) C. carassius with1-40(15) worms,2of8(25%) T. tinea with1-2(1.5) worms. Trunk almost cylindrical, enlarged in the middle, possessing15-17longitudinal rows of each9-12hooks (rarely9,10). Proboscis armature nearly equal in both sexes. Neck (between proboscis and trunk) is clavate, tapered and broader at base, forming a large round symmetrical bulb, posterior to proboscis. Proboscis receptacle extends through the neck and into the trunk. Mean neck:body ratio is about0.5. Lemnisci are equal, claviform, broader posteriorly, and extending beyond proboscis receptacle. Testes pre-equatorial, nearly equal, ovoid-spheroid, usually contiguous. Six pyriform cement glands are fusing posteriorly into2common cement reservoirs. Saefftigen's pouch just posterior to cement glands, male reproductive system4.76-6.60(5.53) mm long, occupying39-48%(42%) of total length. Eggs are fusiform, with polar prolongation. The length and width of uterine bell, uterine, vagina are378-540(μm (475)X142-164μm (153);1.93-2.40mm(2.12)×112-178μm (151);220-428μm (336) X34-82μm(62). Female reproductive system occupying17-26%(20%) of total length.
     The complete mitochondrial (mt) genomes of5species in the Pomphorhynchus, representing16geographical populations, were obtained by common PCR and long PCR. These genomes are circular, double-stranded DNA molecules. All of these mt genomes have12protein coding genes, and there is some similarity among the amino acid sequences of these genes. Two rRNAs have the same arrangement in the mt genomes, but the22tRNAs differ in the arrangement among the mt genomes. All the36genes are coded in the same strand. Codon usages are different in different species of Pomphorhynchus. The most frequently used codons in Pomphorhynchus are TTA、 GGG、 GTG. Amino acid usages are also different, with the most frequently used amino acids being Val, Leu, Gly. The nucleotide polymorphism of the complete mt genomes is distributed in multi-region by sliding window analysis. The nad5and atp6are among the highest mutation region except the noncodig region, and the nad2and rrnS have a high level of mutation, with relatively high level also found in part of the cox3, nad1and cob.
     Phylogenetic analysis on the basis of these mt genomes indicates that Pomphorhynchus laevis and P. tereticollis should be considered as separate species. P. laevis collected from continental Europe was clustered in a same branch, but P. laevis collected from England was clustered in a same branch with Pomphorhynchus tereticollis from the continental. P. fuhaiensis had a close relationship with P. laevis from continental Europe. The origin and divergent time of species in the Pomphorhynchus were estimated by BEAST1.4.6. The origin of common ancestor of Pomphorhynchus was in late-Jurassic, being about152.66Ma before. Pomphorhynchus bulbocolli and P. rocci were diversified in late-Oligocene, about23.9Ma before; P. laevis and P. tereticollis diversified in early-Paleocene, about65.44Ma before. However, other Pomphorhynchus species should be included in the phylogenetic analysis in order to illustrate the clear phylogenetic relationship of species in the genus and their diversification.
     The complete mt genome of Pallisentis celatus is a circular, double-stranded DNA molecule (13,855bp). The nucleotide composition of the entire P. celatus mt genome sequence is40.8%T,28.8%G,20.7%A, and9.7%C and the overall A+T content is61.5%. The mt genome contains36genes including12protein coding genes,22tRNAs and2rRNAs (rrnL and rrnS), with all genes encoded in the same strand. The total length of the12protein coding genes is10,041bp, which consist of3,347codons, with the exclusion of termination codons. Analysis of the codon usage of the12protein coding genes revealed that three codons are used frequently. The TTT codon is used most frequently (8.98%), followed by TTG (7.40%) and GTT (6.92%). The most frequently encoded amino acids include Val (15.84%), Gly (10.82%) and Ser (10.60%)(Serl:5.64%, Ser2:4.96%), accounting for37.26%of total amino acid components.22tRNAs encoded by the mt genome of the P. celatus, vary in length from49(trnD) to69(trnC) nucleotides, including two trnL and two trnS.
     Comparison of the gene order in P. celatus with those in Leptorhynchoides thecatus and O. luehei reveals that P. celatus has identical gene arrangement with L. thecatus, and has almost identical gene arrangements with Oncicola luehei, with the only difference being the two reciprocal translocations of tRNAs between trnK and trnV, and between trnSl and trnMthat are directly adjoined to each other, respectively. Phylogenetic analysis based on36species of complete mt genome sequence data were obtained in BI and ML analyses with Montastraea annulari (Cnidaria) as an outgroup. Three acanthocephalan species, P. celatus, L. thecatus and Oncicola luehei form a clade with high nodal support, among which, P. celatus and L. thecatus form a clade, and then with O. luehei. Acanthocephala is much more close to Bdelloidea than to Monogononta, froming together a clade of Syndermata. However, further analyses in respect of genetic relationship of acanthocephalans and their relationship with rotifers should be carried out with more species of acanthocephalans representing different taxonomical groups.
引文
1.巴纳德JL,戴爱云.中国的四种钩虾(端足目).动物学集刊,1988,6:85-112.
    2.堵南山.甲壳动物学(下册).北京:科学出版社,1993.
    3.焦丽,樊江,赵江山,闫昊,谭士艳,张超,岳城.额尔齐斯河东方欧鳊(Abramis brama orientalis Berg)寄生虫调查研究.新疆农业大学学报,2010,33:489-491.
    4.金燮理,戴振炎,刘晓燕,曾谷初,张壁奎,贺顺莲,向建国.湖南省鱼类寄生虫及其病原区系调查研究.湖南农业学院学报,1993,19:297-389.
    5.聂品.钩虾体内寄生棘虫幼虫在中国的首次报道.水生生物学报.1994,18:381-382.
    6.任慕莲,郭焱,张人铭,张秀善,蔡林钢,李红,阿达克,付亚丽,刘昆仑,邓贵忠.中国额尔齐斯河鱼类资源及渔业.新疆:新疆科技卫生出版社,2002.
    7.汪溥钦.福建棘头虫记述.动物分类学报,1966,3:1-18.
    8.汪溥钦.福建棘头虫记述.动物分类学报,1980,5:116-123.
    9.汪溥钦.我国寄生于鱼类的棘头虫.动物分类学报,1981,6:121-130.
    10.汪溥钦,郭起治.云南淡水鱼类寄生蠕虫.海洋与湖沼,1983,14:92-101.
    11.汪溥钦.福建棘头虫记述和三新种描述.武夷科学,1986,12:181-192.
    12.汪溥钦,张剑英.我国脊椎动物寄生棘头虫五新种.福建师范大学学报,1987,3:54-61.
    13.汪溥钦,汪彦惜.我国脊椎动物寄生棘头虫概况.四川动物,1988,7:24-26.
    14.王莲芳,岳城,徐显曾,黄燕,吾其尔,苏丽霞.五家渠地区鱼类寄生虫及新纪录虫种报道.新疆农业大学学报,1996,19:81-83.
    15.王莲芳,张耀文,王清平,王莲芳.新疆主要渔区淡水养殖鱼类的寄生虫调查及病原分析.中国水产,2001,12:53.
    16.王文彬,曾伯平,王智,罗玉双,王京仁.黄鳝体内新棘衣棘头虫的种群生态学研究.华中农业大学学报,2004,23:650-653.
    17.许拉,李天保,叶海斌,盖春蕾,朱安成,张伟.寄生养殖大菱鲆的海洋盾纤类纤毛虫(弗州拟尾丝虫相似种)的形态学和18S rDNA序列分.海洋科学,2011,12:0036-0041.
    18.岳城,徐显曾,何成武,巴凯,丁巧玲.新疆昌吉州鱼类寄生虫记述.新疆农业大学学报,1993,2:4.
    19.岳城,黄燕,王莲芳,徐显增,郭类勇,苏丽霞.新疆吉力湖鱼类寄生虫区系调查.中国兽医科技,1998,28:17-19.
    20.张剑英,邱兆祉,丁雪娟.鱼类寄生虫与寄生虫病.北京:科学出版社,1999, 618-656.
    21.张克云,孙晓艳,杨群.介形纲丽足目和速足目及相关类群18S rDNA分子系统发育的研究.古生物学报,2003,42:452-459.
    22.赵江山,姚卫建,焦丽,闫昊,岳城.额尔齐斯河高体雅罗鱼单殖吸虫中国二新纪录种.水生生物学报,2011a,35:713-716.
    23.赵江山,姚卫建,焦丽,闫昊,岳城.额尔齐斯河鱼类单殖吸虫研究Ⅲ.指环虫属一新记录.水生态学杂志,2011b,32:140-142.
    24.郑冰蓉,张亚平,肖蘅,蓝家湖,昝瑞光.鲤属鱼类mtDNA控制区序列的变异性分析.水产学报,2002,26:289-294.
    25. Abascal F, Zardoya R, Posada D. ProtTest:selection of best-fit models of protein evolution. Bioinformatics,2005,21:2104-2105.
    26. Ahlrichs WH. Epidermal ultrastructure of Seison nebaliae and Seison annulatus, and a comparison of epidermal structures within the Gnathifera. Zoomorphologic,1997, 117:41-48.
    27. Amin OM. Key to the families and subfamilies of Acanthocephala with the erection of a new class (Polyacanthocephala) and a new order (Polyacanthorhynchida). The Journal of Parasitology,1987a,73:1216-1219.
    28. Amin OM. Acanthocephala from lake fishes in Wisconsin:ecology and host relationships of Pomphorhynchus bulbocolli (Pomphorhynchidae). Journal for Parasitology,1987b,73:278-289.
    29. Amin OM, Abdullah SMA, Mhaisen FT. Description of Pomphorhynchus spindletruncatus n. sp. (Acanthocephala:Pomphorhynchidae) from freshwater fishes in northern Iraq, with the erection of a new pomphorhynchid genus, Pyriproboscis n. g., and keys to genera of the Pomphorhynchidae and the species of Pomphorhynchus Monticelli,1905. Systematic Parasitology,2003:157-164.
    30. Amin OM, Heckmann RA, Ha NV. On the immature stages of Pallisentis (Pallisentis) celatus (Acanthocephala:Quadrigyridae) from occasional fish hosts in Vietnam. The Raffles Bulletin of Zoology,2004,52:593-598.
    31. Amin OM, Ha NV, Heckmann RA. New and already known acanthocephalans from amphibians and reptiles in Vietnam, with keys to species of Pseudoacanthocephalus Petrochenko,1956 (Echinorhynchidae) and Sphaerechinorhynchus Johnston and Deland,1929 (Plagiorhynchidae). Journal for Parasitology,2008,94:181-189.
    32. Anderson RM. An analysis of the influence of host morphometric features on the population dynamics of Diplozoon paradoxum (Nordmann,1832). Journal of Animal Ecology,1974,43:873-887.
    33. Arnold SE, Crompton DWT. Survival of shelled acanthors of Moniliformis moniliformis under laboratory conditions. Journal of Helminthology,1987,61: 306-310.
    34. Arredondo NJ, Pertierra AAG. Acanthocephala Echinorhynchidae Acanthocephalus lutzi Pseudoacanthocephalus Rhinella amphibians Argentina. Folia Parasitologica, 2009,56:295-304.
    35. Arredondo NJ, Pertierra AG. Pomphorhynchus omarsegundoi sp. n. (Acanthocephala: Pomphorhynchidae), parasite of the banded knifefish Gymnotus carapo (Gymnotiformes:Gymnotidae) from the Parana River basin, Argentina. Folia Parasitologica,2010,57:307-311.
    36. Ashley MV, Laipis PJ, Hauswirth WW. Rapid segregation of heteroplasmic bovine mitodiondria. Nucleic Acids Research,1989,17:7325-7331.
    37. Aurelle D, Cattaneo-Berrebi G, Berrebi P. Natural and artificial secondary contact in brown trout (Salmo trutta, L.) in the French western Pyrenees assessed by allozymes and microsatellites. Heredity,2002,89:171-183.
    38. Awachie JBE. The development and life history of Echinorhynchus truttae Schrank, 1788 (Acanthocephala). Journal of Helminthology,1966,40:11-32.
    39. Bagge AM, Valtonen ET. Experimental study on the influence of paper and pulp mill effluent on the gill parasite communities of roach (Rutilus rutilus). Parasitology, 1996,112:499-508.
    40. Bakker TCM, Mazzi D, Zala AS. Parasite-induced changes in behavior and color make Gammarus pulex more prone to fish predation. Ecology,1997,78:1098-1104.
    41. Baldauf SA, Thunken T, Frommen JG, Bakker TCM, Heupel O, Kullmann H. Infection with an acanthocephalan manipulates an amphipod's reaction to a fish predator's odours. International Journal for Parasitology,2007,37:61-65.
    42. Ballard JW, Whitlock MC. The incomplete natural history of mitochondria. Molecular Ecology,2004,13:729-744.
    43. Barger MA, Nickol BB. Effects of coinfection with Pomphorhynchus bulbocolli on development of Leptorhynchoides thecatus (Acanthocephala) in amphipods (Hyalella azteca). Journal of Parasitology,1999,85:60-63.
    44. Barger MA, Nickol BB. Structure of Leptorhynchoides thecatus and Pomphorhynchus bulbocolli (Acanthocephala) eggs in habitat partitioning and transmission. Journal of Parasitology,1998,84:534-537.
    45. Bauer A, rouveA S, GreAgoire A, Bollache L, Cezilly F. Differential influence of Pomphorhynchus laevis(Acanthocephala) on the behaviour of native and invader gammarid species. International Journal for Parasitology,2000,30:1453-1457.
    46. Bayep OH. Key to the parasites of freshwater fish of the USSR. vol.3. Leningrad Department Science, Leningrad, Russia.1987, p.337-338.
    47. Bentley CR and Hurd H. Pomphorhynchus laevis (Acanthocephala):elevation of haemolymph protein concentrations in the intermediate host, Gammarus pulex (Crustacea:Amphipoda). Parasitology,1993,107:193-198.
    48. Bentley CR, Hurd H. Carbohydrate titres in the haemolymph and midgut glands of Gammarus pulex infected with the acanthocephalan Pomphorhynchus laevis. Journal of Helminthology,1996,70:103-107.
    49. Birky CWJ. The inheritance of genes in mitochondria and chloroplasts:laws, mechanisms, and models. Annual Reviews Genetics,2001,35:125-148.
    50. Bollache L, Gambade G, Cezilly F. The effects of two acanthocephalan parasites, Pomphorhynchus laevis and Polymorphus minutus, on pairing success in male Gammarus pulex (Crustacea:Amphipoda). Behavioral Ecology and Sociobiology, 2001,49:296-303.
    51. Bombarova M, Marec F, Nguyen P, Spakulova M. Divergent location of ribosomal genes in chromosomes of fish thorny-headed worms, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). Genetica,2007,131:141-149.
    52. Boore JL, Brown WM. Big trees from little genomes:mitochondrial gene order as a phylogenetic tool. Current Opinion in Genetics & Developmetn,1998,8:668-674.
    53. Boore JL. Animal mitochondrial genomes. Nucleic Acids Research,1999,27: 1767-1780.
    54. Boore JL, Brown WM. Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis:sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthopoda are not sister taxa. Molecular Biology Evolution,2000,7:87-106.
    55. Boore JL, Staton JL. The mitochondrial genome of the Sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca. Molecular Biology Evolution,2002,19:127-137.
    56. Boore JL, Medina M, Rosenberg LA. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod Graptacme eborea and the bivalve Mytilus edulis. Molecular Biology Evolution,2004,21:1492-1503.
    57. Boore JL, Macery JR, Medina M. Sequencing and comparing whole mitochondrial genomes of animals. Methods in Enzymology,2005,395:311-348.
    58. Brown AF. Anatomical variability and secondary sexual characteristics in Pomphorhynchus laevis (Muller,1776) (Acanthocephala). Systematic Parasitology, 1987,9:213-219.
    59. Brown WM, Prager EM, Wang A, Wilson AC. Mitochondrial DNA sequences of primates:Tempo and mode of evolution. Journal of Molecular Evolution,1982,18: 225-239.
    60. Bruyn MDE, Wilson JC, Mather PB. Reconciling geography and genealogy: phylogeography of giant freshwater prawns from the Lake Carpentaria region. Molecular Ecology,2004,13:3515-3526.
    61. Buroker NE, Brown JR, Gilbert TA, OHara PJ, Beckenbach AT, Thomas WK, Smith MJ. Length heteroplasmy of sturgeon mitochondrial DNA:An illegitimate elongation model. Genetics,1990,124:157-163.
    62. Cakic PD, djikanovic VDJ, Kulisic ZB, Paunocic MM, Jakovcev-Todorovic DG, Milosevic SM. The fauna of endoparasites in acipenser ruthenus Linnaeus,1758, from the Serbian part of the Danube River. Archives of Biological Sciences,2008,60: 103-107.
    63. Cann RL, Brown WM, Wilson AC. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics,1984,106:479-499.
    64. Carcupino M and Dezfuli BS. Ultrastructural study of mature sperm of Pomphorhynchus laevis Muller (Acanthocephala:Palaeacanthocephala), a fish parasite. Invertebrate Reproduction & Development,1995,28:25-32.
    65. Cassel A, Tammaru T. Allozyme variability in central, peripheral and isolated populations of the scarce heath (Coenonympha hero:Lepidoptera, Nymphalidae): Implications for conservation. Biomedical and Life Science,2003,4:83-93.
    66. Cassel A, Tammaru T. Allozyme variability in central, peripheral and isolated populations of the scarce heath (Coenonympha hero:Lepidoptera, Nymphalidae): implications for conservation. Conservation Genetics,2003,4:83-93.
    67. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution,2000,17:540-552.
    68. Conant GC, Wolfe KH. Genome Vx:Simple web-based creation of editable circular chromosome maps. Bioinformatics,2008,28:1-2.
    69. Conrad CL. Paleobiology of predators, parasitoids, and parsites:death and accomodation in the fossil record of continental invertebrates. Paleontological Society Papers,2002,8:211-250.
    70. Cordonnier LM, Ward HL. Pomphorhynchus rocci sp. n. (acanthocephalan) from the rock bass, Roccus saxatilis. Journal of Parasitology,1967,53:1295-1297.
    71. Cornet SP, Franceschi N, Bollache LC,Rigaud T and Sorci G. Variation and covariation in infectivity, virulence and immunodepression in the host-parasite association Gammarus pulex-Pomphorhynchus laevis. Proceedings of the Royal Socity Biology,2009,276:4229-4236.
    72. Cribbal TH, Andersonal GR, Dove ADM. Pomphorhynchus heronensis and restricted movement of Lutjanus carponotatus on the Great Barrier Reef. Journal of Helminthology,2000,74:53-56.
    73. Crompton DWT, Whitfield PJ. The course of infection and egg production of Polymorphus minutes (Acanthocephala) in domestic ducks. Parasitology,1985,58: 231-246.
    74. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3:fast selection of best-fit models of protein evolution. Bioinformatics,2011,27:1164-1165.
    75. Davidson WS, Birt TP, Green JM. Organization of the mitochondrial genome from Atlantic salmon (Salmo salar). Genome,1989,32:340-342.
    76. Densmore LD, Wright JW, Brown WM. Length variation and heteroplasmy are frequent in mitochondrial DNA from parthenogenetic and bisexual lizards(genus Cnemidophorus). Genetics,1985,110:689-707.
    77. Desalle R, Freedam T, Prager EM, wilson AC. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. Journal of Molecular Evolution,1987,26:157-164.
    78. Dezfuli BS, Onestini S, Carcupino M. The cement apparatus of larval and adult Pomphorhynchus laevis (Acanthocephala:Palaeacanthocephala). Parasitology, 1998,116:437-447.
    79. Diaz F. Cytochrome c oxidase deficiency:patients and animal models. Biochimica Biophysica Acta,2010,1802:100-110.
    80. Drummond AJ, Rambaut A. BEAST v1.3. University of Oxford, Oxford.2005, .
    81. Drummond AJ, Kambaut A. BEAST:Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology,2007,7:214.
    82. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA,Seaverl E, Rouse GW, Obst M, Edgecombe GD, S(?)rensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale1 MQ, Giribet G. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature,2008, 452:745-749.
    83. Diisen S, Oguz MC. Occurence of Pomphorhynchus laevis (Acanthocephala) in the marsh frog(Rana ridibunda Pallas,1771), from Turkey. Helminthologia,2008,45: 154-156.
    84. Evans DW, Matthews MA, Mcclintock CA. First record of Pomphorhynchus laevis (Acanthocephala) in fishes from Northern Ireland. Journal of Fish Biology,2001,59: 166-168.
    85. Felsenstein J. PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics, 1989,5:164-166.
    86. Felsenstein J. Phylogenies from molecular sequences:Inference and reliability. Annual Reviews Genetics,1988,22:521-565.
    87. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology,1994,3:294-299.
    88. Fontaneto D, Jondelius U. Broad taxonomic sampling of mitochondrial cytochrome c oxidase subunit I does not solve the relationships between Rotifera and Acanthocephala. Zoologischer Anzeiger,2011,250:80-85.
    89. Fotedar DN, Dudap L, Raina MK. A new species of the genus Pomphorhynchus Monticelli,1905 from Bufo viridis in Kashmir. Indian Journal of Helminthology, 1970a,22:41-45.
    90. Fotedar DN, Duda PL, Raina MK. On a new species of Pomphorhynchus Monticelli, 1905 from a fresh-water fish in Kashmir. Proceedings of the 57th Session of the Indian Science Congress, Karagpur, January,1970b, Part Ⅲ, pp.455-456.
    91. Fotedar DN, Dhar RI. On five new species of the genus Pomphorhynchus Monticelli 1905 from fresh-water fishes of Jammu and Kashmir. Indian Journal of Zoology, 1977,5:15-24.
    92. Fu YX, Li WH. Estimating the age of the common ancestor of a sample of DNA sequences. Molecular Biology Evolution,1997,14:195-199.
    93. Gallil P, Crosal G, Mariniello L, Ortis M, Amelio SD. Water quality as a determinant of the composition of fish parasite communities. Hydrobiologia,2001, 452:173-179.
    94. Garcia-Varela M, Leon GPP, Torre PDL, Cummings MP, Sarma SSS, Laclette JP. Phylogenetic relationships of Acanthocephala based on analysis of 18S ribosomal RNA gene sequences. Journal of Molecular Evolution,2000,50:532-540.
    95. Garcia-Varela M, Cummings MP, Perez-Ponce LG, Gardner SL, Laclette JP. Phylogenetic analysis based on 18S ribosomal RNA gene sequences supports the existence of class Polyacanthocephala (Acanthocephala). Molecular Phylogenetics and Evolution,2002,23:288-292.
    96. Garcia-Varela M, Nadler SA. Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rDNA gene sequences. Journal of Parasitology,2005,91:1401-1409.
    97. Garcia-Varela M, Nadler SA. Phylogenetic relationships among Syndermata inferred from nuclear and mitochondrial gene sequences. Molecular Biology Evolution,2006, 40:61-72.
    98. Garey JR, Near TJ, Nonnemacher MR, Nadlerm SA. Molecular evidence for Acanthocephala as a subtaxon of Rotifera. Journal of Molecular Evolution,1996.43: 287-292.
    99. Garey JR, Schmidt-Rhaesa A, Near TJ, Nadler SA. The evolutionary relationships of rotifers and acanthocephalans. Hydrobiologia,1998,387/388:83-91.
    100.Gazi M, Sultana T, Min GS, Park YC, Garcia-Varela M, Nadler SA, Park JK. The complete mitochondrial genome sequence of Oncicola luehei (Acanthocephala: Archiacanthocephala) and its phylogenetic position within Syndermata. Parasitology Internaltional,2012,61:307-316.
    101.Gleason LN. Movement of Pomphorhynchus bulbocolli larvae from the hemocoel to the peripheral circulation of Gammarus pseudolimnaeus. The Journal of Parasitology, 1989,75:982-985.
    102.Gleason LN. Population dynamics of Pomphorhynchus bulbocolli in Gammarus pseudolimnaeus. The Journal of Parasitology,1987,73:1099-1101.
    103.Golvan YJ. Nomenclature of the Acanthocephala. Research and Reviews in Parasitology,1994,54:135-205.
    104.Guillen-Hernandez S, Whitfield PJ. A comparison of freshwater and marine/estuarine strains of Pomphorhynchus laevis occurring sympatrically in flounder, Platichthys flesus, in the tidal Thames. Journal of Helminthology,2001:75: 237-243.
    105.Guindon S, Gascuel O. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology.2003,52:696-704.
    106.Gupta NK, Gupta K. Longicollum indicum n. sp. an acanthocephalan parasite of a marine fish, Tylosurus strongylarus, from Ernakulam (south India). Research Bulletin of the Panjab University,1970,21:507-510.
    107.Gupta SP, Gupta RC. On six new acanthocephalan parasites from marine fishes of Arabian sea, at Quilon, Kerala. Indian Journal of Helminthology,1979,31:135-156.
    108.Hauswirth WW, Van De Walle MJ, Laiois PJ, Olive PD. Heterogeneous mitochondrial DNA D-loop sequences in bovine tissue. Cell,1984,37:1001-1007.
    109.Helfenbein KG, Fourcade HM, Vanjani RG, Boore JL. The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. Proceedings National Academy Sciences,2004,101:10639-10643.
    110.Herlyn H, Piskurek O, Schmitz J, Ehlers U, Zischler H. The syndermatan phylogeny and the evolution of acanthocephalan endoparasitism as inferred from 18S rDNA sequences. Molecular Phylogenetics and Evolution,2003,26:155-164.
    111. Hewitt G. The genetic legacy of the Quaternary ice ages. Nature,2000,405: 907-913.
    112.Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society,1996,58:247-276.
    113.Hillis DM, Dixon MT. Ribosomal DNA:Molecular evolution and phylogenetic inference. The Quarterly Review of Biology,1991,66:411-453.
    114.Hine PM, Kennedy CR. Observations on the distribution, specificity and pathogenicity of the acanthocephalan Pomphorhynchus laevis (Muller). Journal of Fish Biology,1974,28:207-219.
    115. Ho SYW, Phillips MJ, Cooper A, Drummond AJ. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biololgy and Evolution,2005,22:1561-1568.
    116. Ho SYW, Shapiro B, Phillips MJ, Cooper A, Drummond AJ. Evidence for time dependency of molecular rate estimates. Systematic Biology,2007,56:515-522.
    117.Holland CV, Kennedy CR. A checklist of parasitic helminth and crustacean species recorded in freshwater fish from Ireland. Biology and Environment:Proceedings of the Royal Irish Academy,1997,97B:225-243.
    118.Hornig-Do HT, Tatsuta T, Buckermann A, Bust M, Kollberg G, Rotig A, Hellmich M, Nijtmans L, Wiesner RJ. Nonsense mutations in the coxl subunit impair the stability of respiratory chain complexes rather than their assembly. European Molecular Biology Organization,2012,31:1293-1307.
    119.Hou ZE, Sket B, Fiser C, Li SQ. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences,2011,108:14533-14538.
    120.Huelsenbeck JP, Ronquist F. MrBayes:Bayesian inference of phylogeny. Bioinformatics,2001,17:754-755.
    121. Jain M, Gupta NK. A new Acanthocephalan parasite of the genus Longicollum Yamaguti,1935 from fish of Goa. Revista Iberica de Parasitologia,1980,40: 269-281
    122.Kaldonski N, Perrot-Minnot MJ, Cezilly F. Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Animal Behaviour,2007,74:1311-1317.
    123.Kane MB. Parasites of Irish fishes. Scientific Proceedings of the Royal Dublin Society,1966,18B:205-220.
    124.Kates KC. Viability of the eggs of the swine thorn-headed worm (Macracanthorhynchus hirudinaceus). Journal of Agricultural Research,1942,64: 93-100.
    125.Kates KC. Some observations on experimental infections of pigs with the thorn headed worm Macracanthocephalus hirudinaceus. American Journal of Veterinary Research,1944,5:166-172.
    126.Kaw, B.L. Studies in helminthology:hclminth parasites of Kashmir. Part II. Acanthocephala. Indian Journal of Helminthology,1951,3:117-132.
    127.Kayal E, Lavrov DV. The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny. Gene,2008,410:177-186.
    128.Kennedy CR, Broughton PF, Hine PM. The status of brown and rainbow trout, Salmo trutta and S. gairdneri, as hosts of the acanthocephalan Pomphorhynchus laevis. Journal of Fish Biology,1978,13:265-275.
    129.Kennedy CR. The status of flounders, Platichthys flesus L., as hosts of the Acanthocephalan Pomphorhynchus laevis (Muller) and its survival in marine conditions. Journal of Fish Biology,1984,24:135-149.
    130.Kennedy CR, Bates RM, Brown AF. Discontinuous distributions of the fish acanthocephalans Pomphorhynchus laevis and Acanthocephalus anguillae in Britain and Ireland:an hypothesis. Journal of Fish Biology,1989,34:607-619.
    131.Kennedy CR. Ecology of the Acanthocephala. Cambridge:Cambridge University Press,2006,249.
    132.Kilpert F, Podsiadlowski L. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features. BioMed Central Genomics,2006,241:1471-1488.
    133.Koehler CM, Lindberg GL, Brown DR, Beitz DC, Freeman AE, Mayfield JE, Myers AM. Replacement of bovine mitochondrial DNA by sequence variant.within one eneration. Genetics,1991,129:247-255.
    134.Komarova MS. On the problem of the life cycle of Acanthocephalus lucii. Doklady Akademi Nauka SSSR,1950,70:359-360.
    135.Kotlik P, Berrebi P. Phylogeny of the barbell(Barbus barbus) assessed by mitochondrial DNA variation. Molecular Ecology,2001,10:2177-2185.
    136.Kralova-Hromadova I, Tietz DF, Shinn AP, Spakulova M. ITS rDNA sequences of Pomphorhynchus laevis (Zoega in Muller,1776) & P. lucyi Williams and Rogers, 1984 (Acanthocephala:Palaeacanthocephala). Systematic Parasitology,2003,56: 141-145.
    137.Kristensen RM, Funch P. Micrognathozoa:A new class with complicated jaws like those of Rotifera and Gnathostomulida. Journal of Morphology,2000,246:1-49.
    138.Kumar M. A simple method for estimating evolution rate of base substitution through comparative studies of nucleotide sequence. Journal of Molecular Evolution, 1980,16:111-120.
    139.Kumar S, Tamura K, Jakobsen IB, Nei M. MEGA 2:Molecular Evolution Genetics Analysis Software. Bioinformatics,2001,17:1244-1245.
    140.Kumar, S. Molecular clocks:four decades of evolution. Nature Reviews Genetics. 2005,6:654-662.
    141.Kurabayashi A, Ueshima R. Complete sequence of the mitochondrial DNA of the primitive opisthobranch gastropod Pupa strigosa:systematic implication of the genome organization. Molecular Biology and Evolution,2000,17:266-277.
    142.Lavrov DV, Lang BF. Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. Systematic Biology,2005,54:651-659.
    143.Lee T, Hong HC, Kim JJ, Foighil DO. Phylogenetic and taxonomic incongruence involving nuclear and mitochondrial markers in Korean populations of the freshwater snail genus Semisulcospira (Cerithioidea:Pleuroceridae). Molecular Phylogenetics and Evolution,2007,43:386-397.
    144.Lessinger AC, Martins JAC, Lemos TA, Kemper EL, Silva FR, Vettore AL. The mitochondrial genome of the primary screwworm fly Cochliomyia hominivorax (Diptera:Calliphoridae). Insect Molecular Biology,2000,9:521-529.
    145.Li WH. A simulation study of Nei and Li's model for estimating DNA ivergence from restriction enzyme maps. Journal of Molecular Evolution,1981,17:251-255.
    146.Li XL, Gong YF, Liu ZZ, Zheng GR, Zhou RY, Jin XM, Li LH, Wang HL. Study on Tandem Repeat Sequence Variation in Sheep mtDNA D-loop Region. Acta Genetica Sinica,2006,33:1087-1095.
    147.Librado P, Rozas J. DnaSP v5:A software for comprehensive analysis of DNA polymorphism data. Bioinformatics,2009,25:1451-1452.
    148.Littlewood DTJ, Lockyer AE, Webster BL, Johnston DA, Le TH. The complete mitochondrial genomes of Schistosoma haematobium and schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Molecular Phylogenetics and Evolution,2006,39:452-467.
    149.Lowe TM, Eddy SR. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence.Nucleic Acids Research,1997,25:955-964.
    150.Marin A, Oliver J. GC-Biased Mutation Pressure and ORF Lengthening. Journal Molecular Evolution,2003,56:371-372.
    151.Meland S, Johansen S, Johansen T, Haugli K, Haugli F. Rapid disappearance of one parental mitochondrial genotype after isogamous mating in the myxomycete Physarumpolycephalum. Current Genetics,1991,19:55-60.
    152.Melone G, Ricci C, Segers H, Wallace RL. Phylogenetic relationships of phylum Rotifera with emphasis on the families of Bdelloidea. Hydrobiologia,1998,387/388: 101-107.
    153.Meyer A, Kocher TD, Bassasibwaki P, Wilson AC. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature,1990, 347:550-553
    154.Min GS, Park JK. Eurotatorian paraphyly:revisiting phylogenetic relationships based on the complete mitochondrial genome sequence of Rotaria rotatoria (Bdelloidea: Rotifera:Syndermata). BMC Genomics,2009,10:533.
    155.Mindell DP, Honeycutt RL. Ribosomal RNA in vertebrates:Evolution and phylogenetic applications. Annual Review of Ecology and Systematics,1990,21: 541-566.
    156.Monks S. Phylogeny of the Acanthocephala based on morphological characters. Systematic Parasitology,2001,48:81-116.
    157.Moritz C, Dowling TE, Brown WM. Evolution of animal mitochondrial DNA relevance for population biology and systematic. Annual Review of Ecology and Systematics,1987,18:269-289.
    158.Moritz C. Evolutionary dynamics of mitochondrial DNA duplications in parthenogenetic geckos, Heteronotia binoei. Genetics,1991,129:221-230.
    159.Mundy NI, Helbig AJ. Origin and evolution of tandem repeats in the mitochondrial DNA control region of shrikes (Lanius spp.). Journal of Molecular and Evolution, 2004,59:250-257.
    160.Munro MA, Whitfield PJ, Diffley R. Pomphorhynchus laevis (Miiller) in the flounder, Platichthys flesus L., in the tidal River Thames:population structure, microhabitat utilization and reproductive status in the field and under conditions of controlled salinity. Journal of Fish Biology,1989,35:719-735.
    161.Mwinyi A, Bailly X, Bourlat SJ, Jondelius U, Littlewood DTJ, Podsiadlowski L. The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis. BMC Evolutionary Biology,2010,10:309-312.
    162.Near T. Acanthocephalan phylogeny and the evolution of parasitism. Integrative and Comparative Biology,2002,42:668-677.
    163.Near TJ, Garey JR, Nadler SA. Phylogenetic relationships of the Acanthocephala inferred from ribosomal DNA sequences. Molecular Phylogenetic Evolution,1998, 10:287-298.
    164.Nedbal MA, Flynn JJ. Do the combined effects of the asymmetric process of replication and DNA damage from oxygen radicals produce a mutation rate signature in the mitochondrial genome. Molecular Biology and Evolution,1998,15:219-223.
    165.Nickol BB. Life history and host specificity of Mediorhynchus centurorum Nickol, 1969 (Acanthocephala:Gigantorhynchidae). Journal of Parasitology,1977,63: 104-111.
    166.Nielsen C, Scharff N, Eibye-Jacobsen D. Cladistic analyses of the animal kingdom. Biological Journal Linnean Society,1996,57:385-410.
    167.Oetinger DF, Nickol BB. A possible function of the fibrilar coat in Acanthocephalus jucksoni eggs. Journal of Parasitology,1974,60:1055-1056.
    168.Ohama T, Muto A, Osawa S. Role of GC-biased mutation pressure on synonymous codon choice in Micrococcus luteus, a bacterium with a high genomic GC-content. Nucleic Acids Research,1990,18:1565-1569.
    169.Olmos VL, Habit EL. A new species of Pomphorhynchus (Acanthocephala: Palaeacanthocephala) in freshwater fishes from central Chile. Journal of Parasitology, 2007,93:179-183.
    170.Ortubay S, Ubeda C, Semenas L. Pomphorhynchus patagonicus n. sp. (acanthocephala:pomphorhynchidae) from'freshwater fishes of Patagonia, Argentina. The Journal of Parasitology,1991,77:353-356.
    171.Park JK, Sultana T, Lee SH, Kang S, Kim HK, Min GS. Monophyly of clade Ⅲ nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences. BioMed Central Genomics,2011,12:392-407.
    172.Pertierra AAG, Spatz L, DomA IL.Systematics and metapopulation dynamics of Pomphorhynchus sphaericus n. sp. (Acanthocephala:Pomphorhynchid from freshwater siluriform fishes in the subtropical region of Argentina. Research and Reviews in Parasitology,1996,56:33-39.
    173.Pesole G, Gissi C, Saccone C. Nucleotide substitution rate of mammalian mitochondrial genomes. Journal of Molecular and Evolution,1999,48:427-434.
    174.Pichelin S. Pomphorhynchus heronensis sp. nov. (Acanthocephala: Pomphorhynchidae) from Lutjanus carponotatus (Lutjanidae) from Heron Island, Australia. Records of the South Australian Museum,1997,30:19-27.
    175.Piscart C, Webb D, Beisel JN. An acanthocephalan parasite increases the salinity tolerance of the freshwater amphipod Gammarus roeseli (Crustacea:Gammaridae). Naturwissenschaften,2007,94:741-747.
    176.Plaistow SJ, Troussard JP, CeAzilly F. The effect of the acanthocephalan parasite Pomphorhynchus laevis on the lipid and glycogen content of its intermediate host Gammaruspulex. International Journal for Parasitology,2001,31:346-351.
    177.Posada D, Crandall KA. Modeltest:testing the model of DNA substitution. Bioinformatics,1998,14:817-818.
    178.Rambaut A, Bromham L. Estimating divergence dates from molecular sequences. Molecular Biology and Evolution,1998,15:442-448.
    179.Rand DM, Harrison RG, Molecular population genetics of mtDNA size variation in crickets. Genetics,1989,121:551-569.
    180.Rand DM, Harrison RG. Mitochondrial DNA transmission genetics in crickets. Genetics,1986,114:955-970.
    181.Richter C. Reactive oxygen and DNA damage in mitochondria. Mutation Research, 1992,275:249-255.
    182.Rieger RM, Tyler S. Sister-group relationship of Gnathostomulida and Rotifera-Acanthocephala. Invertebrate Biology,1995,114:186-188.
    183.Rokas A, Holland PW. Rare genomic changes as a tool for phylogenetics. Trends in Ecology and Evolution,2000,15:454-459.
    184.Romero H, Zavala A, Musto H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Research,2000,28:2084-2090.
    185.Rumpusa AE, Kennedy CR. The effect of the acanthocephalan Pomphorhynchus laevis upon the respiration of its intermediate host, Gammarus pulex. Parasitology, 1974,68:271-284.
    186.Rutschmann F. Molecular dating of phylogenetic trees:a brief review of current methods that estimate divergence times. Diversity and Distributions,2006,12: 35-48.
    187. Sanderson MJ. A nonparameteric approach to estimating divergence times in the absence of rate constancy. Molecular Biology and Evolution,1997,14:1218-1231.
    188. Sanderson MJ. Estimating absolute rates of molecular evolution and divergence times:a penalized likelihood approach. Molecular Biology and Evolution,2002,19: 101-109.
    189.Sarich VM, Wilson AC. Immunological time scale for hominid evolution. Science, 1967,158:1200-1203.
    190. Schmidt GD, Hugghimsi EJ. Acanthocephala of south American fishes, part 2. Palaeacanthocephala. The journal of Parasitology,1973,59:836-838.
    191.Schmidt HA, Strimmer K, Vingron M, Haeseler AV. Tree-puzzle:maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics,2002,18:502-504.
    192.Serb JM, Lydeard C. Complete mtDNA sequence of the North American freshwater mussel, Lampsilis ornata (Unionidae):an examination of the evolution and phylogenetic utility of mitochondrial genome organization in Bivalvia (Mollusca). Molecular Biology and Evolution,2003,20:1854-1866.
    193.Shao ZY, Graf SN, Chaga OY, Lavrov DV. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa):A linear DNA molecule encoding a putative DNA-dependent DNA polymerase. Gene,2006,381:92-101.
    194.Skibinski DO, Gallagher C, Beynon CM. Mitochondrial DNA inheritance. Nature, 1994,368:817-818.
    195.S(?)rensen MV, Giribet G. A modern approach to rotiferan phylogeny:combining morphological and molecular data. Molecular Phylogenetic Evolution,2006,40: 585-608.
    196.Spakulova M, Perrot-Minnot MJ, Neuhaus B. Resurrection of Pomphorhynchus tereticollis (Rudolphi,1809) (Acanthocephala:Pomphorhynchidae) based on new morphological and molecular data. Helminthologia,2011,48:268-277.
    197.Sponer R, Roy MS. Phylogeographic analysis of the brooding brittle star Amphipholis squamate (Echinodermata) along the coast of New Zealand reveals high cryptic genetic variation and cryptic dispersal potential. Evolution,2002,56: 1954-1967.
    198.Stach T, Braband A, Podsiadlowski L. Erosion of phylogenetic signal in tunicate mitochondrial genomes on different levels of analysis. Molecular Phylogenetics and Evolution,2010,55:860-870.
    199. Starling JA. Feeding, nutrition and metabolism. In Biology of the Acanthocephala. ed. Cromptom DWT and Nickol BB. Cambridge:Cambridge University Press,1985, 125-212.
    200.Steinauer ML, Nickol BB, Broughton R, Orti G. First sequenced mitochondrial genome from the phylum acanthocephala (Leptorhynchoides thecatus) and its phylogenetic position within metazoa. Journal of Molecular and Evolution,2005,60: 706-715.
    201.Sterud E, Appleby C. Parasites of common asp (Aspius aspius), bream(Abramis bramd) and zander(Stizostedion luciopercd) from the river Nitelva, south-eastern Norway. Bulletin of the Scandinavian Society for Parasitology,1996,6:134-138.
    202.Stranack FR. The fine structure of the acanthor shell of Pomphorhynchus laevis (Acanthocephala). Parasitology,1972,64:187-190.
    203.Sures B, Taraschewski H, Jackwerth E. Lead accumulation in Pomphorhynchus laevis and its host. The Journal of Parasitology,1994,80:355-357.
    204.Sures B, Taraschewski H. Cadmium concentrations in two adult acanthocephalans, Pomphorhynchus laevis and Acanthocephalus lucii, as compared with their fish hosts and cadmium and lead levels in larvae of A. lucii as compared with their crustacean host. Parasitology Research,1995,81:494-497.
    205.Sures B, Taraschewski H, Siddal R. Heavy metal concentrations in adult acanthocephalans and cestodes compared to their fish hosts and to established free-living bioindicators. Parassitologia,1997,39:213-218.
    206.Sures B, Siddall R. Pomphorhynchus laevis (Palaeacanthocephala) in the intestine of chub (Leuciscus cephalus) as an indicator of metal pollution. International Journal for Parasitology,2003,33:65-67.
    207.Sures B, Thielen F, Baska F, Messerschmidt J, Bohlen AV. The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest, Hungary. Environmental Pollution, 2004,129:421-429.
    208.Sutcliffe DW. Sodium regulation in the amphipod Gammarus duebeni from brackish-water and fresh-water localities in Britain. The Journal of Experimental Biology,1967,46:529-550.
    209.Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biology of Reproduction,2000, 63:582-590.
    210.Swofford DL. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer, Sunderland, MA,2002.
    211.Tain L, Perrot-Minnot MJ, Cezilly F. Differential influence of Pomphorhynchus laevis (Acanthocephala) on brain serotonergic activity in two congeneric host species. Biology Letters,2007,3:68-71.
    212.Takezaki N, Rzhetsky A, Nei M. Phylogenetic test of the molecular clock and linearized trees. Molecular Biology and Evolution,1995,12:823-833.
    213.Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 2007,56:564-577.
    214.Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution,2011, 28:2731-2739.
    215.Tang S, Hyman BC. Mitochondrial genome haplotype hypervariation within the isopod parasitic nematode Thaumamermis cosgrovei. Genetics,2007,176: 1139-1150.
    216.Thielen F, Zimmerman S, Baska F, Taraschewski H, Sures B. The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbell as a bioindicator for metal pollution in the Danube River near Budapest, Hungary. Environmental Pollution, 2004,129:421-429.
    217.Thompson AB. Analysis of profilicollis botulus (Acanthocephala:Echinorhynchudae) burdens in the shore crab, Carcinus maenas. Journal of Animal Ecology,1985a,54: 595-604.
    218.Thompson AB. Transmission dynamics of profilicollis botulus (Acanthocephala) from crabs (Carcinus maenas) to eider ducks (Somateria mollisimd) on the Ythan estuary, N.E. Scotland. Journal of Animal Ecology,1985b,54:605-616.
    219.Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research,1997,24:4876-4883.
    220.Thorne JL, Kishino H, Painter IS. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution,1998,15:1647-1657.
    221.Uznanski RL, Nickol BB. Structure and function of the fibrillar coat of Leptorhynchoides thecatus eggs. The Journal of Parasitology,1970,62:569-573.
    222.Valles Y, Boore JL. Lophotrochozoan mitochondrial genomes. Integrative Comparative Biology,2006,46:544-557.
    223.Vaughn KC, Debonte LR, Wilson KG. Organelle alteration as mechanism for matemal inheritance. Science,1980,208:196-197.
    224.Wallace RL, Ricci C, Melone G. A cladistic analysis of pseudocoelomate (aschelminth) morphology. Invertebrate Biology,1996,115:104-112.
    225.Wang WB, Zeng BP, Wang Z, Luo YS, Wang JR. Studies on the population ecology of Pallisentis (Neosentis) celatus in its host Monopterus albus. Journal of Huazhong Agricultural University,2004,23:650-653.
    226. Welch DBM. Evidence from a protein-coding gene that acanthocephalans are rotifers. Invertebrate Biology,2000a,111:17-23.
    227.Welch DBM, Meselson M. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science,2000b,288:2111-2115.
    228. Welch DBM. Early contributions of molecular phylogenetics to understanding the evolution of Rotifera. Hydrobiologia,2001,446/447:315-322.
    229. Welch DBM. Bayesian and maximum likelihood analyses of rotifer-acanthocephalan relationships. Hydrobiologia,2005,546:47-54.
    230.Williams EH, Rogers WA. Pomphorhynchus lucyi sp.n. (acanthocephala)from fresh and brachish water fishes of the southeastern U.S. gulf coast. The Journal of Parasitology,1984,70:580-583.
    231.Winnepenninckx B, BackeljauT, Mackey LY, Brooks JM, Wachter RD, Kumar S, Garey JR.18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Molecular Biology Evolution,1995,12: 1132-1137.
    232.Witek A, Herlyn H, Meyer A, Boell L, Bucher G, Hankeln T. EST based phylogenomics of Syndermata questions monophyly of Eurotatoria. BMC Evolution Biology.2008,8:345.
    233.Wolstenholme DR, Clary DO. Sequence evolution of Drosophila mitochondrial DNA. Genetics,1985,190:725-744.
    234. Wongkham W, Whitfield PJ. Pallisentis rexus from the Chiang Mai Basin, Thailand: ultrastructural studies on egg envelope development and the mechanism of egg expansion. Journal of Helminthology,2004,78:77-85.
    235. Wu CI, Li WH. Evidence for higher rates of nucleotide substitution in rodents than in man. Proceedings of the National Academy of Sciences,1985,82:1741-1745.
    236.Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics,2004,20:3252-3255.
    237.Xia X, Xie Z. DAMBE:Data analysis in molecular biology and evolution. Journal of Heredity,2001,92:371-373.
    238. Yang Z. PAML 4:a program package for phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution,2007,24:1586-1591.
    239.Yoder AD, Yang Z. Estimation of primate speciation dates using local molecular clock. Molecular Biology and Evolution,2000,17:1081-1090.
    240.Zdzitowiecki K. Redescription of Corynosoma tunitae (Weiss 1914) and description of C. baylisi sp. N. (Acanthocephala, Polymorphidae), parasites of piscivorous birds. Acta Parasitologica Polonica,1986,31:117-123.
    241.Zeng BP, Wang WB. Seasonal population dynamics of Pallisentis (Neosentis) celatus (Acanthocephala:Quadrigyridae) in the intestine of the rice-field eel Monopterus albus in China. Journal of Helminthology,2007,81:415-420.
    242.Zhang DX, Hewitt GM. Insect mitochondrial control region:A review of its structure, evolution and usefulness in evolutionary studies. Biochemical Systematics and Ecology,1997,25:99-120.
    243.Zhao QP, Zhang SH, Deng ZR, Jiang MS, Nie P. Conservation and variation in mitochondrial genomes of gastropods Oncomelania hupensis and Tricula hortensis, intermediate host snails of Schistosoma in China. Molecular Phylogenetics and Evolution,2010,57:215-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700