手性农药在颤蚓体内选择性富集、代谢及生理毒性差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药的广泛使用对农作物的增产起到了重要作用,但同时大量农药的使用也对环境生态系统造成了污染。农药在生产或使用过程中,可通排污、淋溶及直接施用等方式进入水生态系统,污染水体,对水生生物产生毒害作用。常用的农药中有一百多种具有手性,且大多数以外消旋体的形式生产使用,而手性农药对映体表现出来的生物活性往往是不同的,甚至是截然相反的。因此,在对映体水平上进行污染物的环境安全评估更准确可靠,是环境科学领域一个新的发展方向。颤蚓是一种典型的底栖动物,其对污染的环境有很强的耐受性,对水质和底质两方面的污染反应都敏感,常被作为考察水体污染程度的指示生物。本研究选择颤蚓作为研究对象,评价了4种常用手性农药在颤蚓体内的选择性富集、代谢,以及颤蚓的存在对农药对映体在水环境中的分布、代谢和降解行为产生的影响。同时测定在手性农药胁迫下颤蚓生理指标发生的变化,进一步对选择性产生的机理进行初步探讨。这是关于手性农药对映体在颤蚓体内选择性行为的首次报道。
     选定4种常用手性农药,氟虫腈、水胺硫磷、三唑酮和禾草灵,利用高效液相色谱手性固定相(CDMPC)法建立了氟虫腈、水胺硫磷和禾草灵及其代谢产物禾草酸对映体的分离方法,利用气相色谱手性固定相法对三唑酮及其代谢产物三唑醇的六个立体异构体进行了同时拆分。
     经溶剂萃取、SPE净化,建立了农药对映体在颤蚓、土壤和水样本中的残留分析检测方法。利用水体染毒和底层基质染毒两种培养方式对选定手性农药的富集、代谢行为进行了研究。结果显示,在两种方式培养颤蚓的富集实验过程中,氟虫腈、水胺硫磷和三唑酮均能在颤蚓样本中检出,表明颤蚓在不同的生活环境下对该3种农药均有一定程度的富集。而在禾草灵富集试验中,颤蚓样本中未检测到禾草灵,但检测到了其水解产物禾草酸。进一步实验得出,由于颤蚓的存在禾草灵在水中快速水解为禾草酸,所以本文仅研究禾草酸对映体在颤蚓中的富集行为。氟虫腈、水胺硫磷、三唑酮、三唑醇和禾草酸在染毒水培养富集过程中具有明显的对映体选择性,颤蚓体内的浓度R-(-)-氟虫腈>S-(+)-氟虫腈、(-)-水胺硫磷>(+)-水胺硫磷、S-三唑酮>R-三唑酮、(1R,2S)-三唑醇>(1S,2R)-三唑醇>(1R,2R)-三唑醇>(1S,2S)-三唑醇、R-(+)-禾草酸>S-(-)-禾草酸。而在底层基质染毒培养试验中,只有氟虫腈和三唑醇富集过程中具有明显的对映体选择性,推测颤蚓在不同暴露方式下通过不同的途径富集环境中的农药,不同富集途径中参与的手性选择因子不同导致选择性水平出现差异。对颤蚓体内三唑酮和三唑醇的代谢行为进行了研究,发现三唑酮的代谢速率较三唑醇快,经水培养的代谢过程也具有对映体选择性。
     在选定农药在培养基质中的分布和代谢行为研究中发现,氟虫腈、水胺硫磷和三唑酮在底层基质中均表现出明显的代谢。在添加颤蚓的底层基质中农药的代谢速率显著高于对照组,说明除去土壤微生物的代谢作用外,颤蚓表现出对底层基质污染的净化作用。而对上层水中农药的检测发现,颤蚓的存在有利于底层基质中的农药向上层水扩散,使底层固体基质中的污染物得以释放,可能对水系统中上层水生生物造成胁迫。实验中发现,禾草灵在水体中可发生自然水解,降解速率低且不存在对映体选择性,颤蚓的存在不仅可以显著加速禾草灵的水解,而且使水解过程发生显著的对映体选择性,生成R-(+)-禾草酸浓度显著高于S-(-)-禾草酸。为了探讨选择性产生的原因,进行了光学纯禾草灵及禾草酸在水中单体培养试验。结果发现,禾草灵在水解过程中会出现构型翻转,而禾草酸对映体在实验过程中保持光学稳定,表明选择性的产生是由于禾草灵两个对映体之间转化速率的差异所致。
     利用颤蚓匀浆液制备了颤蚓的粗酶液,并建立了粗酶液蛋白含量、MDA含量、CAT, GST及GR酶活性测定方法。利用水培养染毒,研究了氟虫腈及其对映体对颤蚓CAT和GR酶活性的影响,结果发现氟虫腈及其对映异构体对颤蚓抗氧化酶的影响较小,在实验选定浓度下酶活性均未检测到显著变化;在水胺硫磷及其对映体对颤蚓CAT和GR酶活性及MDA含量的影响研究中发现,暴露浓度与酶活性之间不存在明显的剂量-效应线性关系,但在同一浓度下,对映体之间对抗氧化酶活性影响存在显著差异,对酶活影响程度的大小为(+)-ICP> Rac-ICP≥(-)-ICP, MDA含量变化不显著;在三唑酮及三唑醇对颤蚓CAT、GST、GR酶活性和MDA含量的影响研究中发现:对于三唑酮而言,CAT和GR酶活性均与浓度存在显著的剂量-效应关系,但与暴露时间之间存在的规律不如浓度显著,另外经三唑酮处理后,颤蚓体内MDA的含量显著增多,但三唑酮对颤蚓体内总蛋白含量和GST酶活性的影响不显著。对于三唑醇来说,CAT、GST和GR酶的活性均与浓度之间存在剂量-效应关系,同时CAT和GST酶活性与暴露时间存在一定的关系,GR酶活性随时间变化不显著,三唑醇对MDA含量的影响不如三唑酮显著。
Pesticides play very important role in increasing crop production, however, tons of pesticides enter into the environment as contaminants and affect the ecosystem greatly. In the process of production or use, pesticides can entery into aquatic ecological system via direct spraying, rain wash and surface runoff, causing toxic effect on aquatic organisms. As we kown that almost25%current used pesticides were chiral, they have two or more enantiomers. Previous studies have shown that the enantiomers of a chiral pesticide have identical physical and chemical properties but they may perform different behavior in the processes of absorption, accumulation and degradation when confront with chrial environment. This makes it necessary to study the behavior of the enantiomers of chiral pesticides individually to understand the effects more comprehensively on the environmental safety and public health. As a typical aquatic benthic organism, Tubifex tubifex always be found in ecosystems contaminated by organic matter with a low level of oxygenation. These worms are very widely distributed and frequently dominant in freshwater benthic communities. They have an intimate contraction with the solid phase and the pore water of the sediment, burrowing the anterior part in the sediment and undulating the posterior part in the overlying water. Because of the endobenthic lifestyle and stress resistance, tubifex has been designated as a representative freshwater benthic infauna for aquatic system bioassays. In the present work, we study the differences in bioaccumulation and degradation behaviors of individual enantiomers of four chiral pesticides in tubifex. We also evaluated the effects of the tubifex on diffusion and degradation of pesticides. This is the first report about enantioselective behaviorof chiral pesticides in tubifex.
     Four chiral pesticides were studied in this work and the enantiomers of pesticides were separated on high-performance liquid chromatography (HPLC) or gas chromatography (GC) based on chiral stationary phases (CSP).
     The enantiomers concentrations of the selected chiral pesticides in tubifex, soil and water samples were analysed by solvent extraction and SPE clean-up. Tubifex worm were cultivated in two different contamination systems, including spiked water and spiked soil, to compare the influence of different uptake routes on bioaccumulations and excretions. In bioaccumulation experiments, the results indicated that tubifex can accumulate fipronil, isocarbophos (ICP), triadimefon (TF) and triadimenol (TN). However, diclofop-methyl (DM) was not detected in worm during the whole accumulation process. Furhter studies showed that DM can be rapidly hydrolysis to diclofop acid (DC), resulting only the metabolite DC was detected in tubifex. The bioaccumulations of fipronil, ICP, TF, TN and DC were enantioselective in tubifex tissue in spiked water treatments, with the concentration orders R-(-)-fipronil>S-(+)-fipronil,(-)-ICP>(+)-ICP,S-TF>R-TF,(1R,2S)-TN>(1S,2R)-TN>(1R,2R)-TN>(1S,2S)-TN, R-(-)-DC> S-(+)-DC. However, in the spiked soil treatments, enantioselective accumulations were not detected except for fipronil and TN. It was speculated that, there were different chiral selective factor in different uptake routes. The excretions of TF and TN in tubifex were also studied, the results showed that the excretion rate of TF was higher than that of TN, what's more the excretion of the two fungicides were also enantioselective in spiked water treatment.
     Studies about the the effects of the tubifex on diffusion and degradation of pesticides showed that, with the presence of tubifex worms, higher concentrations of pesticides in overlying water and lower concentrations in soil were detected than that in the absence of tubifex treatment during the whole exposure period. This means that tubifex has positive functions in pesticides' diffusion from bottom solid substrate to overlying water and in the degradation of the soil-associated pesticides. We also found that, the present of tubifex can accelerated the hydrolysis of DM and make the hydrolytic process have enantioselectivity. Further studies showed that DC enantiomers were configuration?lly stable in water, however the DM enantiomers experienced inversion of configuration in hydrolytic process.
     Crude enzyme was prepared using tubifex homogenates, and methods that determining the content of protein and MDA, the enzyme activities of CAT, GST and GR were developed. Changes in CAT and GR activities were tested by exposing tubifex to solutions rac-fipronil and its enantiomers, respectively. The results showed there's no significant effect on the enzyme activities. Studies on the ICP and its enantiomers showed that, there's no obvious dose-response relationship, but at the same concentration, there's significant effect of ICP on the activities of CAT and GR and the toxic effects were enantioselective, following the order (+)-ICP> Rac-ICP≥(-)-ICP. ICP has no significant influence on the content of MDA. For TF experiment, the changes of CAT and GR activities showed a significant dose-response relationship with TF. Meanwhile, there's a significant increase for the content of MDA, but TF performed no effect on the content of protein and activity of GST. For TN experiment, there's a significant dose-response relationship between the fungicide and activities of CAT, GST and GR. There's also a significant increase for the content of MDA, but the level was lower than that of TF. Changes on GR activity were not sifnifincant.
引文
[1]EPA. USA http://www.epa.gov/pesticides/.
    [2]JJanek P. U. History of Horticulture, Roman Agricultural History. http://wwwhortpurdueedu/newcrop/Hort 306/text/lecl8pdf
    [3]Smith A. E., Secoy D. M. Forerunners of pesticides in classical Greece and Rome. Journal of agricultural and food chemistry,1975,23(6):1050-1055.
    [4]邱德文.我国生物农药产业现状分析及发展战略的思考.生物产业技术,2011,(5):40-43.
    [5]明耀.环境有机污染与致癌物质.四川大学出版社,1992.
    [6]刘世友.农药污染现状与环境保护措施.河北化工,2010,(1):74-75.
    [7]罗辽复.论生物手性的起源.内蒙古大学学报(自然科学版),1998,29(3):354-365.
    [8]启冬,尤国强.手性药物:研究与应用.化学工业出版社,2004.
    [9]Waldeck B. Biological significance of the enantiomeric purity of drugs. Chirality,1993,5(5): 350-355.
    [10]于平.手性化合物研究进展.化工进展,2002,21(9):635-638.
    [11]郑卓.手性农药与手性技术(一).精细与专用化学品,2001,9(23):3-6.
    [12]尹国,刘振华.手性异构体拆分方法的研究进展.中国药物化学杂志,2001,11(1):57-62.
    [13]Nandihalli U. B., Duke M. V., Ashmore J. W., et al. Enantioselectivity of protoporphyrinogen oxidase-inhibiting herbicides. Pesticide Science,1994,40(4):265-277.
    [14]徐晓白,戴树桂等主编.典型化学污染物在环境中的变化和生态效应.科学出版社,1998
    [15]张彤,金洪钧.用浮萍试验检测4种污染物的植物毒性.中国环境科学,1995,15(4):266-271.
    [16]Lampman W. Susceptibility of groundwater to pesticide and nitrate contamination in predisposed areas of southwestern Ontario. Water Quality Research Journal of Canada,1995, 30(3):443-468.
    [17]Dvais D. Washington State Pestieide Monitoring Porgrmal997 Surafce Water SamPling Report [R].Enviornmental Assessment Program olympia, Washington. httP://wwwagov/eeology/biblio0/003003html.2000,
    [18]林艳.瑞士在水中发现农药残留.农药科学与管理,2004,25(1):10-10.
    [19]蔡道基主编.农药环境毒理学研究.中国环境科学出版社,北京,1999,324.
    [20]康跃惠,刘培斌,王子健等.北京官厅水库-永定河水系水体中持久性有机氯农药污染.湖泊科学,2003,15(2):125-132.
    [21]Feng K., Yu B., Ge D., et al. Organo-chlorine pesticide (DDT and HCH) residues in the Taihu Lake Region and its movement in soil-water system:Ⅰ. Field survey of DDT and HCH residues in ecosystem of the region. Chemosphere,2003,50(6):683-687.
    [22]Kallenborn R., Oehme M., Vetter W., et al. Enantiomer selective separation of toxaphene congeners isolated from seal blubber and obtained by synthesis. Chemosphere,1994,28(1): 89-98.
    [23]Buser H.-R., Muller M. D. Occurrence and transformation reactions of chiral and achiral phenoxyalkanoic acid herbicides in lakes and rivers in Switzerland. Environmental science and technology,1998,32(5):626-633.
    [24]Williams A. Opportunities for chiral agrochemicals. Pesticide Science,1996,46(1):3-9.
    [25]Mueller M. D., Buser H.-R. Environmental behavior of acetamide pesticide stereoisomers.2. Stereo-and enantioselective degradation in sewage sludge and soil. Environmental science and technology,1995,29(8):2031-2037.
    [26]Geus H.-J. d., Wester P. G., Boer J. d., et al. Enantiomer fractions instead of enantiomer ratios. Chemosphere,2000,41(5):725-727.
    [27]Harner T., Wiberg K., Norstrom R. Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis. Environmental science and technology, 2000,34(1):218-220.
    [28]Ulrich E. M., Helsel D. R., Foreman W. T. Complications with using ratios for environmental data:comparing enantiomeric ratios (ERs) and enantiomer fractions (EFs). Chemosphere, 2003,53(5):531-538.
    [29]Faller J., Huehnerfuss H., Koenig W. A., et al. Do marine bacteria degrade. alpha.-hexachlorocyclohexane stereoselectively? Environmental science and technology,1991, 25(4):676-678.
    [30]Huehnerfuss H., Faller J., Koenig W. A., et al. Gas chromatographic separation of the enantiomers of marine pollutants.4. Fate of hexachlorocyclohexane isomers in the Baltic and North Sea. Environmental science and technology,1992,26(11):2127-2133.
    [31]Harner T., Kylin H., Bidleman T. F., et al. Removal of a-and y-hexachlorocyclohexane and enantiomers of a-hexachlorocyclohexane in the eastern Arctic Ocean. Environmental science and technology,1999,33(8):1157-1164.
    [32]Falconer R. L., Bidleman T. F., Gregor D. J., et al. Enantioselective Breakdown of. alpha.-Hexachlorocyclohexane in a Small Arctic Lake and its Watershed. Environmental science and technology,1995,29(5):1297-1302.
    [33]Law S. A., Diamond M. L., Helm P. A., et al. Factors affecting the occurrence and enantiomeric degradation of hexachlorocyclohexane isomers in northern and temperate aquatic systems. Environmental toxicology and chemistry,2001,20(12):2690-2698.
    [34]张智超,戴树桂,朱昌寿.海口河口水和新港港湾水中α-HCH对映体选择性降解及a,p,y-HCH浓度.中国环境科学,1998,(18)197-201.
    [35]Jantunen L. M., Bidleman T. Air-water gas exchange of hexachlorocyclohexanes (HCHs) and the enantiomers of a-HCH in Arctic regions. Journal of Geophysical Research:Atmospheres (1984-2012),1996,101(D22):28837-28846.
    [36]Zipper C., Suter M. J.-F., Haderlein S. B., et al. Changes in the enantiomeric ratio of (R)-to (S)-mecoprop indicate in situ biodegradation of this chiral herbicide in a polluted aquifer. Environmental science and technology,1998,32(14):2070-2076.
    [37]Williams G., Harrison I., Carlick C., et al. Changes in enantiomeric fraction as evidence of natural attenuation of mecoprop in a limestone aquifer. Journal of contaminant hydrology, 2003,64(3):253-267.
    [38]Bucheli T. D., Muller S. R., Heberle S., et al. Occurrence and behavior of pesticides in rainwater, roof runoff, and artificial stormwater infiltration. Environmental science and technology,1998,32(22):3457-3464.
    [39]Bucheli T. D., Muller S. R., Voegelin A., et al. Bituminous roof sealing membranes as major sources of the herbicide (R, S)-mecoprop in roof runoff waters:potential contamination of groundwater and surface waters. Environmental science and technology,1998,32(22): 3465-3471.
    [40]Ludwig P., Gunkel W., Huhnerfuss H. Chromatographic separation of the enantiomers of marine pollutants. Part 5:Enantioselective degradation of phenoxycarboxylic acid herbicides by marine microorganisms. Chemosphere,1992,24(10):1423-1429.
    [41]Rugge K., Juhler R. K., Broholm M. M., et al. Degradation of the (R)-and (S)-enantiomers of the herbicides MCPP and dichlorprop in a continuous field-injection experiment. Water Research,2002,36(16):4160-4164.
    [42]Buser H.-R., Poiger T., Muller M. D. Changed enantiomer composition of metolachlor in surface water following the introduction of the enantiomerically enriched product to the market. Environmental science and technology,2000,34(13):2690-2696.
    [43]Liu W., Gan J. J. Determination of enantiomers of synthetic pyrethroids in water by solid phase microextraction-enantioselective gas chromatography. Journal of agricultural and food chemistry,2004,52(4):736-741.
    [44]Wong C. S., Garrison A. W., Foreman W. T. Enantiomeric composition of chiral polychlorinated biphenyl atropisomers in aquatic bed sediment. Environmental science and technology,2001,35(1):33-39.
    [45]Pakdeesusuk U., Jones W. J., Lee C. M., et al. Changes in enantiomeric fractions during microbial reductive dechlorination of PCB132, PCB149, and Aroclor 1254 in Lake Hartwell sediment microcosms. Environmental science and technology,2003,37(6):1100-1107.
    [46]Li X., Yang L., Jans U., et al. Lack of enantioselective microbial degradation of chlordane in Long Island Sound sediment. Environmental science and technology,2007,41(5):1635-1640.
    [47]Ulrich E. M., Foreman W. T., Van Metre P. C., et al. Enantiomer fractions of chlordane components in sediment from US Geological Survey sites in lakes and rivers. Science of the total environment,2009,407(22):5884-5893.
    [48]Falconer R. L., Bidleman T. F., Szeto S. Y. Chiral pesticides in soils of the Fraser Valley, British Columbia. Journal of agricultural and food chemistry,1997,45(5):1946-1951.
    [49]Buser H.-R., Mueller M. D. Isomer and enantioselective degradation of hexachlorocyclohexane isomers in sewage sludge under anaerobic conditions. Environmental science and technology,1995,29(3):664-672.
    [50]Mueller M. D., Schlabach M., Oehme M. Fast and precise determination of. alpha.-hexachlorocyclohexane enantiomers in environmental samples using chiral high-resolution gas chromatography. Environmental science and technology,1992,26(3): 566-569.
    [51]Yu P., Zhou S.-S., Yang H.-Y. Residues and chiral signatures of organochlorine pesticides in sediments of Jiaojiang Estuary. Environmental science and technology,2011,11
    [52]Yang H., Xue B., Yu P., et al. Residues and enantiomeric profiling of organochlorine pesticides in sediments from Yueqing Bay and Sanmen Bay, East China Sea. Chemosphere, 2010,80(6):652-659.
    [53]Qin S., Budd R., Bondarenko S., et al. Enantioselective degradation and chiral stability of pyrethroids in soil and sediment. Journal of agricultural and food chemistry,2006,54(14): 5040-5045.
    [54]Liu W., Gan J. J., Lee S., et al. Isomer selectivity in aquatic toxicity and biodegradation of cypermethrin. Journal of agricultural and food chemistry,2004,52(20):6233-6238.
    [55]Liu W., Gan J., Schlenk D., et al. Enantioselectivity in environmental safety of current chiral insecticides. Proceedings of the National Academy of Sciences of the United States of America,2005,102(3):701-706.
    [56]Diao J., Xu P., Wang P., et al. Enantioselective degradation in sediment and aquatic toxicity to Daphnia magna of the herbicide lactofen enantiomers. Journal of agricultural and food chemistry,2010,58(4):2439-2445.
    [57]Zipper C., Bolliger C., Fleischmann T., et al. Fate of the herbicides mecoprop, dichlorprop, and 2,4-D in aerobic and anaerobic sewage sludge as determined by laboratory batch studies and enantiomer-specific analysis. Biodegradation,1999,10(4):271-278.
    [58]马云,徐超,陈胜文等.淤泥优势菌对手性农药2,4-滴丙酸甲酯的对映体选择性降解.环境科学,2005,26(4):152-155.
    [59]Chen S., Liu W. Enantioselective degradation of metalaxyl in anaerobic activated sewage sludge. Bulletin of environmental contamination and toxicology,2009,82(3):327-331.
    [60]Jones W. J., Mazur C. S., Kenneke J. F., et al. Enantioselective microbial transformation of the phenylpyrazole insecticide fipronil in anoxic sediments. Environmental science and technology,2007,41(24):8301-8307.
    [61]戴守辉.手性多氯联苯在莲藕体内的对映体选择性富集行为研究.中国农业科学院,硕士毕业论文,2012.
    [62]Lu D., Liu D., Gu X., et al. Stereoselective metabolism of fipronil in water hyacinth (Eichhornia crassipes). Pesticide Biochemistry and Physiology,2010,97(3):289-293.
    [63]Cai X., Liu W., Sheng G. Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater alga cultures. Journal of agricultural and food chemistry,2008, 56(6):2139-2146.
    [64]Zhang X., Wang S., Wang Y., et al. Differential enantioselectivity of quizalofop ethyl and its acidic metabolite:direct enantiomeric separation and assessment of multiple toxicological endpoints. Journal of hazardous materials,2011,186(1):876-882.
    [65]Liu H., Xiong M. Comparative toxicity of racemic metolachlor and S-metolachlor to Chlorella pyrenoidosa. Aquatic Toxicology,2009,93(2):100-106.
    [66]熊明瑜.Rac-异丙甲草胺及其S-对映体的生态毒性作用的手性差异性研究;浙江大学,2010.
    [67]Ye J., Zhang Q., Zhang A., et al. Enantioselective effects of chiral herbicide diclofop acid on rice Xiushui 63 seedlings. Bulletin of environmental contamination and toxicology,2009, 83(1):85-91.
    [68]叶璟.除草剂禾草灵对水稻与蓝藻的对映选择性毒理研究;浙江大学,2010.
    [69]Wong C. S., Mabury S. A., Whittle D. M., et al. Organochlorine compounds in Lake Superior: Chiral polychlorinated biphenyls and biotransformation in the aquatic food web. Environmental science and technology,2004,38(1):84-92.
    [70]Warner N. A., Norstrom R. J., Wong C. S., et al. Enantiomeric fractions of chiral polychlorinated biphenyls provide insights on biotransformation capacity of arctic biota. Environmental toxicology and chemistry,2005,24(11):2763-2767.
    [71]Huhnerfuss H., Pfaffenberger B., Gehrcke B., et al. Stereochemical effects of PCBs in the marine environment:Seasonal variation of coplanar and atropisomeric PCBs in blue mussels (Mytilus edulis L.) of the german bight. Marine pollution bulletin,1995,30(5):332-340.
    [72]Wong C. S., Garrison A. W., Smith P. D., et al. Enantiomeric composition of chiral polychlorinated biphenyl atropisomers in aquatic and riparian biota. Environmental science and technology,2001,35(12):2448-2454.
    [73]Serrano R., Fernandez M., Rabanal R., et al. Congener-specific determination of polychlorinated biphenyls in shark and grouper livers from the Northwest African Atlantic Ocean. Archives of environmental contamination and toxicology,2000,38(2):217-224.
    [74]Hoekstra P. F., Wong C. S., O'Hara T. M., et al. Enantiomer-specific accumulation of PCB atropisomers in the bowhead whale (Balaena mysticetus). Environmental science and technology,2002,36(7):1419-1425.
    [75]Klobes U., Vetted W., Luckas B., et al. Levels and enantiomeric ratios of a-hch, oxychlordane, and pcb 149 in blubber of harbour seals (Phoca vitulina) and grey seals (Halichoerus grypus) from iceland and further species. Chemosphere,1998,37(9):2501-2512.
    [76]Warner N. A., Wong C. S. The freshwater invertebrate Mysis relicta can eliminate chiral organochlorine compounds enantioselectively. Environmental science and technology,2006, 40(13):4158-4164.
    [77]Wong C. S., Lau F., Clark M., et al. Rainbow trout (Oncorhynchus mykiss) can eliminate chiral organochlorine compounds enantioselectively. Environmental science and technology, 2002,36(6):1257-1262.
    [78]Buckman A. H., Wong C. S., Chow E. A., et al. Biotransformation of polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in fish. Aquatic Toxicology,2006, 78(2):176-185.
    [79]Wiberg K., Andersson P. L., Berg H., et al. The fate of chiral organochlorine compounds and selected metabolites in intraperitoneally exposed Arctic char (Salvelinus alpinus). Environmental toxicology and chemistry,2006,25(6):1465-1473.
    [80]Wiberg K., Letcher R. J., Sandau C. D., et al. The enantioselective bioaccumulation of chiral chlordane and a-HCH contaminants in the polar bear food chain. Environmental science and technology,2000,34(13):2668-2674.
    [81]Oehme M., Kallenbom R., Wiberg K., et al. Simultaneous enantioselective separation of chlordanes, a nonachlor compound, and o,p'-DDT in environmental samples using tandem capillary columns. Journal of High Resolution Chromatography,1994,17(8):583-588.
    [82]周珊珊,杜晴,王鹏等.舟山渔场海产品中有机氯农药的残留及对映体过剩.浙江工业大学学报,2012,40(6):599-605.
    [83]Lehmler H.-J., Harrad S. J., Huhnerfuss H., et al. Chiral Polychlorinated Biphenyl Transport, Metabolism, and Distribution:A Review. Environmental science and technology,2009,44(8): 2757-2766.
    [84]Chen Z., Wang Y. Chromatographic methods for the determination of pyrethrin and pyrethroid pesticide residues in crops, foods and environmental samples. Journal of Chromatography A,1996,754(1):367-395.
    [85]Liu W., Qin S., Gan J. Chiral stability of synthetic pyrethroid insecticides. Journal of agricultural and food chemistry,2005,53(10):3814-3820.
    [86]Liu W., Gan J., Lee S., et al. Isomer selectivity in aquatic toxicity and biodegradation of bifenthrin and permethrin. Environmental toxicology and chemistry,2005,24(8):1861-1866.
    [87]Zhao M., Liu W. Enantioselectivity in the immunotoxicity of the insecticide acetofenate in an in vitro model. Environmental toxicology and chemistry,2009,28(3):578-585.
    [88]Wang L., Liu W., Yang C., et al. Enantioselectivity in estrogenic potential and uptake of bifenthrin. Environmental science and technology,2007,41(17):6124-6128.
    [89]Liu W., Gan J. J., Qin S. Separation and aquatic toxicity of enantiomers of synthetic pyrethroid insecticides. Chirality,2005,17(S1):S127-S133.
    [90]Jin Y., Wang W., Xu C., et al. Induction of hepatic estrogen-responsive gene transcription by permethrin enantiomers in male adult zebrafish. Aquatic Toxicology,2008,88(2):146-152.
    [91]Jin Y., Chen R., Sun L., et al. Enantioselective induction of estrogen-responsive gene expression by permethrin enantiomers in embryo-larval zebrafish. Chemosphere,2009,74(9): 1238-1244.
    [92]Xu C., Wang J., Liu W., et al. Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambda-cyhalothrin. Environmental toxicology and chemistry,2008,27(1): 174-181.
    [93]Ma Y., Chen L., Lu X., et al. Enantioselectivity in aquatic toxicity of synthetic pyrethroid insecticide fenvalerate. Ecotoxicology and environmental safety,2009,72(7):1913-1918.
    [94]Yen J., Tsai C., Wang Y. Separation and toxicity of enantiomers of organophosphorus insecticide leptophos. Ecotoxicology and environmental safety,2003,55(2):236-242.
    [95]Wang Y.-S., Tai K.-T., Yen J.-H. Separation, bioactivity, and dissipation of enantiomers of the organophosphorus insecticide fenamiphos. Ecotoxicology and environmental safety,2004, 57(3):346-353.
    [96]Liu W., Lin K., Gan J. Separation and aquatic toxicity of enantiomers of the organophosphorus insecticide trichloronate. Chirality,2006,18(9):713-716.
    [97]Miyazaki A., Nakamura T., Kawaradani M., et al. Resolution and biological activity of both enantiomers of methamidophos and acephate. Journal of Agricultural and Food Chemistry, 2002,36:835-837.
    [98]Lin K., Zhang F., Zhou S., et al. Stereoisomeric separation and toxicity of the nematicide fosthiazate. Environmental toxicology and chemistry,2007,26(11):2339-2344.
    [99]Zhou S., Lin K., Yang H., et al. Stereoisomeric separation and toxicity of a new organophosphorus insecticide chloramidophos. Chemical research in toxicology,2007,20(3): 400-405.
    [100]Lin K., Liu W., Li L., et al. Single and joint acute toxicity of isocarbophos enantiomers to Daphnia magna. Journal of agricultural and food chemistry,2008,56(11):4273-4277.
    [101]Xu C., Zhao M., Liu W., et al. Enantioselectivity in zebrafish embryo toxicity of the insecticide acetofenate. Chemical research in toxicology,2008,21(5):1050-1055.
    [102]Overmyer J. P., Rouse D. R., Avants J. K., et al. Toxicity of fipronil and its enantiomers to marine and freshwater non-targets. Journal of Environmental Science and Health Part B, 2007,42(5):471-480.
    [103]Wilson W. A., Konwick B. J., Garrison A. W., et al. Enantioselective chronic toxicity of fipronil to Ceriodaphnia dubia. Archives of environmental contamination and toxicology, 2008,54(1):36-43.
    [104]Giblin A. E., Foreman K. H., Banta G. T. Biogeochemical processes and marine benthic community structure:which follows which?. Linking Species and Ecosystems. Springer. 1995:37-44.
    [105]Alongi D. M. Coastal ecosystem processes. CRC press,1997.
    [106]袁兴中,何文珊.海洋沉积物中的动物多样性及其生态系统功能.地球科学进展,1999,14(5):458-463.
    [107]Cullen D. J. Bioturbation of superficial marine sediments by interstitial meiobenthos.1973.
    [108]Day J. W. Estuarine ecology. Wiley,1989.
    [109]Dade W., Nowell A. Moving muds in the marine environment; proceedings of the Coastal Sediments (1991), F,1991 [C]. ASCE.
    [110]Levinton J. Bioturbators as ecosystem engineers:control of the sediment fabric, inter-individual interactions, and material fluxes. Linking Species and Ecosystems. Springer. 1995:29-36.
    [111]段学花.河流水沙对底栖动物的生态影响研究.清华大学,博士论文,2009.
    [112]龚志军,谢平,唐汇涓等.水体富营养化对大型底栖动物群落结构及多样性的影响.水生生物学报,2001,25(3):210-216.
    [113]李仁熙.正颤蚓的生长发育及繁殖生物学的研究.水生生物学报,2001,25(1):14-20.
    [114]颜京松,游贤文,苑省三.以底栖动物评价甘肃境内黄河干支流时期的水质.环境科学,1980,1(1):14-20.
    [115]黄玉瑶,滕德兴,赵忠宪.应用大型无脊椎动物群落结构特征及其多样性指数监测蓟运河污染.动物学集刊,1982,2(2):133-144.
    [116]任淑智.北京地区河流中大型底栖无脊椎动物与水质关系的研究.环境科学学报,1991,11(1):31-46.
    [117]柯欣,杨莲芳.安徽丰溪河水生昆虫多样性及其水质生物评价.南京农业大学学报,1996,19(3):37-43.
    [118]戴友芝,唐受印,张建波.洞庭湖底栖动物种类分布及水质生物学评价.生态学报,2000,20(2):277-282.
    [119]王士达.武汉东湖底栖动物的多样性及其与富营养化的关系.水生生物学报,1996,20(1):76-88.
    [120]黄廷林,武海霞,陈千娇.水中颤蚓灭活实验研究.西安建筑科技大学学报:自然科学版,2006,38(2):263-268.
    [121]李仁熙.水温对正颤蚓繁殖的影响.水生生物学报,2003.
    [122]Cellot B., Juget J. Oligochaete drift in a large river (French Upper Rhone):the effect of life cycle and discharge. Hydrobiologia,1998,389(1-3):183-191.
    [123]Principe R. E., del Corigliano M. C. Benthic, drifting and marginal macroinvertebrate assemblages in a lowland river:temporal and spatial variations and size structure. Hydrobiologia,2006,553(1):303-317.
    [124]Milbrink G., Timm T. Distribution and dispersal capacity of the Ponto-Caspian tubificid oligochaete Potamothrix moldaviensis Vejdovsky et Mrazek,1903 in the Baltic Sea Region. Aquatic Oligochaete Biology VIII. Springer.2001:93-102.
    [125]蔡晓明.羽摇蚊幼虫和霍甫水丝蚓的生态毒理学研究.应用生态学报,1991,2(1):52-57.
    [126]乔淑晶,范学铭,方芳等.敌百虫对水丝蚓的毒害.动物学杂志,2007,41(6):92-96.
    [127]Klerks P., Bartholomew P. Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus hoffmeisteri. Aquatic Toxicology,1991,19(2): 97-112.
    [128]Brown B. E. The form and function of meral-containing 'granules' in invertebrate tissues Biological Reviews,1982,57(4):621-667.
    [129]Back H. Epidermal uptake of Pb, Cd, and Zn in tubificid worms. Oecologia,1990,85(2): 226-232.
    [130]Wallace W. G., Lopez G. R., Levinton J. S. Cadmium resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp. Marine Ecology Progress Series,1998,172:225-237.
    [131]Meller M., Egeler P., Rombke J., et al. Short-term toxicity of lindane, hexachlorobenzene, and copper sulfate to tubificid sludgeworms (Oligochaeta) in artificial media. Ecotoxicology and environmental safety,1998,39(1):10-20.
    [132]Egeler P., Rombke J., Meller M., et al. Bioaccumulation of lindane and hexachlorobenzene by tubificid sludgeworms (Oligochaeta) under standardised laboratory conditions. Chemosphere,1997,35(4):835-852.
    [133]Paris-Palacios S., Mosleh Y. Y., Almohamad M., et al. Toxic effects and bioaccumulation of the herbicide isoproturon in Tubifex tubifex (Oligocheate, Tubificidae):A study of significance of autotomy and its utility as a biomarker. Aquatic Toxicology,2010,98(1): 8-14.
    [134]Hutchinson M., Jacobs D., Fox M., et al. Evaluation of flea control strategies using fipronil on cats in a controlled simulated home environment. Veterinary Record, 1998,142(14): 356-357.
    [135]Nuttall T., French A., Cheetham H., et al. Treatment of Trombicula autumnalis infestation in dogs and cats with a 0.25 percent fipronil pump spray. Journal of small animal practice,1998, 39(5):237-239.
    [136]Downs A., Stafford K., Coles G. Susceptibility of British head lice, Pediculus capitis, to imidacloprid and fipronil. Medical and veterinary entomology,2000,14(1):105-107.
    [137]农业部办公厅.第八届全国农药登记评审委员会第四次全体会议纪要.农业科学与管理,2009,30(3):58-58.
    [138]EPA. U.S.EPA Office of Prevention, Pesticides and Toxic Substances. New Pesticide Fact Sheet. PB96-181516. EPA737-F-96-005.1996 may,
    [139]赵孝宁.氟虫腈在水稻上的残留动态及降解菌的筛选.安徽农业大学硕士论文,2010.
    [140]徐广春,顾中言,杨玉清等.氟虫腈的应用和风险研究进展.现代农药,2008,7(2):1-5.
    [141]Hainzl D., Casida J. E. Fipronil insecticide:novel photochemical desulfinylation with retention of neurotoxicity. Proceedings of the National Academy of Sciences,1996,93(23): 12764-12767.
    [142]Aajoud A., Ravanel P., Tissut M. Fipronil metabolism and dissipation in a simplified aquatic ecosystem. Journal of agricultural and food chemistry,2003,51(5):1347-1352.
    [143]Walse S. S., Morgan S. L., Kong L., et al. Role of dissolved organic matter, nitrate, and bicarbonate in the photolysis of aqueous fipronil. Environmental science and technology, 2004,38(14):3908-3915.
    [144]郭敏,单正军,石利利.氟虫腈在三种土壤中的降解特性研究.农药学学报,2008,10(3):335-342.
    [145]朱国念,吴金涛.氟虫腈在模拟稻田生态系中降解途径的研究.农药学学报,2000,2(2):52-56.
    [146]Ngim K. K., Crosby D. G. Abiotic processes influencing fipronil and desthiofipronil dissipation in California, USA, rice fields. Environmental toxicology and chemistry,2001, 20(5):972-977.
    [147]操海群,施艳红,花日茂等.氟虫腈在番茄和土壤中残留分析方法的研究.安徽农业大学学报,2005,32(1):31-35.
    [148]何艺兵.氟虫腈在甘蓝和土壤中的残留分析方法.农药科学与管理,2000,21(3):16-19.
    [149]操海群,施艳红,花日茂等.辣椒,白菜中氟虫腈残留分析方法的研究.食品科学,2005,26(9):377-379.
    [150]Konwick B. J., Fisk A. T., Garrison A. W., et al. Acute enantioselective toxicity of fipronil and its desulfinyl photoproduct to Ceriodaphnia dubia. Environmental toxicology and chemistry,2005,24(9):2350-2355.
    [151]Teicher H. B., Kofoed-Hansen B., Jacobsen N. Insecticidal activity of the enantiomers of fipronil. Pest management science,2003,59(12):1273-1275.
    [152]Tan H., Cao Y., Tang T., et al. Biodegradation and chiral stability of fipronil in aerobic and flooded paddy soils. Science of the total environment,2008,407(1):428-437.
    [153]Liu D., Wang P., Zhu W., et al. Enantioselective degradation of fipronil in Chinese cabbage (Brassica pekinensis). Food chemistry,2008,110(2):399-405.
    [154]Nillos M. G., Lin K., Gan J., et al. Enantioselectivity in fipronil aquatic toxicity and degradation. Environmental toxicology and chemistry,2009,28(9):1825-1833.
    [155]Li X., Bao C., Yang D., et al. Toxicities of fipronil enantiomers to the honeybee Apis mellifera L. and enantiomeric compositions of fipronil in honey plant flowers. Environmental toxicology and chemistry,2010,29(1):127-132.
    [156]Konwick B. J., Garrison A. W., Black M. C., et al. Bioaccumulation, biotransformation, and metabolite formation of fipronil and chiral legacy pesticides in rainbow trout. Environmental science and technology,2006,40(9):2930-2936.
    [157]Jia Z., Li Y., Lu S., et al. Treatment of organophosphate-contaminated wastewater by acidic hydrolysis and precipitation. Journal of hazardous materials,2006,129(1):234-238.
    [158]杨淑娟,郭建辉,蔡恩兴等.水胺硫磷在香蕉及土壤中的残留动态.亚热带植物科学,2012,40(4):59-62.
    [159]Li R., Guo X., Chen K., et al. Isolation of an isocarbophos-degrading strain of Arthrobacter sp. scl-2 and identification of the degradation pathway. J Microbiol Biotechnol,2009,19(11): 1439-1446.
    [160]Liu H., Liu J., Xu L., et al. Enantioselective cytotoxicity of isocarbophos is mediated by oxidative stress-induced JNK activation in human hepatocytes. Toxicology,2010,276(2): 115-121.
    [161]冯炘,胡卫萱,丁峰等.水胺硫磷与甲基对硫磷在苹果中的残留动态研究.农业环境科学学报,2006,24(4):716-719.
    [162]魏霞,钟玉环,原梅等.同时定量检测水胺硫磷和水胺氧磷的液相色谱-串联质谱法及应用.国际药学研究杂志,2012,39(2):162-166.
    [163]杨云,李攻科.土壤中痕量水胺硫磷的微波辅助萃取-固相微萃取-GC-MS法测定.分析测试学报,2003,22(4):13-16.
    [164]叶江雷,弓振斌,沈爱斯.茶叶中9种农药残留的毛细管气相色谱法测定.分析仪器,2005(2):20-23.
    [165]Huang G., Ouyang J., Baeyens W. R., et al. High-performance liquid chromatographic assay of dichlorvos, isocarbophos and methyl parathion from plant leaves using chemiluminescence detection. Analytica Chimica Acta,2002,474(1):21-29.
    [166]Wang P., Jiang S., Liu D., et al. Effect of alcohols and temperature on the direct chiral resolutions of fipronil, isocarbophos and carfentrazone-ethyl. Biomedical Chromatography, 2005,19(6):454-458.
    [167]游静,陆豪杰,欧庆瑜.分析测试学报,2001,20(3):59-61
    [168]Singh N. Factors affecting triadimefon degradation in soils. Journal of agricultural and food chemistry,2005,53(1):70-75.
    [169]Garrison A. W., Avants J. K., Jones W. J. Microbial transformation of triadimefon to triadimenol in soils:Selective production rates of triadimenol stereoisomers affect exposure and risk. Environmental science and technology,2011,45(6):2186-2193.
    [170]EXTOXNET Pesticide Information Profile:Triadimefon; http://pmepccecornelledu/profiles/extoxnetpyrethrins-ziram/triadimefon-exthtml. February 22,2010,
    [171]Buchenauer H., Rohner E三唑酮在作物体内的吸收、转运和转化.农药译丛,1984,6(2):34-36.
    [172]杨仁斌,刘毅华,邱建霞等.三唑酮在油菜-土壤生态系统中的降解与建模.生态与农村环境学报,2006,22(1):80-83.
    [173]李国,李义强,孙惠青等.三唑酮及其代谢物在水稻中残留规律研究.山东农业科学,2008,(4):84-87.
    [174]刘毅华,郭正元,杨仁斌等.三唑酮的酸性,中性和碱性水解动力学研究.农村生态环境,2005,21(1):67-68.
    [175]刘毅华,杨仁斌,郭正元等.三唑酮在水中的光化学降解及其影响因素.农村生态环境,2005,21(4):68-71.
    [176]刘清浩,刘红彦,王恒亮等.金银花及土壤中三唑酮残留量的气相色谱测定方法.河南农业科学,2006,(3):89-91.
    [177]Navarro S., Barba A., Navarro G., et al. Multiresidue method for the rapid determination-in grape, must and wine-of fungicides frequently used on vineyards. Journal of Chromatography A,2000,882(1):221-229.
    [178]Tadeo J., Sanchez-Brunete C. Analysis of pesticide residues.in fruit juices by matrix-solid phase dispersion and gas chromatographic determination. Chromatographia,2003,57(11-12): 793-798.
    [179]Kenneke J. F., Mazur C. S., Kellock K. A., et al. Mechanistic approach to understanding the toxicity of the azole fungicide triadimefon to a nontarget aquatic insect and implications for exposure assessment. Environmental science and technology,2009,43(14):5507-5513.
    [180]Del Nozal M., Toribio L., Bernal J., et al. Separation of triadimefon and triadimenol enantiomers and diastereoisomers by supercritical fluid chromatography. Journal of Chromatography A,2003,986(1):135-141.
    [181]Wu Y. S., Lee H. K., Li S. F. Simultaneous chiral separation of triadimefon and triadimenol by sulfated β-cyclodextrin-mediated capillary electrophoresis. Electrophoresis,2000,21(8): 1611-1619.
    [182]Liang H., Qiu J., Li L., et al. Stereoselective separation and determination of triadimefon and triadimenol in wheat, straw, and soil by liquid chromatography-tandem mass spectrometry. Journal of separation science,2012,35(1):166-173.
    [183]Wang P., Jiang S., Liu D., et al. Direct enantiomeric resolutions of chiral triazole pesticides by high-performance liquid chromatography. Journal of biochemical and biophysical methods,2005,62(3):219-230.
    [184]Ye J., Wu J., Liu W. Enantioselective separation and analysis of chiral pesticides by high-performance liquid chromatography. TrAC Trends in Analytical Chemistry,2009, 28(10):1148-1163.
    [185]李朝阳,张艳川,李巧玲等.三唑农药的手性拆分及对映体的转化.分析化学,2010,38(2):237-240.
    [186]董丰收,刘新刚,曹巧等Chiralpak AS-H手性柱分离三唑醇对映体.环境化学,2008,27(6):810-813.
    [187]Cai X., Wen Y., Zhong T., et al. Effects of methyl-CD and humic acid on hydrolytic degradation of the herbicide diclofop-methyl. Journal of Environmental Sciences,2005, 17(1):67-71.
    [188]Petit F., Le Goff P., Cravedi J., et al. Two complementary bioassays for screening the estrogenic potency of xenobiotics:recombinant yeast for trout estrogen receptor and trout hepatocyte cultures. Journal of molecular endocrinology,1997,19(3):321-335.
    [189]Eliyahu D., Applebaum S., Rafaeli A. Moth sex-pheromone biosynthesis is inhibited by the herbicide diclofop. Pesticide Biochemistry and Physiology,2003,77(2):75-81.
    [190]Palut D., Ludwicki J. K., Kostka G., et al. Studies of early hepatocellular proliferation and peroxisomal proliferation in Wistar rats treated with herbicide diclofop. Toxicology,2001, 158(3):119-126.
    [191]EPA. United States EPA-738-F-0-009.Prevention,Pesticides and Toxic Substance(7508C). 2000.
    [192]Smith A. E. Degradation of the herbicide dichlorfop-methyl in prairie soils. Journal of agricultural and food chemistry,1977,25(4):893-898.
    [193]Gaynor J. Diclofop-methyl persistence in southwestern Ontario soils and effect of pH on hydrolysis and persistence. Canadian journal of soil science,1984,64(2):283-291.
    [194]Shimabukuro M., Shimabukuro R., Walsh W. The antagonism of IAA-induced hydrogen ion extrusion and coleoptile growth by diclofop-methyl. Physiologia Plantarum,1982,56(4): 444-452.
    [195]Shimabukuro R. H., Hoffer B. L. Enantiomers of diclofop-methyl and their role in herbicide mechanism of action. Pesticide Biochemistry and Physiology,1995,51(1):68-82.
    [196]Su F. S., Z. R.. Chinese pesticide market in 2006:300 thousand ton active ingredient. China Chem Eng News,2005,5.
    [197]Smith A., Grover R., Cessna A., et al. Fate of diclofop-methyl after application to a wheat field. Journal of environmental quality,1986,15(3):234-238.
    [198]Liu W., Jin M., Cai X., et al. Progress in the mechanism of action and ecological effects of the herbicide diclofop methyl. Chin J Pestic Sci,2008, (10):384-391.
    [199]Diao J., Xu P., Wang P., et al. Environmental behavior of the chiral aryloxyphenoxypropionate herbicide diclofop-methyl and diclofop:enantiomerization and enantioselective degradation in soil. Environmental science and technology,2010,44(6): 2042-2047.
    [200]Smith A. E. Transformation of [1C] diclofop-methyl in small field plots. Journal of agricultural and food chemistry,1979,27(6):1145-1148.
    [201]Larney F. J., Cessna A. J., Bullock M. S. Herbicide transport on wind-eroded sediment. Journal of environmental quality,1999,28(5):1412-1421.
    [202]Martens R. Degradation of the herbicide [14C]-diclofop-methyl in soil under different conditions. Pesticide Science,1978,9(2):127-134.
    [203]McFadden J. J., Frear D., Mansager E. Aryl hydroxylation of diclofop by a cytochrome P450 dependent monooxygenase from wheat. Pesticide Biochemistry and Physiology,1989,34(1): 92-100.
    [204]Gorbach S., Kuenzler K., Asshauer J. The metabolism of Hoe 23408 OH in wheat. Journal of agricultural and food chemistry,1977,25(3):507-511.
    [205]Jacobson A., Shimabukuro R. H. Metabolism of diclofop-methyl in root-treated wheat and oat seedlings. Journal of agricultural and food chemistry,1984,32(4):742-746.
    [206]Jacobson A., Shimabukuro R. H., McMichael C. Response of wheat and oat seedlings to root-applied diclofop-methyl and 2,4-dichlorophenoxyacetic acid. Pesticide Biochemistry and Physiology,1985,24(1):61-67.
    [207]Smith A. E. Esterification of the hydrolysis product of the herbicide dichlorfop-methyl in methanol. Journal of agricultural and food chemistry,1976,24(5):1077-1078.
    [208]Liu W., Chen Z., Xu H., et al. Determination of diclofop-methyl and diclofop residues in soil and crops by gas chromatography. Journal of Chromatography A,1991,547:509-515.
    [209]Lagana A., Fago G., Marino A., et al. Soil column extraction followed by liquid chromatography and electrospray ionization mass spectrometry for the efficient determination of aryloxyphenoxypropionic herbicides in soil samples at ng g-1levels. Analytica Chimica Acta,1998,375(1):107-116.
    [210]Gu X., Lu Y., Wang P., et al. Enantioselective degradation of diclofop-methyl in cole (Brassica chinensis L.). Food chemistry,2010,121(1):264-267.
    [211]Guillen-Casla V., P6rez-Arribas L. V., Leon-Gonzalez M. E., et al. One-and two-dimensional direct chiral liquid chromatographic determination of mixtures of diclofop-acid and diclofop-methyl herbicides. Journal of agricultural and food chemistry,2008,56(7): 2303-2309.
    [212]Hopkins W., Roe J., Snodgrass J., et al. Nondestructive indices of trace element exposure in squamate reptiles. Environmental Pollution,2001,115(1):1-7.
    [213]诸南山.《无脊椎动物学》华东师范大学出版社.
    [214]Liu D., Wang P., Zhu W., et al. Enantioselective degradation of fipronil in Chinese cabbage (Brassica pekinensis). Food chemistry,2008,110(2):399-405.
    [215]Mosleh Y. Y., Paris-Palacios S. e., Couderchet M., et al. Metallothionein induction, antioxidative responses, glycogen and growth changes in Tubifex tubifex (Oligochaete) exposed to the fungicide, fenhexamid. Environmental Pollution,2005,135:73-82.
    [216]Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry,1976,72(1): 248-254.
    [217]Thomas D. Handbook of Methods for Oxygen Radical Research. Journal of Pediatric Gastroenterology and Nutrition,1988,2:314-316.
    [218]Saint-Denis M., Labrot F., Narbonne J., et al. Glutathione, glutathione-related enzymes, and catalase activities in the earthworm Eisenia fetida andrei. Archives of environmental contamination and toxicology,1998,35(4):602-614.
    [219]王志华,沈良.锰过氧化氢酶及其模拟物的研究进展.杭州师范学院学报:自然科学版,2007,5(6):465-468.
    [220]Styblo M., Thomas D. J. In vitro inhibition of glutathione reductase by arsenotriglutathione. Biochemical pharmacology,1995,49(7):971-977.
    [221]Dierickx P. J. Glutathione S-transferase in aquatic macro-invertebrates and its interaction with different organic micropollutants. Science of the total environment,1984,40(1): 93-102.
    [222]Cunha I., Mangas-Ramirez E., Guilhermino L. Effects of copper and cadmium on cholinesterase and glutathione-S-transferase activities of two marine gastropods (Monodonta lineata and Nucella lapillus). Comparative Biochemistry and Physiology Part C:Toxicology and Pharmacology,2007,145(4):648-657.
    [223]Habig W. H., Pabst M. J., Jakoby W. B. Glutathione-S-transferase AA from rat liver. Archives of biochemistry and biophysics,1976,175(2):710-716.
    [224]Dourado D. F., Fernandes P. A., Ramos M. J. Mammalian cytosolic glutathione transferases. Current Protein and Peptide Science,2008,9(4):325-337.
    [225]Enayati A. A., Ranson H., Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Molecular Biology,2005,14(1):3-8.
    [226]Dixon D. P., Lapthorn A., Edwards R. Plant glutathione transferases. Genome Biol,2002, 3(3):3001-3004.
    [227]Morel M., Ngadin A. A., Droux M., et al. The fungal glutathione S-transferase system. Evidence of new classes in the wood-degrading basidiomycete Phanerochaete chrysosporium. Cellular and molecular life sciences,2009,66(23):3711-3725.
    [228]Allocati N., Federici L., Masulli M., et al. Glutathione transferases in bacteria, FEBS journal, 2009,276(1):58-75.
    [229]Booth J., Boyland E., Sims. An enzyme from rat liver catalysing conjugations with glutathione. Biochemical Journal,1961,79(3):516.
    [230]Combes B., Stakelum G. S. A liver enzyme that conjugates sulfobromophthalein sodium with glutathione. Journal of Clinical Investigation,1961,40(6):981.
    [231]Garrison A. W., Avants J. K., Jones W. J. Microbial transformation of triadimefon to triadimenol in soils:selective production rates of triadimenol stereoisomers affect exposure and risk. Environmental science and technology,2011,45:2186-2193.
    [232]Janero D. R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine,1990,9(6): 515-540.
    [233]周琪,梁运祥.动物肝组织中丙二醛含量测定方法的改进.时珍国医国药,2010,(1):224-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700