无源光网络及其光子网格应用的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着带宽密集型应用,如互动视频和多媒体业务的普及,网络带宽需求不断增长,波分复用无源光网络(WDM-PON)被视为实现下一代光接入网很有潜力的备选方案之一。WDM-PON提供给每一个用户专用的波长带宽,并具有灵活带宽管理能力。本论文的前半部分将涉及到WDM-PON中三种技术:组播传送机制、保护切换机制和可调FP-LD自激励技术。后半部分,我们提出将波分复用光接入网与网格应用相结合,利用光接入网来连接广泛分布在网络中丰富的计算资源,作为网格应用的虚拟计算平台,形成所谓的“光子网格”系统,以实现大规模科学、工程或商业网格计算应用。网格应用可以是大数据量的简单汇聚传输,也可以是一组相互关联任务集的复杂执行。由于光子网格系统涉及到许多不同种类异构的网格资源和网络资源,这些资源发生故障似乎不可避免。本论文也研究了在实时的光子网格系统中资源容错的调度技术,最大化网格应用的可靠性。
     具体研究工作可分为以下几个方面:
     1.光组播传送机制
     在WDM-PON系统中,光组播传送机制是在光物理层上建立一对多的光路径,这不仅降低了网络层中电的网络处理器或路由器的处理负载,还可以达到较高的处理速率。本论文提出两种新颖的光组播传送机制:
     1)基于波长反射器的动态波长偏射机制。该机制结构简单,在每一个波长通道中配置一个波长反射器,选择性叠加组播数据。在OLT处完成动态、快速、有效的组播重配置操作,对所有ONU完全透明,管理方便。而且ONU采用重调制机制,避免了使用光源和有色器件,大大降低网络成本和设备复杂度。
     2)基于集成的DPMZM的射频信号控制机制。通过简单的打开或关闭每一个波长通道中施加在DPMZM一个驱动臂上的射频控制信号,可以实现动态、灵活的组播传送技术,也便于集中式管理。由于下行单播和组播信号分别承载于同一波长通道中的不同子载频,这不仅消除了可能的瑞利反射效应,而且不需要射频信号的相位精确匹配,容易控制,大大降低了配置成本和系统实现的复杂度。
     2.自动保护切换机制具有自动保护切换功能的WDM-PON系统可以避免由于光线链路故障而导致的巨大数据损失,增强了PON体系结构的生存性能。本论文设计并实验演示了两种新颖的自动保护切换机制,一个应用在单PON结构中,另一个适用于双PON系统:
     1)单PON系统中集中式控制的智能保护切换机制。它同时监控着工作路径和保护路径上的光功率,并对两路检测结果进行逻辑判断,这使得该保护切换机制能够应用在更加实际的操作环境中,实现有效的保护切换操作。根据功率检测单元记录的检测结果,可以具体了解哪一根光纤链路发生故障,这有利于实现快速的故障修复。ONU采用重调制技术,结构简单、成本低廉。
     2)双PON系统中分布式控制的互保护机制。它能够提供1+1下行保护和1:1上行保护能力,并利用邻近PON中的光纤链路和RN处的AWG同时保护馈入光纤和分布光纤的链路故障。相比于其他的保护结构,该双PON体系结构使用的额外的保护光纤数量最少,波长资源利用率最高。
     3.上行多波长共享PON系统设计及其应用基于我们设计的可调FP-LD自激励模块,提出了一种新颖的UMWS-PON系统方案,实现了上行多波长共享和灵活调度,大大提升了上行传输能力,并提出将光接入网与网格应用相结合,实现大数据量文件的资源调度算法。本研究工作涉及到三个方面:
     1)可调自激励FP-LD模块的输出及传输性能:实验研究了单模激励的边模抑制比,波长和功率稳定性,可调谐范围等。实验测量了1.25Gbit/s上行数据的误码率传输性能。
     2)上行波长共享的性能增益及波长通道切换延迟对网络性能的影响:仿真实验结果表明,在ONU业务负载的异构性较大或通道切换时间较小的情况下,提出的UMWS-PON的性能优势变得更加明显。
     3)将光接入网UMWS-PON与网格应用相结合,实现大数据量文件的资源调度算法:分析及建模大文件汇聚的数学问题,提出“最大文件优先和首次合适优先机制”算法,有效地提升PON系统的吞吐率和最小化文件汇聚的完成时间。
     4.光子网格系统中的资源容错调度技术光子网格一直被视为支持大规模分布式计算应用很有潜力的虚拟计算平台。本研究工作分别针对网络链路故障和网格资源故障,提出了两种资源容错调度算法:
     1)基于光链路保护的可靠性驱动调度算法。提出的调度算法在满足DAG应用实时性要求的前提下,试图用一种成本有效的方式不断迭代地提升应用的可靠性。仿真实验结果表明,该算法在应用可靠性、网络资源利用率等方面都取得良好的性能,并对DAG应用最晚完成时间要求具有一定的自适应性。特别是在应用有着较高的实时性要求时,该算法可以给光子网格系统带来更多的性能增益。
     2)基于网格资源保护的容错性调度算法。采用主、备保护方法,将一个计算任务的两个拷贝同时分配到两个不同的网格资源节点上。这大大提升了应用的可靠性,并且仿真表明在可利用的网络资源较多的情况下,引入的调度长度开销也较小。
     论文最后,总结了主要的研究成果及其创新点,提出了还有待进一步研究的问题。
The bandwidth-intensive applications, such as interactive video and multimediaservices, have further increased the demand of bandwidth. Thus wavelength divisionmultiplexing passive optical network (WDM-PON) is viewed as a promising candidate torealize the next generation optical access networks due to its dedicated bandwidth for eachsubscriber and more flexible bandwidth management. The first half of this thesis willcover three technologies in a WDM-PON, including multicast overlay scheme, automaticprotection switching scheme and tunable Fabry-Perot laser diode (FP-LD) self-seedingscheme. In the second half of the thesis, WDM optical network is utilized as a promisingvirtual computing environment, which connects widely distributed computing resources tosupport large-scale scientific, engineering or commercial computing applications. It is socalled “optical Grid” system. Grid applications may range from the simple transfer of alarge data set to the complex execution of a collection of interdependent tasks. Especially,we for the first time introduce the optical Grid applications into WDM optical accessnetworks to realize massive data aggregations. However, for such a system involvingmany heterogeneous computing and network resources, faults seem to be inevitable. Thisthesis will also address the issue of maximizing grid application availability in real-timeoptical Grid systems through resource-fault-tolerant scheduling techniques.
     We will briefly discuss our works in the following sub-topics.
     1. Multicast Overlay Scheme in WDM-PONs
     Multicast overlay scheme in WDM-PONs can be realized by establishing one-to-many light paths on the optical layer, and thus reduces the loading of the electronicnetwork processors or routers on the network layer and achieves much higher processingspeed. In this thesis, we have proposed our two feasible schemes to overlay multicasttransmission onto the existing point-to-point traffic in a WDM-PON.
     1)In the first approach, by using a dynamic wavelength reflector in each WDM channel,OLT selectively enable the multicast data imposed on the corresponding downstreamunicast carrier. Several different configrations of the wavelength reflector are presented, which is composed of some mature and simple devices. The reconfigurablemulticast control is centralized in the OLT and is transparent to all ONUs. No lightsource is needed in the ONUs by employing re-modulation technique.
     2)The second approach uses a dual-parallel MZM in each wavelength channel togenerate the optical sidebands for multicast DPSK data modulation. The downstreamNRZ unicast data is carried on the optical baseband carrier, which will be reused forthe upstream NRZ data at the respective ONU. By simply switching the RF controlsignal on or off, the centralized multicast function can be reconfigured dynamically. Asthe upstream signal and the multicast signal are carried on different subcarriers, thoughon the same fiber path, the Rayleigh backscattering effect is much alleviated.
     2. Protection Switching Schemes in WDM-PONs
     A survivable WDM-PON architecture which provides automatic protection switching(APS) capability can avoid enormous loss in data and business due to fiber cuts. We willpropose and demonstrate two novel survivable WDM-PON architectures:
     1)Centrally-controlled intelligent protection scheme in a single WDM-PON: Bymonitoring the optical power of each channel on both the working and protection paths,the proposed scheme can perform an effective protection switching with the aid of theproposed logic decision unit in more practical operation scenarios. The scheme candeal with both the feeder fiber and the distribution fiber failures.
     2)Cross-protection dual-PON-based architecture with colorless ONUs: It can provide1+1protection for downstream traffic and1:1protection for upstream data againstboth feeder fiber and distribution fiber failures by using the fiber links and AWGs ofthe neighboring WDM-PON. It has the minimum number of extra protection fibers,much improved wavelength utilization and better transmission performance comparedwith the other existing protection schemes.
     3. Upstream Multi-Wavelength Shared PON
     Providing cost-effective, smooth capacity upgrades while maintaining compatibilitywith existing PON standards will be of great concern for network operators. A novelUMWS-PON will be presented and demonstrated based on the proposed three possibleconfigurations of the tunable FP-LD self-seeding module at ONU. The PON not only upgrades easily upstream bandwidth capacity by introducing multiple wavelengths, butalso improves significantly bandwidth utilization by sharing all wavelength resources. Wealso study the impact of channel SL on the network performance. We for the first timeintroduce the optical Grid applications into optical access networks, more especially, intothe proposed UMWS-PON, to realize large data file aggregations. The Time-WavelengthCo-Allocation (TWCA) Problem is defined and an effective greedy approach to thisproblem is presented for the aggreagation applications. The simulations demonstrate thatthe performance is improved significantly by using our proposed “Longest File First-First-Fit first (LFF-FF)” algorithm.
     4. DAG Applications in Optical Grids
     Because optical grid systems generally involve many heterogeneous computing andnetwork resources, network or Grid resource faults seem to be inevitable. We haveproposed two resource-fault-tolerant scheduling schemes for optical Grid applications:
     1)The first scheme focus only on optical link failures, the proposed Availability-DrivenScheduling (ADS) scheme improves the availability iteratively under the applicationdeadline requirements. Its performance advantages will be stated clearly in thecomparison with two other DAG scheduling schemes in different network scenarios.
     2)The second one addresses the case of grid resource failures in optical Grids by using aprimary-backup approach. It allocates simultaneously two copies of each computationtask to two different Grid resources. Through simulation results, we can see that itimproves greatly application availability and induces less the overhead in schedulinglength when the more network resources are available.
     In the end, a brief summary of all discussed topics in this thesis is given. The maincontributions of this thesis and several further studies or worth studies are pointed out atthis part.
引文
[1] I. Kaminow and T. Li,“Optical Fiber Telecommunications IVB,” San Diego: Academic Press,2002.
    [2]“Very high speed digital subscriber line transceivers2(VDSL2),” ITU-T RecommendationG.993.2,2006.
    [3] R. E. Wagner, J. R. Igel, R. Whitman, M. D. Vaughn, A. B. Ruffin, and S. Bickham,“Fiber-basedbroadband-access deployment in the United States,” IEEE Journal of Lightwave Technology,vol.24, pp.4526-4540,2006.
    [4] C-H. Lee, W. V. Sorin, and B. Y. Kim,“Fiber to the home using a PON infrastructure,” IEEEJournal of Lightwave Technology, vol.24, pp.4568-4583,2006.
    [5] ITUT standard G.983.1.
    [6] ITUT standard G.984.1.
    [7] Institute of Electrical and Electronics Engineers (IEEE)802.3ah. Availableonline: http://www.ieee802.org/3/ah/index.html.
    [8] J. George,“FTTH design with the future in mind: optical infrastructure scalable to25yearbandwidth demands,” Digest FTTH conference, Session7D,2005.
    [9] C. Dragone, C. A. Edwards, and R. C. Kistler,“Integrated optics N×N multiplexer on silicon,”IEEE Photonic Technology Letters, vol.4, pp.896-899,1991.
    [10] Press Release of Novera Optics Inc."Novera optics expands Korea telecom engagement withnew30,000-line DWDM PON deployment in Q1/2007,” Availableonline: http://www.noveraoptics.com/news/index.php#turbolight.
    [11] H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, and M. Tsubokawa,“Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and itsapplication to coexistence-type colorless WDM-PON,” European Conference on OpticalCommunications (ECOC), Berlin, Germany, Post-deadline paper PD3.4,2007.
    [12] J. Kani and K. Iwatsuki,“A wavelength-tunable optical transmitter using semiconductor opticalamplifiers and an optical tunable filter for metro/access DWDM applications,” IEEE J.Lightwave Technol., vol.23, no.3, pp.1164–1169, Mar.2005.
    [13] B. Zhang, Chinlon Lin, L. Huo, Z. X. Wang, C. K. Chan,“A simple high-speed WDM PONutilizing a centralized super-continuum broadband light source for colorless ONUs,” IEEE/OSAOptical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), Paper OTuC6, Anaheim, California, USA,2006.
    [14] M. Zirngibl, C. R. Doerr, and L. W. Stulz,“Study of spectral slicing for local accessapplications,” IEEE Photon. Tech. Lett., vol.8, pp.721–723,1996.
    [15] D. K. Jung, S. K. Shin, C.–H. Lee, and Y. C. Chung,“Wavelength-division-multiplexed passiveoptical network based on spectrum-slicing techniques,” IEEE Photonic Technology Letters, vol.10, no.9, pp.1334-1336,1998.
    [16] S. L. Woodward, P. P. Iannone, K. C. Reichmann, and N. J. Frigo,“A spectrally sliced PONemploying Fabry-Perot Lasers,” IEEE Photonic Technology Letters, vol.10, no.9, pp.1337-1339,1998.
    [17] D. J. Shin, Y. C. Yeh, J. W. Kwon, E. H. Lee, J. K. Lee, M. K. Park, J. W. Park, Y. K. Oh, S. W.Kim, I. K. Yun, H. C. Shin, D. Heo, J. S. Lee, H. S. Shin, H. S. Kim, S. B. Park, D. K. Jung, S. T.Hwang, Y. J. Oh, and C. S. Shim,“Low-cost WDM-PON with colorless bi-directionaltransceivers,” IEEE J. Lightwave Technol., vol.24, no.1, pp158-165, Jan.2006.
    [18] K. M. Choi, C. H. Lee,“Colorless operation of WDM-PON based on wavelength lockedFabry-Perot laser diode,” European Conference on Optical Communications (ECOC), PaperWe3.3.4, Glasgow, UK,2005.
    [19] P. Healy, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, R.Moore,“Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron.Lett., vol.37, no.19, pp1181-1182,2001.
    [20] S. J. Park, G. Y. Kim, T. Park, E. H. Choi, et al.,“WDM-PON system based on the laser lightinjected reflective semiconductor optical amplifier,” European Conference on OpticalCommunications (ECOC), Paper We3.3.6, Glasgow, UK,2005.
    [21] C. Arellano, C. Bock, and J. Prat,“RSOA-based optical network units for WDM-PON,”IEEE/OSA Optical Fiber Communication Conference/National Fiber Optic EngineersConference (OFC/NFOEC), Paper OTuC1, Anaheim, California, USA,2006.
    [22] E. Wong, K. L. Lee, T. Anderson,“Directly modulated self-seeding reflective SOAs as colorlesstransmitters for WDM passive optical networks,” IEEE/OSA Optical Fiber CommunicationConference/National Fiber Optic Engineers Conference (OFC/NFOEC), Paper PDP49,Anaheim, California, USA,2006.
    [23] E. Wong, X. Zhao, C. J. Chang-Hasnain, W. Hoffman, and M. C. Amann,“Uncooled, OpticalInjection-Locked1.55μm VCSELs for Upstream Transmitters in WDM-PONs,” IEEE/OSAOptical Fiber Communication Conference/National Fiber Optic Engineers Conference(OFC/NFOEC), paper PDP50, Anaheim, California, USA,2006.
    [24] C. W. Chow,“Wavelength Remodulation Using DPSK Down-and-Upstream With HighExtinction Ratio for10-Gb/s DWDM-Passive Optical Networks,” IEEE Photon. Tech. Lett., vol.20, no.1, pp.12-14, Jan.2008.
    [25] W. Hung, C. K. Chan, L. K. Chen, F. Tong,“An optical network unit for WDM access networkswith downstream DPSK and upstream re-modulated OOK data using injection-locked FP laser,”IEEE Photon. Tech. Lett., vol.15, no.10, pp.1476-1478, Oct.2003.
    [26] N. Deng, C. K. Chan, L. K. Chen, F. Tong,“Data re-modulation on downstream OFSK signal forupstream transmission in WDM a passive optical network,” IEE Electron. Lett., vol.39, no.24,pp.1741-1742, Nov.2003.
    [27] G. W. Lu, N. Deng, C. K. Chan, L. K. Chen,“Use of downstream inverse-RZ signal for upstreamdata re-modulation in a WDM passive optical network,” IEEE/OSA Optical FiberCommunication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), PaperOFI8, Anaheim, California, USA, Mar.2005.
    [28] L. Xu and H. K. Tsang,“Differential Phase Shift Keying for Asynchronous UpstreamRemodulation of Dark Return-to-Zero Downstream Channel,” IEEE/OSA Optical FiberCommunication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), PaperOWH6, San Diego, USA,2008.
    [29] C. Bock and J. Prat,“WDM/TDM PON experiments using the AWG free spectral rangeperiodicity to transmit unicast and multicast data,” OSA Opt. Express, vol.13, no.8, pp.2887-2891, April.2005.
    [30] M. Khanal, C. J. Chae, R. S. Tucker,“Selective broadcasting of digital video signals over aWDM passive optical network,” IEEE Photon. Technol. Lett., vol.17, no.9, pp.1992-1994, Sept.2005.
    [31] Q. J. Chang, J. M. Gao, Q. Li, Y. K. Su,“Simultaneous transmission of point-to-point data andselective delivery of video services in a WDM-PON Using ASK/SCM Modulation Format,”IEEE/OSA Optical Fiber Communication Conference/National Fiber Optic EngineersConference (OFC/NFOEC), Paper OWH2, San Diego, California, USA,2008.
    [32] Y. Tian, Q. J. Chang, Y. K. Su,“A WDM passive optical network enabling multicasting withcolor-free ONUs,” OSA Opt. Express, vol.16, no.14, pp.10434-10439, Jul.2008.
    [33] N. Deng, C. K. Chan, L. K. Chen, and C. Lin,“A WDM passive optical network with centralizedlight sources and multicast overlay,” IEEE Photon. Technol. Lett., vol.20, no.2, pp.114–116,Jan.2008.
    [34] L. Cai, Z. Liu, S, Xiao, M. Zhu, R. Li and W. Hu,“Video-service-overlaid wavelength-division-multiplexed passive optical network,” IEEE Photon. Technol. Lett., vol.21, no.14, pp.990-992,2009.
    [35] Y. Zhang, N. Deng, C. K. Chan, and L. K. Chen,“A multicast WDM-PON architecture usingDPSK/NRZ orthogonal modulation,” IEEE Photon. Technol. Lett., vol.20, no.17, pp.1479-1481,2008.
    [36] T. J. Chan, C. K. Chan, L. K. Chen, and F. Tong,“A self-protected architecture for wavelengthdivision multiplexed passive optical networks,” IEEE Photon. Technol. Lett., vol.15, no.11, pp.1660–1662, Nov.2003.
    [37] C.M. Lee, T.J. Chan, C.K. Chan, L.K. Chen, C.L. Lin,“A Group Protection Architecture (GPA)for Traffic Restoration in Multi-wavelength Passive Optical Networks,” European Conferenceon Optical Communications (ECOC), Paper Th2.4.2, Rimini, Italy, Sept,2003.
    [38] Z.X. Wang, B. Zhang, C.L. Lin, C.K. Chan;“A Broadcast and Select WDM-PON and itsProtection,” European Conference on Optical Communications (ECOC), Paper We4.P.24,Glasgow, United Kingdom, Sep.2005.
    [39] Z. X. Wang, X. F. Sun, C. Lin, C. K Chan, and L. K. Chen,“A novel centrally controlledprotection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon.Technol. Lett., vol.17, no.3, pp.717–719, Mar.2005.
    [40] X.F. Sun, C.K. Chan, L.K. Chen;“A Survivable WDM PON Architecture with CentralizedAlternate-Path Protection Switching for Traffic Restoration,” IEEE Photon. Technol. Lett., vol.18, no.4, pp.631-633, Feb.2006.
    [41] E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung,“Survivable network architectures for WDMPON”, IEEE/OSA Optical Fiber Communication Conference/National Fiber Optic EngineersConference (OFC/NFOEC), Paper OFI4, Anaheim, California, USA,2005.
    [42] K. Lee, S. G. Mun, C. H. Lee, and S. B. Lee,“Reliable Wavelength-Division-MultiplexedPassive Optical Network Using Novel Protection Scheme,” IEEE Photon. Technol. Lett., vol.20,no.9, pp.679-681, May.2008.
    [43] A. Chowdhury, M. F. Huang, H.–C. Chien, G. Ellinas, and G. K. Chang,“A Self-SurvivableWDM-PON Architecture with Centralized Wavelength Monitoring, Protection and Restorationfor both Upstream and Downstream Links,” IEEE/OSA Optical Fiber CommunicationConference/National Fiber Optic Engineers Conference (OFC/NFOEC), San Diego, PaperJThA95,2008.
    [44] B. Glance, C. R. Doerr, I. P. Kaminow, and R. Montagne,“Optically restorable WDM ringnetworks using simple add/drop circuitry,” IEEE J. Lightwave Technol., vol.14, no.11, pp.2453-2456,1996.
    [45] C. H. Kim, C.-H. Lee, and Y. C. Chung,“Bidirectional WDM self-healing ring network based onsimple bidirectional add/drop amplifier modules,” IEEE Photon. Technol. Lett., vol.10, pp.1340-1342, Sept.1998.
    [46] Y. H. Joo, G. W. Lee, R. K. Kim, S. H. Park, K. W. Song, J. Koh, S. T. Hwang, Y. Oh, and C.Shim,“1-fiber WDM self-healing ring with bidirectional optical add/drop multiplexers,” IEEEPhoton. Technol. Lett., vol.16, pp.683-685, Feb.2004.
    [47] S. B. Park, C. H. Lee, S. G. Kang, and S. B. Lee,“Bidirectional WDM self-healing ring networkfor hub/remote nodes,” IEEE Photon. Technol. Lett., vol.15, pp.1657-1659, Nov.2003.
    [48] Z.X. Wang, C.L. Lin, C.K. Chan;“Demonstration of a Single-Fiber Self-Healing CWDM MetroAccess Ring Network with Uni-directional OADM,” IEEE Photon. Technol. Lett., vol.18, no.1,pp.163-165, Jan.2006.
    [49] X. F. Sun, C.K. Chan, Z.X. Wang, C.L. Lin, L.K. Chen;“A Single-Fiber Bi-directional WDMSelf-Healing Ring Network with Bi-directional OADM for Metro-Access Applications,” IEEEJournal of Selected Areas on Communications, vol.25, no.4, pp.18-24, Apr.2007.
    [50] C. J. Chae and R. S. Tucker,“A protected optical star-shaped ring network using an N×N arrayedwaveguide grating and incoherent light sources,” IEEE Photon. Technol. Lett., vol.13, no.8, pp.878–880, Aug.2001.
    [51] C. J. Chae,“A Flexible and Protected Virtual Optical Ring Network,” IEEE Photon. Technol.Lett., vol.14, no.11, pp.1626-1628,2002.
    [52] K. Czajkowsk, S. Fitzgerald, I. Foster, and C. Ke,“Grid Information Services for DistributedResource Sharing,” in Proc. of IEEE High Performance Distributed Computing (HPDC-10),2001.
    [53] I. Foster, C. Kesselman, and S. Tuecke,“The Anatomy of the Grid: Enabling Scalable VirtualOrganizations,” International Journal of High Performance Computing Applications, vol.15, no.3, pp.200-222, Aug.2001.
    [54] R. Buyya and A. Sulistio,“Service and Utility Oriented Distributed Computing Systems:Challenges and Opportunities for Modeling and Simulation Communities,” in Proc of AnnualSimulation Symposium (ANSS),2008.
    [55] Z. Sun, W. Guo, Z. Wang, Y. Jin, W. Sun, W. Hu, and C. M. Qiao,“Scheduling Algorithm forWorkflow-Based Applications in Optical Grid,” IEEE Journal of Lightwave Technology, vol.26,no.17, pp.3011-3020,2008.
    [56] F. Baroncelli, B. Martini, L. Valcarenghi, and P. Castoldi,“A Service Oriented NetworkArchitecture suitable for Global Grid Computing,” in Proc of Optical Network Design andModeling (ONDM),2005.
    [57] T. Lehman, J. Sobieski, and B. Jabbari,“DRAGON: a framework for service provisioning inheterogeneous grid networks,” IEEE Communications Magazine, vol.44, pp.84-90,2006.
    [58] R. Ramaswami and K.N. Sivarajan,“Optical Networks: A Practical Perspective,” MorganKaufmann Publishers,1998.
    [59] B. Mukherjee,“Optical WDM Networks,” Springer,2006.
    [60] G. I. Papadimitriou, C. Papazoglou, and A.S. Pomportsis,“Optical Switching: Switch Fabrics,Techniques, and Architectures,” IEEE Journal of Lightwave Technology, vol.21, no.2, pp.384-405, Feb2003.
    [61] D. Banerjee and B. Mukherjee,“Practical approaches for Routing and Wavelength Assignmentin All-Optical Wavelength-Routed Networks,” IEEE Journal on Selected Areas inCommunications, vol.14, no.5, pp.903-908, Jun1996.
    [62] H. Zhang, J.P. Jue, and B. Mukherjee,“A Review of Routing and Wavelength AssignmentApproaches for Wavelength-Routed Optical WDM Networks,” Optical Networks Magazine, vol.1, no.1, pp.47-60, Jan2000.
    [63] P.H. Ho and H.T. Mouftah,“Routing and Wavelength Assignment with Multi-granularity Trafficin Optical Networks,” IEEE Journal of Lightwave Technology, vol.20, no.8, pp.1292-1303,Aug2002.
    [64] J. Iness and B. Mukherjee,“Sparse Wavelength Conversion in Wavelength-Routed WDMNetworks,” Photonic Network Communications, vol.1, no.3, pp.183-205, Nov1999.
    [65] S. Subramaniam, M. Azizoglu, and A.K. Somani,“All-Optical Networks with SparseWavelength Conversion,” IEEE/ACM Transactions on Networking, vol.4, no.4, pp.544-557,Aug1996.
    [66] X. Chu, J. Liu, and Z. Zhang,“Analysis of Sparse-Partial Wavelength Conversion inWavelength-Routed WDM Networks,” In Proc. IEEE INFOCOM, Paper29.3, Mar2004.
    [67] S. Ramamurthy, B. Mukherjee,“Survivable WDM mesh networks–Part I: protection,” in: Proc.IEEE INFOCOM, pp.744-751, Mar.1999.
    [68] E. Bouillet and J. F. Labourdette,“Distributed computation of shared backup path in meshoptical networks using probabilistic methods,” IEEE/ACM Transactions on Networking, Vol.12,2004, pp.920-930.
    [69] S. Ramamurthy, B. Mukherjee,“Survivable WDM mesh networks–Part II: restoration,” in:Proc. IEEE Integrated Circuits Conf., pp.2023–2030, June1999.
    [70] Y. Sone, A. Watanabe, W. Imajuku, Y. Tsukishima, B. Kozicki, H. Takara, and M. Jinno,“Highlysurvivable restoration scheme employing optical bandwidth squeezing in spectrum-sliced elasticoptical path SLICE network,” IEEE/OSA Optical Fiber Communication Conference/NationalFiber Optic Engineers Conference (OFC/NFOEC), Paper OThO2,2009.
    [1] P. P. Iannone, K. C. Reichmann, and N. J. Frigo,“Broadcast digital video delivered over WDMpassive optical networks,” IEEE Photon. Technol. Lett., vol.8, no.7, pp.930–932, Jul.1996.
    [2] C. Bock and J. Prat,“WDM/TDM PON experiments using the AWG free spectral rangeperiodicity to transmit unicast and multicast data,” OSA Opt. Express, vol.13, no.8, pp.2887-2891, April.2005.
    [3] Y. Zhang, N. Deng, C. K. Chan, and L. K. Chen,“A multicast WDM-PON architecture usingDPSK/NRZ orthogonal modulation,” IEEE Photon. Technol. Lett., vol.20, no.17, pp.1479-1481,2008.
    [4] L. Cai, Z. Liu, S. Xiao, M. Zhu, R. Li and W. Hu,“Video-service-overlaid wavelength-division-multiplexed passive optical network,” IEEE Photon. Technol. Lett., vol.21, no.14, pp.990-992,2009.
    [5] N. Deng, C. K. Chan, L. K. Chen, and C. Lin,“A WDM passive optical network with centralizedlight sources and multicast overlay,” IEEE Photon. Technol. Lett., vol.20, no.2, pp.114–116,Jan.2008.
    [6] M. Khanal, C. J. Chae, R. S. Tucker,“Selective broadcasting of digital video signals over aWDM passive optical network,” IEEE Photon. Technol. Lett., vol.17, no.9, pp.1992-1994, Sept.2005.
    [7] Q. J. Chang, J. M. Gao, Q. Li, Y. K. Su,“Simultaneous transmission of point-to-point data andselective delivery of video services in a WDM-PON Using ASK/SCM Modulation Format,”IEEE/OSA Optical Fiber Communication Conference/National Fiber Optic EngineersConference (OFC/NFOEC), Paper OWH2, San Diego, California, USA,2008.
    [8] Y. Tian, Q. J. Chang, Y. K. Su,“A WDM passive optical network enabling multicasting withcolor-free ONUs,” OSA Opt. Express, vol.16, no.14, pp.10434-10439, Jul.2008.
    [9] M. Ohm,“Quaternary Optical ASK-DPSK and Receivers with Direct Detection,” IEEE Photon.Technol. Lett., vol.15, no.1, pp.159-161,2003.
    [10] S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole,“Flexible and Grid-lessWavelength Selective Switch using LCOS Technology,” IEEE/OSA Optical FiberCommunication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), PaperOTuM3, California, USA,2011.
    [11] C. R. Doerr, L. L. Buhl, L. Chen, and N. Dupuis,“Monolithic Flexible-Grid1×2Wavelength-Selective Switch in Silicon Photonics,” IEEE J. Lightwave Technol., vol.30, no.4, pp.473-478,Apr.2012.
    [12] M. Sumetsky, Y. Dulashko, and A. Hale,“Fabrication and study of bent and coiled free silicananowires: Self-coupling microloop optical interferometer,” OSA Opt. Express, vol.12, no.15,pp.3521-3531,2004.
    [13] M. B. Duhring and Ole Sigmund,“Improving the acousto-optical interaction in a mach-zehnderinterferometer,” Journal of Applied Physics, vol.105, no.8, pp.083529-1-9, Apr.2009.
    [14] K. O. Hill and G. Meltz,“Fiber Bragg grating technology fundamentals and overview,” IEEE J.Lightwave Technol., vol.15, no.8, pp.1263-1276, Aug1997.
    [15] X. Fang, C. R. Liao, and D. N. Wang,“Femtosecond laser fabricated fiber Bragg grating inmicrofiber for refractive index sensing,” OSA Opt. Lett., vol.35, no.7, pp.1007-1009,2010.
    [16] K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu,“X-cut lithium niobate opticalsingle-sideband modulator,” Electron. Lett., vol.37, no.8, pp.515–516, Apr.2001.
    [17] Q. Chang, T. Ye, and Y. Su,“Generation of optical carrier suppressed-differential phase shiftkeying (OCS-DPSK) format using one dual-parallel Mach-Zehnder modulator in radio over fibersystems,” OSA Opt. Express, vol.16, no.14, pp.10421-10426,2008.
    [1] C.-H. Lee, W. V. Sorin, and B. Y. Kim,“Fiber to the home using a PON infrastructure,” IEEE J.Lightw. Technol., vol.24, no.12, pp.4568–4583, Dec.2006.
    [2] S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song,“Fiber-to-the-homeservices based on wavelength-division-multiplexing passive optical network,” IEEE J. Lightw.Technol., vol.22, no.11, pp.2582–2591, Nov.2004.
    [3] D. Zhou, S. Subramaniam,“Survivability in Optical Networks,” IEEE Network Magazine, vol.14, no.6, pp.16-23,2000.
    [4] T. H. Wu,‘‘Emerging technologies for fiber network survivability,’’ IEEE CommunicationMagazine, vol.33, no.2, pp.62–74, Feb.,1995.
    [5] D. Colle, S. De Maesschalck, C. Develder, P. Van Heuven, A. Groebbens, J. Cheyns, I.Lievens, M. Pickavet, P. Lagasse, P. Demeester,“Data-centric optical networks and theirsurvivability,” IEEE Journal on Selected Areas in Communications, vol.20, no.1, pp.6–20,2002.
    [6] L. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee,“Fault management in IP-over-WDMnetworks: WDM protection versus IP restoration,” IEEE Journal on Selected Areas inCommunications, vol.20, no.1, pp21–33,2002.
    [7] T. J. Chan, C. K. Chan, L. K. Chen, and F. Tong,“A self-protected architecture for wavelengthdivision multiplexed passive optical networks,” IEEE Photon. Technol. Lett., vol.15, no.11, pp.1660–1662, Nov.2003.
    [8] Z. X. Wang, X. F. Sun, C. L. Lin, C. K. Chan, and L. K. Chen,“A novel centrally controlledprotection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon.Technol. Lett., vol.17, no.3, pp.717–719, Mar.2005.
    [9] X. F. Sun, C. K. Chan, and L. K. Chen,“A survivable WDM-PON with alternate-pathswitching,” IEEE/OSA Optical Fiber Communication Conference/National Fiber OpticEngineers Conference (OFC/NFOEC), Paper JThB71, Anaheim, CA,2006.
    [10] P. Fan, H. Chen, M. Chen, and S. Xie,“Self-protected Scheme for Wavelength Reusable WDMPassive Optical Networks,” IEEE/OSA Optical Fiber Communication Conference/NationalFiber Optic Engineers Conference (OFC/NFOEC), paper JWA69, Los Angeles, CA,2011.
    [11] S. B. Park, D. K. Jung, D. J. Shin, H. S. Shin, S. Hwang, Y. J. Oh,“Bidirectionalwavelength-division-multiplexing self-healing passive optical network,” IEEE/OSA OpticalFiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC),Paper JWA57, Anaheim, CA,2005.
    [12] K. Lee, S.-G. Mun, C.-H. Lee, and S. B. Lee,“Reliable wavelength-division-multiplexedpassive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol.20, pp.679–681, May2008.
    [13] K. Lee, S. B. Lee, J. H. Lee, Y.-G. Han, S.-G. Mun, S.-M. Lee, and C.-H. Lee,“A self-restorablearchitecture for bidirectional wavelength-division-multiplexed passive optical network withcolorless onus,” OSA Opt. Express, vol.15, no.8, pp.4863–4868,2007.
    [14] A. Chowdhury, M. F. Huang, H.–C. Chien, G. Ellinas, and G. K. Chang,“A Self-SurvivableWDM-PON Architecture with Centralized Wavelength Monitoring, Protection and Restorationfor both Upstream and Downstream Links,” IEEE/OSA Optical Fiber CommunicationConference/National Fiber Optic Engineers Conference (OFC/NFOEC), San Diego, PaperJThA95,2008.
    [15] E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung,“Survivable network architectures for WDMPON”, IEEE/OSA Optical Fiber Communication Conference/National Fiber Optic EngineersConference (OFC/NFOEC), Paper OFI4, Anaheim, California, USA,2005.
    [16] X. F. Cheng, Y. J. Wen, Z. W. Xu, Y. X. Wang, Y. K. Yeo,“Survivable WDM-PON withself-protection and in-service fault localization capabilities,” Optics Communications, vol.281,no.18, pp.4606-4611,2008.
    [17] K.H. Tse, W. Jia, and C.K. Chan,“A cost-effective pilot-tone-based monitoring technique forpower-saving in RSOA-based WDM-PON,” Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), Paper OThB6, California, USA,2011.
    [18] S. W. Wong, L. Valcarenghi, S-H. Yen, D. R. Campelo, S. Yamashita and L. Kazovsky,“SleepMode for Energy Saving PONs: Advantages and Drawbacks,” IEEE Global CommunicationsConference Workshops, Dec.2009.
    [19] W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim,“BidirectionalWDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifier,” IEEEPhoton. Technol. Lett., vol.17, no.11, pp.2460-2462, Nov.2005.
    [20] J. Chen and L.Wosinska,“Analysis of protection schemes in PON compatible with smoothmigration from TDM-PON to hybrid WDM/TDMPON,” IEEE/OSA J. Opt. Netw., vol.6, no.5,pp.514–526, May2007.
    [21] J.-Y. Kim, S.-G. Mun, H.-K. Lee, and C.-H. Lee,“Self-Restorable WDM-PON with aColor-Free Optical Source,” IEEE J. Opt. Commun. Netw., vol.1, no.6, pp.565-570, Nov.2009.
    [22] W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim,“BidirectionalWDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifier,” IEEEPhoton. Technol. Lett., Vol.17, no.11, pp.2460-2462,2005.
    [23] P. Chanclou, F. Payoux, T. Soret, N. Genay, R. Brenot, F. Blache, M. Goix, J. Landreau, O.Legouezigou, and F. Mallécot,“Demonstration of RSOA-Based Remote Modulation at2.5and5Gbit/s for WDM PON,” Optical Fiber Communication Conference/National Fiber OpticEngineers Conference (OFC/NFOEC), paper OWD1, Anaheim, CA, USA2007.
    [24] H. Takesue, T. Sugie,“Wavelength channel data rewrite using saturated SOA modulator forWDM networks with centralized light sources,” IEEE J. Lightw. Technol., vol.21, no.11, pp.2546-2556, Nov.2003.
    [1] F.-T. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky,“SUCCESS-HPON: A next-generation optical access architecture for smooth migration from TDM-PON to WDM-PON,”IEEE Commun. Mag., vol.43, no.11, pp. S40–S47, Nov.2005.
    [2] G. Kramer and G. Pesavento,“Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag., vol.40, no.2, pp.66–73, Feb.2002.
    [3] L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong,“Next-GenerationOptical Access Networks,” IEEE J. Lightwave Technol., vol.25, no.11, pp.3428-3442,2007.
    [4] IEEE Standard for Information Technology, IEEE Std802.3ah-2004(IEEE,2004).
    [5] ITU-T Recommendation G.984.2-2003,“Gigabit-capable passive optical networks (GPON):physical media dependent (PMD) layer specification,”(ITU,2003).
    [6] M. Abrams, P. C. Becker, Y. Fujimoto, V. O’Byrne, and D. Piehler,“FTTP deployments in theUnited States and Japan-equipment choices and service provider imperatives,” IEEE J.Lightwave Technol., vol.23, no.1, pp.236–246,2005.
    [7] K. Ohara, A. Tagami, H. Tanaka, M. Suzuki, T. Miyaoka, T. Kodate, T. Aoki, K. Tanaka, H.Uchinao, S. Aruga, H. Ohnishi, H. Akita, Y. Taniguchi, and K. Arai,“Traffic analysis ofEthernet-PON in FTTH trial service,” IEEE/OSA Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), Paper ThA.A2, Atlanta,2003.
    [8] D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim,“Hybrid WDM/TDM-PON with wavelength-selection-free transmitters,” IEEE J. Lightwave Technol., vol.23,no.1, pp.187–195,2005.
    [9] S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song,“Fiber-to-the-homeservices based on wavelength-division-multiplexing passive optical network,” IEEE J.Lightwave Technol., vol.22, no.11, pp.2582–2591,2004.
    [10] B. McDonald,“EPON deployment challenges–now and the future,” IEEE/OSA Optical FiberCommunication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), PaperJWA96, Anaheim, CA,2007.
    [11] K. McCammon and S. W. Wong,“Experimental validation of an access evolution strategy:smooth FTTP service migration path,” IEEE/OSA Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), Paper NThB3, Anaheim, CA,2007.
    [12]10G EPON study group public articles, http://www.ieee802.org/3/av.
    [13] Y.-L. Hsueh, M. S. Rogge, S. Yamamoto, and L. G. Kazovsky,“A highly flexible and efficientpassive optical network employing dynamic wavelength allocation,” IEEE J. Lightwave Technol.,vol.23, no.1, pp.277–286, Jan.2005.
    [14] G. Talli and P. D. Townsend,“Hybrid DWDM-TDM long-reach PON for next-generation opticalaccess,” IEEE J. Lightwave Technol., vol.24, no.7, pp.2827–2834,2006.
    [15] C.-J. Chae and T. Jayasinghe,“Bandwidth-efficient capacity upgrade of Ethernet passive opticalnetwork systems,” IET Electron. Lett., vol.42, no.16, pp.938–939, Aug.2006.
    [16] J.-J. Yoo, H.-H. Yun, T.-Y. Kim, K.-B. Lee, M.-Y. Park, B.-W. Kim, and B.-T. Kim,“A WDM-Ethernet hybrid passive optical network architecture,” International Conference on AdvancedCommunication Technology (ICACT),2006.
    [17] T. Jayasinghe, C.-J. Chae, and R. S. Tucker,“Multi-wavelength Ethernet PON with RSOA basedupstream modulators,” Opto-Elecronics and Communications Conference (OECC), paper5E3-4,Taiwan, July2006.
    [18] T. Jayasinghe, C.-J. Chae, and R. S. Tucker,“Scalability of RSOA-based multi-wavelengthEthernet PON architecture with dual feeder fiber,” OSA J. Opt. Netw., vol.6, no.8, pp.1025-1040,2007.
    [19] M. Attygalle, Y. J. Wen, J. Shankar,“Increasing upstream capacity in TDM-PON with multiple-wavelength transmission using Fabry-Perot laser diodes,” OSA Opt. Express, vol.15, no.16, pp.10247-10252, Aug.2007.
    [20] Z. Xu, Y. J. Wen, W.D. Zhong, C.-J. Chae, Y. Wang, C. Lu, and J. Shankar,“High speedWDM-PON using Fabry-Pérot laser diodes wavelength-locked by CW seed light,” OSA Opt.Express, vol.15, no.6, pp.2953-2962, Mar.2007.
    [21] N. Kashima,“Dynamic properties of FP-LD transmitters using side-mode injection locking forLANs and WDM-PONs,” IEEE J. Lightwave Technol., vol.24, no.8, pp.3045-3058,2006.
    [22] C.-H. Yeh, C.-W. Chow, C.-H. Wang, F.-Y. Shih, Y.-F. Wu, and S. Chi,“Using four wavelength-multiplexed self-seeding Fabry-Perot lasers for10Gbps upstream traffic in TDM-PON,” OSAOpt. Express, vol.16, no.23, pp.18857-18862,2008.
    [23] C. H. Yeh, F. Y. Shih, C. H. Wang, C. W. Chow, and S. Chi,“Cost-effective wavelength-tunablefiber laser using self-seeding Fabry-Perot laser diode,” OSA Opt. Express, vol.16, no.1, pp.435-439,2008.
    [24] T. Amano, F. Koyama, T. Hino, M. Arai, and A. Mastutani,“Design and fabrication ofGaAs-GaAlAs micromachined tunable filter with thermal strain control,” IEEE J. LightwaveTechnol., vol.21, no.3, pp.596–601,2003.
    [25] C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P.R.-Romeo, P. Regreny, and P. Viktorovitch,“Quasi-3D Light Confinement in Double PhotonicCrystal Reflectors VCSELs for CMOS-Compatible Integration,” IEEE J. Lightwave Technol.,vol.29, no.13, pp.2015-2024,2011.
    [26] M. Schell, D. Huhse, W. Utz, J. Kaessner, D. Bimberg, and I. S. Tarasov,“Jitter and dynamics ofself-seeded Fabry–Perot laser diodes,” IEEE J. Sel. Top. Quantum Electron., vol.1, no.2, pp.528–534,1995.
    [27] M. P. McGarry, M. Reisslein, and M. Maier,“WDM Ethernet passive optical networks,” IEEECommun. Mag., vol.44, no.2, pp.15–22,2006.
    [28] D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim,“HybridWDM/TDM-PON with wavelength-selection-free transmitters,” IEEE J. Lightwave Technol.,vol.23, no.1, pp.187–195,2005.
    [29] K. Park and W. Willinger,“Self-similar network traffic: an overview,” Self-Similar NetworkTraffic and Performance Evaluation, K. Park and W. Willinger, eds.(Wiley Interscience,2000).
    [30] G. Talli and P. D. Townsend,“Hybrid DWDM-TDM long-reach PON for next-generation opticalaccess,” IEEE J. Lightwave Technol., vol.24, no.7, pp.2827–2834,2006.
    [31] G. Kramer, B. Mukherjee, and G. Pesavento,“Interleaved polling with adaptive cycle time(IPACT): a dynamic bandwidth distribution scheme in an optical access network,” PhotonicNetw. Commun., vol.4, no.1, pp.89–107,2002.
    [32] European Organization for Nuclear Research (CERN): www.cern.ch/,2009; LHC ComputingProject: http://lcg.web.cern.ch/lcg/,2009.
    [33] B. Wang, T. Li, X. Luo, Y. Fan, and C. Xin,“On Service Provisioning under a Scheduled TrafficModel in Reconfigurable WDM Optical Networks,” Proc., IEEE Broadnets2005, vol.1, pp.13-22, Oct.2005.
    [34] B. Wang and A. Deshmukh,“An All Hops Optimal Algorithm for Dynamic Routing of SlidingScheduled Traffic Demands,” IEEE Comm. Lett., vol.9, no.10, pp.936-938, Oct.2005.
    [35] H. Miyagi, M. Hayashitani, D. Ishii, Y. Arakawa, and N. Yamanaka,“Advanced WavelengthReservation Method Based on Deadline-Aware Scheduling for Lambda Grid Networks,”IEEE/OSA Journal of Lightwave Technology, vol.25, no.10, pp.2904-2910, Oct.2007.
    [36] N. S. V. Rao, Q. Wu, S. Ding, S. Carter, W. Wing, A. Banerjee, D. Ghosal, and B. Mukherjee,“Control Plane for Advance Bandwidth Scheduling in Ultra High-Speed Networks,” Proc. IEEEINFOCOM High-Speed Networking Workshop: The Terabits Challenge, Barcelona, Apr.2006.
    [37] J. Kuri, N. Puech, M. Gagnaire, E. Dotaro, and R. Douville,“Routing andWavelengthAssignment of Scheduled Lightpath Demands,” IEEE Journal on Selected Areas inCommunications, vol.21, no.8, pp.1231-1240, Oct.2003.
    [38] A. Banerjee, W. Feng, D. Ghosal, and B. Mukherjee,“Algorithms for Integrated Routing andScheduling for Aggregating Data from Distributed Resources on a Lambda Grid,” IEEETransactions on Parallel and Distributed Systems, vol.19, no.1, pp.24-34, Jan.2008.
    [39] P. Kokkinos, K. Christodoulopoulos, A. Kretsis, and E. Varvarigos,“Data Consolidation: A TaskScheduling and Data Migration Technique for Grid Networks,” Proc. IEEE International Symp.on Cluster Comp. and the Grid, pp.722-727, May2008.
    [40] M. Garey and D. Johnson,“Computers and Intractability: A guide to the theory ofNP-Completeness,” W. H. Freeman,(San Francisco,1979).
    [1] Y. Wang, Y. H. Jin, W. Guo, W. Q. Sun, W. S. Hu, and M. Y. Wu,“Joint scheduling for opticalgrid applications,” OSA J. Opt. Netw., vol.6, no.3, pp.304–318,2007.
    [2] N.K. Roy,“Real time resource management and adaptive parallel programming for a cluster ofcomputers: a comparison of different approaches in a computationally intensive environment,”Proc. IEEE International Symposium on Network Computing and Applications (NCA), pp.216-226, Cambridge, MA,2001.
    [3] Y. Wang, L. Wang, G. Dai,“QGWEngine: A QoS-Aware Grid Workflow Engine,” Proc. IEEECongress on Services2008, pp.561-566,2008.
    [4] V. Di Martino and M. Mililotti,“Scheduling in a grid computing environment using geneticalgorithms,” in International Parallel and Distributed Processing Symposium (IPDPS), pp.235-239, Aug.2002.
    [5] K.-M. Yu and C.-K. Chen,“An Adaptive Scheduling Algorithm for Scheduling Tasks inComputational Grid,” in Proc. of IEEE Grid and Cooperative Computing (GCC), pp.185-189,Shenzhen, China, Oct.2008.
    [6] W. Guo, W. Sun, W. Hu, and Y. Jin,“Resource Allocation Strategies for Data-IntensiveWorkflow-Based Applications in Optical Grids,” IEEE Singapore International Conference onCommunication systems, pp.1-5, Singapore, Oct.2006.
    [7] V. Lakshmiraman and B. Ramamurthy,“Joint Computing and Network Resource Scheduling ina Lambda Grid Network,” IEEE International Conference on Communications (ICC), pp.1-5,Dresden, June2009.
    [8] Y. Jin, Y. Wang, W. Guo, W. Sun, and W. Hu,“Joint Scheduling of Computation and NetworkResource in Optical Grid,” Proc. International Conference on Information, Communications&Signal Processing (ICICS), pp.1-5, Singapore, Dec.2007.
    [9] X. Liang, X. Lin, and M. Li,“Adaptive Task Scheduling on Optical Grid,” Proc. IEEEAsia-Pacific Conference on Services Computing (APSCC), pp.486-491, Guangzhou, China, Dec.2006.
    [10] F. Dong and S. G. Akl,“Scheduling Algorithms for Grid Computing: State of the Art and OpenProblems,” School of Computing, Queen’s University, Kingston, Ontario, Technical Report2006-504,2006.
    [11] Q. Tao, H. Chang, Y. Yi, C. Gu, and Y. Yu,“QoS Constrained Grid Workflow SchedulingOptimization Based on a Novel PSO Algorithm,” Proc. Grid and Cooperative Computing (GCC),pp.153-159, Lanzhou, China, Aug.2009.
    [12] Z. Sun, W. Guo, Z. Wang, Y. Jin, W. Sun, W. Hu, and C. M. Qiao,“Scheduling Algorithm forWorkflow-Based Applications in Optical Grid,” IEEE Journal of Lightwave Technology, vol.26,no.17, pp.3011-3020,2008.
    [13] X. Liu, C. Qiao, W. Wei, X. Yu, T. Wang, W. Hu, W. Guo, and M.-Y. Wu,“Task Scheduling andLightpath Establishment in Optical Grids,” IEEE Journal of Lightwave Technology, vol.27, no.12, pp.1796-1805,2009.
    [14] H. Nguyen, M. Gurusamy, and L. Zhou,“Provisioning lightpaths and computing resources forlocation-transparent scheduled grid demands,” Proc. of International Conference on OpticalNetwork Design and Modeling (ONDM), pp.1-6, Mar.2008.
    [15] N. Jue, J.P. Kannasoot,“Resource-efficient task assignment and scheduling in optical grids,”IEEE/OSA Optical Fiber Communication Conference/National Fiber Optic EngineersConference (OFC/NFOEC), Paper OWR7, San Diego, CA,2010.
    [16] R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauvé,“Faults in grids: why are they so bad andwhat can be done about it?,” Proc.4th Int. Workshop on Grid Computing, pp.18–24, Tokyo,Japan,2003.
    [17] X. Liu, W. Wei, X. Yu, C. Qiao, and T. Wang,“Distributed computing task assignment andlightpath establishment (TALE),” IEEE High Speed Networks Workshop, Anchorage, AK, May11,2007.
    [18] L. Song and B. Mukherjee,“Impacts of multiple backups and multi-link sharing among primaryand backups for dynamic service provisioning in survivable mesh networks,” IEEE/OSA OpticalFiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC),Paper OThJ3, Anaheim, CA,2007.
    [19] J. Zhang and B. Mukherjee,“A review of fault management in WDM mesh networks: basicconcepts and research challenges,” IEEE Networking, vol.18, no.2, pp.41–48,2004.
    [20] O. Sinnen and L. Sousa,“Communication contention in task scheduling,” IEEE Trans. ParallelDistrib. Syst., vol.16, no.6, pp.503–515,2005.
    [21] S. Hwang, C. Kesselman,“A Flexible Framework for Fault Tolerance in the Grid,” Journal ofGrid Computing, vol.1, no.3, pp.251-272,2003.
    [22] A. Iosup, M. Jan, O. Sonmez, D. H. J. Epema,“On the Dynamic Resource Availability in Grids,”IEEE/ACM Grid Computing Conference, pp.26-33, Austin, Texas,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700