公路路基黄土承载能力试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土是干旱半干旱地区的第四纪沉积物,其特殊的变形特性和对水的特殊敏感性直接影响着黄土地基的长久稳定。在黄土区各级公路的建设中,探索路基、路面病害的产生机理与发展规律以及路基黄土强度和变形特性成为一项急需解决的问题。本文研究了路基黄土在荷载和水分作用下的强度和变形特点以及渗透和崩解特性,主要工作和成果如下。
     在阅读和分析大量文献资料的基础上,总结了路基病害的主要影响因素,分析推算了路基土工作区深度和车辆荷载作用大小。
     通过三轴试验测定了压实黄土的抗剪强度指标随含水率、干密度的变化规律,同时分析了CD试验过程中土样的体积变化规律。结果表明:重塑黄土的粘聚力和内摩擦角随含水率的增大而减小;随土体密实度的增大而增长;两指标和土的含水率与干密度之比具有很好的负线性关系。含水率较高时土体剪切过程中出现剪缩现象,含水率较低或围压较小时黄土的三轴剪切出现剪胀现象,该现象具体到公路工程时表现为在车辆荷载作用下浅层部位与存在临空面的路基土将被挤压发生侧向滑移变形,路基产生侧向挤出沉降问题和填方路基路肩宽度的设计问题。
     应用常规三轴仪对土样进行三轴单向循环加卸载作用,考察了不同物性的土体在循环加卸载过程中的变形和循环作用前后抗剪强度的变化特点:
     不论含水率和循环荷载作用大小,土体轴向应变在循环作用下总表现为弹塑性变形。在最初几次荷载循环中,土体在加卸载循环中的残余(塑性)变形较大,在小应力水平下随着循环次数的增加,残余变形逐渐减小并趋于稳定,加载压缩曲线和卸载回弹曲线逐渐相互靠近而使得应力应变曲线显得很密集,土体逐步表现出残余塑性形变基本恒定仅发生弹性变形的特点;循环应力水平较高时土体残余变形随循环次数的增加而持续发展。随含水率或荷载值的增大,土体的变形特点表现为塑性应变的累积增长和弹性变形的减小,总体上仍然表现为总变形增长的特点。可见严格控制水分的浸入和车辆超重对公路路基病害防护具有重要的意义。
     通过对循环作用前后的强度比较发现:围压较小时,循环作用和静荷固结作用后土体应力应变曲线均为软化型;但土体强度随静荷固结应力的增大而增大,而随循环应力的增大而减小,而且循环作用所引起的变形要远大于静止荷载固结作用引起的变形。在较大围压下,循环作用和静荷固结后应力应变曲线均为硬化型;静荷固结作用引起强度值小幅增大,随循环加卸荷载作用的增大,土体强度却大幅减小。小含水率和较小压实度下循环作用后土体抗剪强度减小;压实度较大时循环作用对残余强度的影响比较显著而对土体强度峰值的影响较小;较大含水情况下,循环作用和静荷压缩作用对土体的影响主要表现在变形上,表明水份浸入土体后无论哪类荷载作用都会引起变形的产生和发展
     采用常规三轴仪进行了压实黄土浸水湿化变形试验,得出了不同初始含水率、压实度、围压、主应力差及湿化水头等条件下黄土浸水湿化变形特点。结果表明:土体湿化变形过程曲线及湿化轴变、体变大小均与上述初条件有明确的关系,土样湿化轴向应变随主应力差、湿化水头的增大而增大,随围压、初始含水率,压实度的增大而减小;而体变则随湿化水头增大而增大,随主应力差、围压、初始含水率、压实度的增大而减小;土样固结稳定后进行浸水湿化再次达稳定状态所需时间随主应力差和初始含水率的增大而增大,随压实度、围压及湿化水头的增大而减小。
     对压实黄土进行了不同初始状态下的三轴渗透试验与崩解试验,并对三轴试验破坏前后的圆柱样的崩解特性进行了对比分析。得出了压实黄土的渗透系数与干密度和周围压力的定性关系以及压实黄土的崩解特性与压实度、含水率的关系;对实际工程的防护提出了一些建议。
Loess is a kind of quaternary period deposit in the arid and semi-arid areas of northwest China,its special distortion characteristic and water sensitivity seriously affect the running of loess road construction.So apprehending and searching for the nature and development rules of subgrade and pavement disease become the strategic issues.Therefore,besides loess strength and deformation under static and cyclic load as well as water penetration were investigated,the seepage and disintegration properties were also discussed.Details as follows.
     The main factors influencing subgrade diseases were summarized, the depth of roadbed work area and vehicles wheel load were calculated,which were based on the observation and analysis of a large number of literature references.
     By the triaxial shear tests of disturbed and compacted loess,the variation laws of shear strength index changed with water content and dry density were analyzed,the variation law of loess sample’s volume was also studied by CD test. The results shows:the cohesion of compacted loess gradually decreases as the water content is increased,the variation law of internal friction angle of loess is much the same as the cohesion.The variation trend of cohesion and internal friction angle is increscent as the dry density is increased. Both of cohesion and internal friction angle have a significant negative linear correlation with the ratio of water content to dry density.When the loess sample is at high water content level, the volume of samples are all minished and exhibiting shearing contraction.And the volume of samples appear shear dilatancy when the loess sample is at low water content level or under low confining pressure,as we narrow these phenomenon down to the issue of highway engineering, this is reflected in the subgrade soil that the shallow subgrade soil and exposed slope pattern will be squeezed lateral slip deformation.It directly raises two serious questions:the settlement problems of highway foundation in the case of lateral extrusion and the design problems of the width of embankment of fill subgrade.
     Experiments of uniaxial cyclic loading on compacted loess samples were carried out on general triaxial shear equipment,and the the variation law of the deformation under cyclic loading/unloading and shear strength before and after cyclic loading/unloading in accompany with different compaction degree and water content were studied.
     Regardless of the quantity of water content and cyclic loading, the axial deformations of compacted loess samples characterize a synthesis of elastic and plastic deformation under the action of cyclic loading.The residual (plastic) deformations of those samples are larger in the first few load cycles than after several roles’,and the stress-strain curves of loading and unloading gradualy close to each other with the increase of the number of cycles at low stress levels,in this case the residual deformation decreased and stabilized,and the loess samples appear elastic deformation only.Moreover, the residual deformation grows continuously with the increase of the number of cycles at high stress levels.As the moisture content or the load value increases, the deformation of soil characterized by the cumulative growth of the plastic strain’increase and elastic deformation’decrease,and the total deformation decrease on the whole.It can clearly be seen that it is vital significant to strictly control water immersion and overweight vehicles in roadbed construction and other foundation projects.
     Comparison of shear strength before and after cyclic loading/unloading shows: The stress-strain curves are basically softing model under cycle and static loading at low confining pressure, the strength is increases with the increase of static consolidation loading while decrease with the increase of cyclic loading,and the deformation caused by cyclic loading is much larger than that caused by the static consolidation loading.The stress-strain curves are hardening model under cycle and static loading at high confining pressure,and the shear strength has a slight increase under static loading,while the shear strength is significantly reduced with the increase of cyclic loading/unloading. The shear strength is diminished when both of compaction degree and water content are in a low state,and the compaction degree has a significantly impact on the residual strength while has little effect on the peak strength of the loess sample when it’s compaction degree is fairly high.
     Through the triaxial test and analysis of compacted loess wetting deformation by the way of taking loess roadbed as simulation object,the wetting distortion characteristics and possible reasons were tentatively discussed. The results showed that: The required times of wetting deformations re-steady after stabilization by consolidation are related with initial water content and compaction degree, applied confining pressure and principal stress difference as well as wetting waterhead.The soil samples wetting distortion process curves and the wetting axial strain and body strain also have the explicit relations with the above conditions.
     For sake of gaining a deep understanding of the water immersion characteristics of compacted roadbed loess,recognizing the relation between roadbed damages and disintegration, the experiments were performed with the application of triaxial permeability test and disintegration test,also a comparative analysis of the disintegration properties between pre and post-shear failure in different water contents was conducted.And obtained some results about the qualitative relationship involving the permeability coefficient of compacted loess and compactness or confining pressure as well as the relation relation between disintegration properties and compactness or moisture content.Finally,some suggestions for practical engineering protection were put forward.
引文
常青. 2006.软土次固结变形特性及影响因素的试验研究. [硕士学位论文].南京:河海大学
    陈存礼,胡再强,骆亚生. 2001.兰州黄土掺合无机结合料的力学特性试验研究.西安理工大学学报,17(3):288-291.
    陈开圣. 2006.公路工程压实黄土的强度与变形及其微观结构研究. [博士学位论文].西安:长安大学
    陈正汉,谢定义,王永胜. 1993.非饱和土的水气运动规律及其工程性质研究.岩土工程学,15(3):9-20
    陈正汉,许镇鸿,刘祖典. 1986.关于黄土湿陷的若干问题.土木工程学报,(3)
    陈正汉. 1999.重塑非饱和黄土的变形、强度、屈服和水量变化特性.岩土工程学报,21(1):82-90
    程海涛,刘保健,谢永利. 2008.压实黄土应力-应变-时间特性.长安大学学报自然科学版,28(1):6-9
    杜金声. 1985.渤海海底重塑土的强度性质.岩土工程学报,7(1):61-67
    方海焕. 1995.压实低塑性土的抗剪强度.西北水资源与水工程,6(1):73-77
    傅代正. 1989.振动辗压实土基及其检测方法初探.公路,(6)
    高国瑞. 1979.兰州黄土显微结构和湿陷机理的探讨.兰州大学学报(自然科学版),(2)
    高国瑞. 1980.中国黄土的微结构.科学通报, (20) .
    高国瑞. 1990.黄土湿陷变形的结构理论.岩土工程学报, 12(4):1-10
    高凌霞,赵天雁. 2004.黄土湿陷系数与物性指标间的定量关系.大连民族学院学报,6(5):63-65
    顾成权,方云. 2003.黄土湿陷性的微观结构研究.西部探矿工程,15(10):1-3
    顾成权,孙艳. 2004.黄土湿陷起始压力判断探讨.水文地质工程地质,31(2):1-3
    顾正维. 2003.粘土的原状土、重塑土、固化土渗透性试验研究.岩石力学与工程学报,22(3):505-508
    郭康夫. 1996.京通线K289路基严重沉陷病害的探讨.路基工程,(1):28-32
    何春锋. 2006.压实黄土的工程性质及应用问题. [硕士学位论文].杨陵:西北农林科技大学
    胡瑞林,官国琳. 1999.黄土湿陷性的微结构效应.工程地质学报,7(2):161-167
    姜旺恒. 2004.黄土路基填料强度及变形性质研究. [硕士学位论文].西安:长安大学
    蒋定生等. 1997.黄土高原水土流失与治理模式.北京:中国水利水电出版社:60
    蒋军,陈龙珠. 2001.长期循环荷载作用下粘土的一维沉降.岩土工程学报, 23(3):366-369
    来弘鹏,谢永利,杨晓华. 2005.黄土公路隧道受力特性测试.长安大学学报(自然科学版), 25(6):53-56.
    雷祥义. 1989.黄土的显微结构与古气候的关系.地质论评,35(4):333-341
    李翠华,詹长久,张路. 2001.膨胀土湿化变形试验研究.武汉大学学报(理工版), 34(5):101-103
    李广信. 1990.堆石料的湿化变形试验和数学模型.岩土工程学报, 12(5):58-64
    李会中,潘玉珍,王复兴. 2002.三峡库区奉节县新城区滑坡带土抗剪参数试验研究.湖北地矿,16(4):28-32
    李家春,崔世富,田伟平. 2007.公路边坡降雨侵蚀特征及土的崩解.试验长安大学学报(自然科学版),27(1):23-26
    李鹏,李振,刘金禹. 2004.粗粒料的大型高压三轴湿化试验研究.岩石力学与工程学报,23(2):231-234
    李志星. 2006.循环荷载下饱和软粘土地基一维非线性固结理论及孔隙水压力计算. [硕士学位论文].武汉:武汉理工大学
    刘保健,张军丽. 1999.土工压缩试验成果分析方法与应用.中国公路学报,(1):37-41.
    刘保健. 2004.公路路基沉降过程试验与理论分析. [博士学位论文].西安:西安理工大学
    刘东生等. 1985.黄土与环境.北京:科学出版社: 16
    刘建民. 1994.从压实土体的强度特征看黄土的现场压实控制.工业建筑,26(10):26-30
    刘明振. 1985.湿陷性黄土间歇浸水试验.岩土工程学报,(1)
    刘晓明. 2006.红层软岩崩解性及其路基动力变形特性研究. [博士学位论文].长沙:湖南大学
    刘增贤,汤连生. 2003.路堤荷载下软土侧向挤出沉降分析.工程勘察,(2)
    刘祖典,郭增玉,陈正汉. 1985.黄土的变形特性.土木工程学报,18(1):69–76
    刘祖典. 1997.黄土力学与工程.陕西:陕西科技出版社
    骆亚生,张爱军. 2004.黄土结构性的研究成果及其新发展.水力发电学报,23(6):66-69
    苗天德,刘忠玉. 1999.湿陷性黄土的变形机理与本构关系.《岩土工程学报》,21(4):383-387
    南京水利科学研究院. 1999.土工试验规程(SL237-1999).北京:中国水利水电出版社
    潘宗俊,杨晓华,刘巍然,杜金,贾耀辉. 2005.压实黄土路基导水参数的试验研究.公路交通科技,22(7):52-54、63
    庞旭卿. 2007.路基黄土强度特性与地基承载力研究. [硕士学位论文].西安:长安大学
    沙爱民,陈开圣. 2006.压实黄土的湿陷性与微观结构的关系.长安大学学报(自然科学版),26(4):1-4
    尚彦军,吴宏伟,曲永新.花岗岩风化程度的化学指标及微观特征对比—以香港九龙地区为例.地质科学,2001,36(3):279-294
    沈珠江. 1994.黄土的损伤力学模型探索.第七届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社
    沈珠江. 1996.土体结构性的数学模型-21世纪土力学的核心问题.岩土工程学报,18(1):95-97.
    汤连生,廖化荣,刘增贤. 2006.路基土动荷载下力学行为研究进展.地质科技情报, (2):103-112
    汤连生. 2003.黄土湿陷性的微结构不平衡吸力成因论.工程地质学报,11(1):30-35
    童言白. 2000.河南省高速公路高填土路基病害分析及处治措施.公路,(9):58-60
    汪小刚,刑义川,赵剑民. 2007.西部水工程中的岩土工程问题.岩土工程学报,29(8):1129-1134
    王方杰. 2005.黄土路堤变形特性及沉降规律研究. [硕士学位论文].西安:长安大学
    王延涛. 2007.常规物理力学性质指标在湿陷机理上的体现.铁道工程学报,(3):1-5
    吴志刚. 2007.非饱和黄土结构强度与抗剪强度的试验研究. [硕士学位论文].杨陵:西北农林科技大学
    伍石生,戴经梁,彭波. 1998.压实黄土的微结构及其渗水的研究.西安交通大学学报,18(4):17-20
    伍石生,武建民. 1997.压实黄土湿陷变形问题的研究.西安公路交通大学学报,17(3):1-3
    伍石生. 1997.压实黄土路基渗水特性和规律的研究. [博士学位论文].西安:西安公路交通大学
    谢定义. 1988.土动力学.西安:西安交通大学出版社:48
    谢定义. 2001.试论我国黄土力学研究中的若干新趋势.岩土工程学报,23(1):3-13
    邢义川,骆亚生,李振. 1999.黄土的断裂破坏强度.水力发电学报, (4):36-44
    邢义川,张爱军. 2002.黄土增湿湿隐过程的三维有效应力分析.水力发电学报,(1):21-27
    邢义川. 2000.黄土力学性质研究的发展和展望.水利发电学报, (4):54-65
    熊冰,胡小明. 2007.黄土湿化特性的三轴试验研究.铁道工程学报, 24(6):23-27
    熊承仁,刘宝琛. 2003.重塑非饱和黏性土UU抗剪强度参数与饱和度的关系.水土保持通报,23(6):19-22
    许领,戴福初. 2009.黄土湿陷机理研究现状及有关问题探讨.地质力学学报,15(1):88-94
    杨雪辉. 2008.非饱和重塑黄土强度特性的试验研究. [硕士学位论文].杨陵:西北农林科技大学
    杨运来. 1988.黄土湿陷机理的研究.中国科学B辑,(7)
    于清. 2004.路面平整度与车辆动荷载关系的研究. [硕士学位论文].重庆:重庆交通学院
    袁聚云. 2003.土工试验与原理.上海:同济大学出版社:146
    张贵发,邱慧玲. 1990.龄期对压实黄土湿陷性影响的试验.西北水资源与水工程,1(4):66-68
    张茂花,谢永利,刘保健. 2006.增湿时黄土的抗剪强度特性分析.岩土力学,27(7):1195-1200
    张苏民,张炜. 1992.减湿和增湿时黄土的湿陷性.岩土工程学报, 14(1):57-61
    张苏民,郑建国. 1990.湿陷性黄土(Q3)的增湿变形特征.岩土工程学报, 12(4):21-31
    张晓荣.2005.压实黄土动力特性及动力下的松弛特性试验研究. [硕士学位论文].西安:长安大学
    赵久柄,王正良. 1996.西—宝高速公路粗粒土路基压实度的试验研究.国外公路,16(6):18-22
    赵明华,肖燕,陈昌富. 2004.软土流变特性的室内试验与改进的西原模型.湖南大学学报(自然科学版),31(l):48-51
    中华人民共和国交通部.公路水路交通“十一五”发展规划.2006
    周建,龚晓南,李建强. 2000.循环荷载作用下饱和软粘土特性试验研究.工业建筑,30(11):43
    朱景华,徐逢麟. 1989.高等级公路路基机械化施工.筑路机械与施工机械化,(4):30-31、33
    左永振,丁红顺,赵娜. 2007.粗粒料三轴湿化研究的进展与展望.中国水运,5(12):56-57
    B.Aursudkij G.R.,McDowell A.C.Collop. 2009. Cyclic loading of railway ballast under triaxial conditions and in a railway test facility. Granular Matter , (11):391-401
    COHENH,FUG K,DEKELBABW.eta1.2003. Prediction truck load spectra under weight limit changes andits application to steel bridge fatigue assessment. J.Bridge Eng, 8(5):312-322
    Elsbury,B.R.etal. 1990. J.Geoteeh.Engrg. ASCE,116(11):1641-1660
    Hyde A F L,Brown S F.1976. The plastic deformation of silty clay under creep and repeated loading. Geotechnique, 26(1):173
    Lambe. Kingsley Harrop-Williams. 1985. J.Geotech.Eng. ASCE,115(9):1025-1226
    Ronaldo I. Borja.Generalized creep and stress relaxation model for clays. Journal of Geotechnical Engineering, 1992(11):1765-1786
    Seed H B,McNeill R L . 1956. Soil deformation in normal compression and repeated loading tests.Washington DC:National Research Council.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700