线性光学系统中的量子信息处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息学是一门新兴的交叉学科,它主要包括量子通信和量子计算两部分,而量子通信也是量子信息学当中非常重要的一个分支,目前量子通信主要研究的内容包括密集编码,隐形传态,量子克隆等。经过物理学家多年的研究,目前已经取得了显著的成果,而且该学科也已成为当前国际前沿热点课题之一
     目前,在量子信息的处理过程中,有许多不同的物理系统,例如,腔QED系统,核磁共振系统等,然而相对于前面几种系统,光子系统是一个被认为很有发展前景的系统,因为光子系统有很多优点,比如,消相干时间长,光子易于传输以及易于制备与操作等等,因此通过光学系统来处理量子信息是一个十分有前景的课题,本文就如何在线性光学系统中实现量子信息的处理作了一定的研究,取得了如下的结果:
     1、在线性光学系统中实现密集编码
     在线性光学系统中,提出一个使用三光子GHZ态实现密集编码的方案。该方案中,Alice首先对她所持有的两个光子通过线性光学元件进行编码,然后将这两个光子传送给Bob。接收到光子后Bob使用两个QND对等探测器以及PBS光学元件对他拥有的三个光子的八个量子态进行辨别,根据测量的结果辨别出Alice对她的两个光子所进行的操作。在密集编码过程中Alice仅传送两个光子,但Bob可以获得三比特的经典信息。探测使用的QND装置建立在Cross-Kerr nonlinearity基础上,目前已经可以通过电磁感应透明实现。
     2、通过使用线性光学元件实现最优普适克隆
     我们提出了一个在线性光学系统中实现1→3的实数态克隆。这个方案主要依靠一个偏振比特和两个路径比特,在当前的实验条件下是完全可以实现的。
Quantum information science is new inter-discipline generally covering quantum communication and quantum computation, Quantum communication is an important branch of the Quantum information science, the research of Quantum communication including quantum dense coding, quantum teleportation and quantum cloning. After the research of many years by physicists, people have acquired a series of important achievement. And this subject becomes one of the hotspot in international leading edge.
     There are many physical systems for implementing quantum information processing at present, such as cavity, molecule nuclear magnetic and so on. Quantum electrodynamics photon systems are prominent candidates, since they provide many advantages, such as long decoherence time, photons being easily transported, prepared and manipulated. Therefore, it is a very promising subject to deal with quantum information processing using the optical system. This paper has done some research on how to deal with the processing of quantum information in linear optical systems. We have achieved the following results:
     1. Scheme for implementing quantum dense coding by using linear optical system
     A novel scheme for realizing dense coding with Greenberger-Home-Zeilinger (GHZ) state in linear optical system is proposed. In this protocol, Alice codes on photon 1 and 2 by linear optical element and sends these photons to Bob. Then Bob will perform a joint measurement on photons 1,2, and 3 with the GHZ basis by employing two quantum nondemolition detectors (QND) and polarizing beam splitter (PBS). Eight GHZ states can be completely discriminated. According to the outcomes of his measurement Bob can determine which operation Alice applied. Alice only transmits two photons in this process of the quantum dense coding, but Bob can obtain three bits of classical information. The QND devices are generally based on cross-Kerr nonlinearities, and the cross-Kerr nonlinearities have become available with electromagnetically induced transparency (EIT).
     2. Linear optical scheme for implementing the optimal real state cloning
     We propose an experimental scheme for implementing the optimal 1→3 real state cloning via linear optical elements. This method relies on one polarized qubit and two location qubits and is feasible with current experimental technology.
引文
[1]李乘祖等,量子通信和量子计算[M].长沙:国防科技大学出版社第一版,2001,2.
    [2]M.A. Neilsen and I.L. Chuang, Quantum Computation and Quantum Information, New York:Cambridge University Press,2000.
    [3]C.H. Bennet, G. Brassard et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett.70,1895 (1993)
    [4]C.H. Bennet and S. Wiesner, Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett.69,2881 (1992)
    [5]C.H. Bennet, G. Brassard and A. Ekert. Quantum Cryptography. Sci. Am.257,50 (1992)
    [6]A. Ekert, Quantum cryptography based on Bell's theorem, Phys. Rev. Lett.67, 661 (1991)
    [7]J. Eisert et al. Quantum Games and Quantum Strategies, Phys. Rev. Lett.83, 3077 (1999)
    [8]P. Milman, H.Ollivier, and J.M.Raimond, Phys. Rev. A 67,024304 (2003).
    [9]X.B.Zou, K. Pahlke, and W. Mathis, Phys. Rev. A 67,024304 (2003).
    [10]H. K. Cummins, C. Jones, et.al. Phys. Rev. Lett.88,7901 (2002).
    [11]S. Fusel, N.Gisin, et.al. Phys. Rev. Lett.89,107901 (2002).
    [12]W. T. M. Irvine, A. L. Linares, et.al. Phys. Rev. Lett.92,047902 (2004).
    [131 S. B Zheng and G. C Guo, Teleportation of atomic states within cavities in thermal states [J]. Phys. Rev. A,2001,63(4):044302.
    [14]S. B Zheng, Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement [J]. Phys. Rev. A,2004,69: 064302.
    [151 L. Ye, G. C. Guo, Scheme for teleportation of an unknown atomic state without the Bell-state measurement [J]. Phys. Rev. A,2004,70:054303.
    [16]G. Pires, N. G. de Almeida, A.T. Avelar and B. Baseia, Teleporting entanglements of cavity-field states [J]. Phys. Rev. A,2004,70:025803.
    [17]W. B. Cardoso, A. T. Avelar, B. Baseia and N. G. de Almeida, Teleportation of entangled states without Bell-state measurement [J]. Phys. Rev. A,2005,72: 045802.
    [18]J. C. Hao, C. F. Li, and G. C. Guo, Controlled dense coding using the Greenberger-Horne-Zeilinger state [J]. Phys. Rev. A 63,054301 (2001).
    [19]A. Barenco, and A. K. Ekert, Dense Coding Based on Quantum Entanglement [J]. J. Mod. Opt.42,1253 (1996).
    [20]J. C. Hao, C. F. Li, and G. C. Guo, Probabilistic dense coding and teleportation [J]. Phys. Lett. A 278,113 (2000).
    [21]A. Einstein, B. Podolsky, and N. Rosen, Can quantumn-mechanical description of physical reality be considered complete? [J] Phys. Rev.,1935,47:777—780.
    [22]E. Schrodinger.Naturwissenschaften,1935,23:807.
    [23]W. B. Cardoso, A. T. Avelar, B. Baseia and N. G. de Almeida, Teleportation of entangled states without Bell-state measurement [J]. Phys. Rev. A,2005,72: 045802.
    [24]G. Pires, N. G. de Almeida, A.T. Avelar and B. Baseia, Teleporting entanglements of cavity-field states [J]. Phys. Rev. A,2004,70:025803.
    [25]Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe and D. J. Wineland, Deterministic entanglement of two trapped ions [J]. Phys. Rev. Lett.,1998,81(17):3631-3634.
    [26]D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter and Zeilinger, Experimental quantum teleportation [J]. Nature (London) 1997,390:575.
    [27]D. Boschi, S. Branca, F. De Martini, L. Hardy and S. Popescu, Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels Phys. [J]. Phys. Rev. Lett.1998, 80:1121(1-4).
    [28]A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E.S. Polzik, Unconditional Quantum Teleportation [J]. Science 1998,282:706.
    [29]X. Maitre, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, Quantum Memory with a Single Photon in a Cavity [J]. Phys. Rev. Lett.,1997,79:769-772.
    [30]A. Biswas and G. S. Agarwal, Transfer of an unknown quantum state, quantum networks, and memory [J]. Phys. Rev. A,2004,70:022323.
    [31]E. Solano, C. L. Cesar, R. L. de Matos Filho, nd N. Zagury.Realiable teleportation in trapped ions [J]. Eur. Phys. J. D.2001,13(1):121-128.
    [32]X.B.Zou, and W. Mathis, Phys. Rev. A 71,032308 (2005).
    [33]H. J. Briegel and R. Raussendorf, Phys. Rev. Lett.86,910. (2001).
    [34]D. Bouwmeester et al., Nature (London) 390 575 (1997).
    [35]K. Mattle et al., Phys. Rev. Lett.76,4656 (1996).
    [36]A. Zeilinger, M. A. Home, H. Weinfurter, and M. Zukowski, Phys. Rev. Lett.78, 3031 (1997); Yoav Sagi, Phys. Rev. A 68,042320 (2003).
    [37]D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett.82,1345(1999).
    [38]J. W. Pan et al., Phys. Rev. Lett.86,4435 (2001).
    [39]J.-W. Pan, D. Bouwmeester, M. Danlell, H. Weinfurter, and A. Zeilinger, Nature (London) 403,515 (2000).
    [40]N. Kiesel et al., J. Mod. Opt.50,1131 (2003); M. Eibl et al., Phys. Rev. Lett.92, 077901 (2004).
    [41]Magde, D. and Mahr, H. Study in Ammonium Dihydrogen Phosphate of Spontaneous Para-metric Interaction Tunable from 4400 to 16000 A. Phys. Rev. Lett.18,905-907(1967).
    [42]Akhmanov, S. A. Fadeev, V. V., Khoklov, R. V., et al. Sov. Phys. JETP Lett.6,85 (1967).
    [43]Friberg, S., Hong, C. K. and Mandel, L. Measurement of Time Delays in the Prarmetric Production of Photon Pairs. Phys. Rev. Lett 54,2011-2013 (1985).
    [44]J. Zhang, K. C Peng, Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state[J]. Phys.
    Rev. A,2000,62(6):064302.
    [45]L. Ye, G.. C. Guo, Scheme for implementing quantum dense coding in cavity QED [J].Phys. Rev. A,2005,71:034304.
    [46]X. M. Fang, X. W. Zhu, M. Feng, X.A Mao and F. Du, Experimental implementation of dense coding using nuclear magnetic resonance [J]. Phys.Rev.A,2000,61(2):022307.
    [47]Li X Y, et.al. Quantum Dense Coding Exploiting a Bright Einstein-Podolsky-Rosen Beam [J]. Phys. Rev. Lett.,2002,88:047904.
    [48]Ye Y, Wee K C. Teleportation and dense coding with genuine multipartite entanglement [J]. Phys. Rev. Lett,2006,96:060502.
    [49]Mozes S, et al. Deterministic dense coding with partially entangled states [J]. Phys. Rev. A,2005,71:012311.
    [50]Feng Y, Duan R Y, Ji Z F. Optimal dense coding with arbitrary pure entangled states [J]. Phys. Rev. A,2006,74:012310.
    [51]Hao J C, Li C F, Guo G C. Controlled dense coding using the Greenberger-Horne-Zeilinger state [J]. Phys. Rev. A,2001,63:054301.
    [52]Hausladen P, Jozsa R, et al. Classical information capacity of a quantum channel [J]. Phys. Rev. A,1996,54:1869-1876.
    [53]Hao J C, Li C F, Guo G C. Probabilistic dense coding and teleportation [J]. Phys. Lett. A,2000,278:113-117.
    [54]Ye L, Yu L B. Scheme for implementing quantum dense coding using tripartite entanglement in cavity QED [J]. Phys. Lett. A,2005,346:330-336.
    [55]Cirac J, Zoller P. Preparation of macroscopic superpositions in many-atom systems. Phys. Rev. A,50, R2799,1994.
    [56]林秀,李洪才.利用V形三能级原子与光场Raman相互作用制备多原子GHZ态。
    [57]Zeilinger A, et al. Three-particle entanglements from two entangled pairs [J]. Phys. Rev. Lett,1997,78:3031-3034.
    [58]Sagi Y. Scheme for generating Greenberger-Horne-Zeilinger-type states of n photons [J]. Phys. Rev. A,2003,68:042320.
    [59]Nemoto K, Munro W J. Nearly deterministic linear optical controlled-not gate [J]. Phys. Rev. Lett,2004,93:250502.
    [60]H. Schmidt and A. Imamoglu, Opt. Lett.21,1936 (1996).
    [61]Munro W J, et al. High-efficiency quantum-nondemolition single-photon-number-resolving detector [J]. Phys. Rev. A,2005,71:033819.
    [62]Schmidt H, Imamogdlu A. Giant kerr nonlinearities obtained by electromagnetically induced transparency [J] Opt. Lett.1996,21:1936-1938.
    [63]Harris S E, Hua L V. Nonlinear optics at low light levels [J]. Phys. Rev. Lett,1999,82:4611-4614.
    [64]Tal Mor, No Cloning of Orthogonal States in Composite Systems, Phys. Rev. Lett.80,3137(1998).
    [65]Masato Koashi and Nobuyuki Imoto, No-Cloning Theorem of Entangled States, Phys. Rev. Lett.81,4264 (1998).
    [66]W.K. Wooters and W.H. Zurek, Natural (London) 299,802 (1982); D. Dieks, Phys. Lett. A 271(1982).
    [67]Yuen H P, Amplification of quantum states and noiseless photon amplifiers, Phys. Lett. A,1986,113(8):
    [68]Barnum H, Caves C M, Fuchs C A etc. Noncommuting mixed states cannot be broadcast, Phys. Rev.Lett,1996,76(15):2818-2821
    [69]N.J. Cerf, Pauli Cloning of a Quantum Bit, Phys. Rev. Lett.84,4497 (2000)
    [70]N.J. Cerf, J. Mod. Opt.47,187 (2000)
    [71]Hang Fan, Hiroshi Imai, Keiji Matsumoto, and Xiang-Bin Wang, Phase-covariant quantum cloning of qudits, Phys. Rev. A 67,022317 (2003)
    [72]D. Bruss, M. Cinchetti, G. M. D'Ariano, C. Macchiavello, Phase-covariant quantum cloning, Phys. Rev. A 62,012302 (2000)
    [73]Jaromir Fiurasek, Optical implementations of the optimal phase-covariant quantum cloning machine, Phys. Rev. A 67,052314 (2003)
    [74]Tomas Durt and Jiangfeng Du, Characterization of low-cost one-to-two qubit cloning, Phys. Rev. A 69,062316 (2004).
    [75]P. Navez and N.J. Cerf, Phys. Rev. A 68,032313 (2003).
    [76]H. Fan et al, Phys. Rev. A 65 (2001) 012304-1~7.
    [77]M. Ricci, et al. Teleportation Scheme Implementing the Universal Optimal Quantum Cloning Machine and Universal NOT Gate, Phys. Rev. Lett.92 (2004) 047901.
    [78]W. T. M. Irvine, et al. Optimal Quantum Cloning on a Beam Splitter, Phys. Rev. Lett.92 (2004) 047902.
    [79]I. A. Khan, J. C. Howell, Phys. Rev. A 70 (2004) 010303
    [80]X. B. Zou, K. Li, G. C. Guo, Linear optical scheme for implementing the univer and phase-covariant quantum cloning machines.
    [81]V. Buek, M. Hillery, Quantum copying:Beyond the no-cloning theorem, Phys. Rev. A 54 (1996) 1844.
    [82]G. M. D' Ariano, C. Macchiavello, Optimal phase-covariant cloning for qubits aind qutrits, Phys. Rev. A 67 (2003) 042306.
    [83]C. Brunel, B. Lounis, P. Tamarat, M. Orrit, Phys. Rev. Lett.83 (1999) 2722; C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Phys. Rev. Lett.86 (2001)1502.
    [84]W. K. Wootters and W. H. Zurek, Nature (London) 229,802 (1982).
    [85]V. Buzek and M. Hillery, Phys. Rev. A 54,1844 (1996).
    [86]R.F.Werner, Optimal cloning of pure sytates, Phy. Rev. A 58,1827 (1998).
    [87]D. Bruss, M. Cinchetti, G. M. D' Ariano, and C. Macchiavello, Phy.Rev. A 62, 12302(2000).
    [88]H. Fan, H. Imai, K. Matsumoto, and X. B. Wang, Phase-covariant quantum cloning of qubits, Phys. Rev. A 67,022317 (2003).
    [89]P. Navez. and N. J. Cerf, Phys. Rev. A 68,032313 (2003)
    [90]P. Milman et al, Phys. Rev. A 67,012314 (2003); X. B. Zou et al, Phys. Rev. A 67,024304 (2003).
    [91]W. Song. et al, Phys Lett. A 331,34 (2004); W. H. Zhang et al, Phys. Lett. A.353,130 (2006); 354,344 (2006).
    [92]X. Zou.et al, Phys. Lett. A 360,44 (2006).
    [93]S. B. Zheng, G. C. Guo, Entangling and cloning machine with increasing robustness against decoherence as the number of qubits increases,Phys. Rev. A 72,064303(2005).
    [94]C. Simon. et al, Optimal Quantum Cloning via Stimulated Emission, Phys. Rev. Lett.84.2993 (2000)
    [95]L. B. Yu, W. H. Zhang, and L. Ye, Phys. Rev. A 76,034303 (2007).
    [96]J. Yang, Y. F. Yu, Z. M. Zhang, and S. H. Liu. Realization of universal quantum cloning with superconducting quantum-interference device qubits in a cavity, Phys. Rev. A.77,034302 (2008).
    [97]Y F. Huang, et al, Optical realization of universal quantum cloning. Phy. Rev. A.64(2001)012315.
    [98]M. Zukowshi, Phy. Lett. A.157,198 (1991).
    [99]N.J. Cerf, C. Adami, and P.G. Kwait, Optical simulation quantum logic, Phys. Rev. A.57,1447(1998).
    [100]P. G. Kwiat, J. R. Mitchell, P.D.D. Schwindt, and A. G. White, J. Mod. Opt. 47,257 (2000).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700