氧化锌纳米材料的制备、掺杂及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌纳米材料由于其本身材料特性和形状特性,在光电子器件及自旋存储器件方面有着广泛的应用前景,对其材料本身的研究以及对其掺入其他离子以达到优化或赋予新的光学、磁学性能的研究对这种材料的发展和应用具有极其重大的理论研究价值和实际应用价值。本论文旨在采用传统的气相传输法和化学方法成功制备出垂直衬底生长的纳米线及其他纳米结构的未掺杂/掺杂的氧化锌,并利用X射线衍射仪、透射电镜、X射线光电子能谱、X射线精细结构分析技术、原子力显微镜、超导量子干涉仪、光致发光谱、拉曼光谱仪、荧光光谱仪等测试手段对样品的可控生长、结构、光学及磁学性能进行了详细的研究。
     首先,我们采用传统的气相传输法,优化实验条件成功制备出垂直衬底生长的氧化锌纳米线,并对纳米线的生长机制、催化剂对纳米线的影响进行了研究,研究结果表明催化剂的厚度对纳米线的尺寸有很大的影响,尺寸越大,纳米线的直径越大。同时,我们对纳米线的光学性能也进行了研究。发光中心位于520 nm的发光峰来源于氧空位,对于紫外发光,当激发功率增加时,紫外发光峰出现了蓝移,这主要是由于纳米线表面在氧空穴的作用下产生表面自建电场,激发功率增加越来越多的电子和空穴分离,在表面自建电场的作用下,电子和空穴会向相反的方向运动,更多的空穴集中在表面,与表面氧空位所捕获的电子中和,使得表面内建电场减小,从而导致向上的能带弯曲程度变小,增加了激子的跃迁能量产生的。
     其次,我们选择稀土元素对氧化锌进行掺杂,对其性能进行研究。主要集中在两种稀土元素的掺杂研究:
     1. Eu离子掺杂氧化锌纳米材料。我们采用两步法,即溶胶-凝胶法制备反应源,气相传输法制备纳米线,采用水热法制备了由纳米片组成的微米花,并对纳米线和微米花的结构、成份和光学性能进行了研究。结果表明,Eu离子已经成功掺杂进入氧化锌晶格,并且采用紫外激发,在光致发光谱图中我们也观察到了Eu离子细锐的发光峰,并证明了这个发射峰是ZnO到Eu离子的能量传递产生的。通过对后处理样品的光致发光谱图和时间分辨光谱的研究表明,这种能量传递与材料中的氧空穴有很大的关系,氧空穴越多能量传递越强,表明这种缺陷可以作为能量传递的能量陷阱,有利于能量传递。在微米花中同时存在氧空穴及氧间隙两种缺陷,我们观察到二者的发光峰。
     2. Nd离子掺杂氧化锌纳米线。同样采用两步法,与制备Eu掺杂氧化锌不同,我们采用简单的固相反应法制备了反应源,然后采用气相传输法制备纳米线。经结构、成分分析表明Nd离子已经掺入纳米线中,磁性测试表明掺入Nd离子后,样品表现出室温铁磁性。并且有较大的矫顽力和形状各向异性,磁化强度也有明显的各向异性。磁性的来源主要是氧空穴诱导的Nd离子长程相互作用。较大的矫顽力主要是由Nd本身相对于过渡族元素较大的磁各向异性,和缺陷的钉扎作用产生的。而磁化强度的各向异性是由Nd的轨道磁矩产生的。
     本文的研究结果不但为制备未掺杂/掺杂的氧化锌纳米材料提供了可参考的制备条件。对于其光学和磁学性能研究也得到了一些有益的结果,为未掺杂/掺杂的氧化锌纳米材料更好和更广泛的应用提供了理论依据并奠定了实验基础。
ZnO nanomaterials have great potential applications in the photoelectronic devices and spintronic device owing to the native properties and shape characters. Therefore, it is very important to do the research on the fabrication and properties of undoped and doped ZnO nanomaterials. The main points for this thesis are not only successfully realize the synthesis of undoped/doped ZnO nanomaterials, and also investigate the structure and optical properties in detail by the methods of field emission scan electron microscope (SEM), transmission electron microscope (TEM), resonant Raman, photoluminescence (PL), time resolved PL spectrum, spectrofluorimeter and superconducting quantum interference device (SQUID).
     In the thesis, firstly, vertical aligned ZnO nanowires were successfully prepared on the substrate with Au layer by the classical vapor transport method. Results show that the thickness of the catalyst has big effect on the size of the nanowires, the thicker catalyst, and the bigger diameter of the nanowires. At the same time, we investigate the optical properties of vertical undoped ZnO nanowires. UV emission displayed an evident blueshift with increasing excitation power and the corresponding energy shift might be as large as 10 meV. This anomalous phenomenon correlates to the band bending level caused by the surface built-in electric field due to the existence of substantial oxygen vacancies. By increasing the excitation power, the enhanced neutralization effect near the surface will reduce the built-in electric field and lead to a reduction of band bending which triggers the blueshift of the UV emission. Secondly, we choose the rare earth element as the dopant, and investigate the structure and properties of rare earth doped ZnO. We mainly focus on two rare earth elements doping as follow:
     1. Eu doped ZnO. We synthesize the Eu doped ZnO by two methods; one includes the synthesis of the source powders by a sol-gel method and the growth of nanowires by vapor transport method; another one is the growth of nanosheets based microflower. Then we investigate the properties of Eu doped ZnO. Results show that the Eu ion has doped into the matrix of ZnO. Under the UV excitated, there is a sharp red emission related to the intra-4f transitions of Eu3+ ions. Our systematic studies on photoluminescence (PL) excitation, temperature-dependent photoluminescence and time-resolved photoluminescence suggest that intrinsic defects, in particular singly ionized oxygen vacancies, can serve as the media for the energy transfer from the ZnO host to the Eu3+ ions. For the nanosheets based microflower, there are both the oxygen vacancy and oxygen interstice defects, and we also observe the red peak due to energy transfer from the ZnO host to the Eu3+ ions.
     2. Nd doped ZnO. We synthesize the Nd doped ZnO nanowires by two steps method including synthesis of source powders the solid state reaction method and the growth of nanowires by vapor transport method. XRD, TEM, XPS and EDS results confirm that the Nd has doped into the matrix of ZnO. The Nd doped ZnO nanowires show room temperature ferromagnetic properties. They have large coercivity and shape anisotropy. The magnetic moment also show anisotropic properties. The ferromagnetic properties are due to the bound magnetic polaron mechanism. The oxygen vacancies polarize the magnetic dopants and form the polarons, and the interaction of the adjacent polarons made the Nd doped ZnO nanowires give the ferromagnetic properties. The higher coercivity is due to the magnetic anisotropy and the pining effect of the defect in Nd doped ZnO nanowires. The anisotropic property of magnetization is due to the orbital contribution of the Nd magnetic moment.
     This thesis not only provides the optimized growth conditions for undoped/doped ZnO nanomaterials, but also obtains some beneficial results in aspects of their optical and magnetic properties, which builds theoretical and experimental foundation for much better and broader applications of undoped/doped ZnO nanostructures.
引文
[1] Jafe J E, Hess A C, Hartree-Fock study of phase changes in ZnO at high pressure [J]. Phys. Rev. B, 1993, 48: 7903-7909.
    [2]许煜寰,铁电与压电材料(第一版),科学出版社,北京, 1978, pp.5-14.
    [3]陈运详, ZnO薄膜的性能和应用[J].压电与声光, 1991, 13(6): 63-66.
    [4] Bragg W L and Darbyshire J A, The structure of thin films of certain metallic oxides [J]. Trans. Faraday Soc. 1932, 28:522-529.
    [5]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001.
    [6] Hoyer P., H.Weller. Size-dependent redox potentials of quan-.tized zinc-oxide measured with an optically transparent thin-layer electrode [J]. Chem. Phys. Lett., 1994, 221:379-384.
    [7] Cao H, Zhao Y G, Ho S T, et al. Random laser action in semiconductor powder [J]. Phys.Rev.Lett., 1999, 82:2278-2281.
    [8] Mahamuni S, Borgohain K, Bendre B S, et al. Spectroscopic Characterization of Electrochemically Grown ZnO Quantum Dots [J]. J. Appl. Phys., 1999, 85(5): 2861-2861.
    [9]李群,李艳春,陈水林.纳米氧化锌织物整理剂的制备与整理效应的研究[J].印染助剂,2004 21(1):23-25.
    [10]祖庸,雷闫盈,王训等,纳米ZnO的奇妙用途[J].化工新型材料, 2000, 27(3): 14-16.
    [11] Kuyama J, Inui H, Imaoka S Nanometer-sized crystals formed by ther mechanical alloying in the Ag-Fe system. [J]. J. Jpn. Appl.Phy.1991, 30, L854-L856.
    [12] K.N.Clson, R. L. Cook, Constitution of Copper-Red Glazes [J].J Am. Ceram. Soc. 1959, 38(11):, 499-503.
    [13] Guire M R De, Coprecipitation synthesis of doped lanthanum chromite.[J]. J. Mater. Res. 1993, 8(9): 2327-2335.
    [14] Shi J L, Sintering, hardness and indentation fracture toughness (KIC) of mullite and its composite with 15 wt% X-phase sialon [J].J.Eur.Ceram.Soc.1993, 13:265-269.
    [15] Lu C, Shi J L, TG-DTA-MS studies on the thermal decomposition behaviour of homogeneously precipitated Zr2(SO4)(OH)6·6H2O [J]. Thermochimica Acta, 1994, 232(1):77-84.
    [16] Smith E, Modelling the fissuring flat-fracture mode of crack growth in Zr-2.5Nb Candu pressure-tube material [J]. J. Mater. Sc. 1995, 30: 561-576.
    [17] Possin G E, A Method for Forming Very Small Diameter Wires [J] Rev. Sci. Instrum., 1970, 41, 772-774.
    [18] Williams W D, Giordano N, Fabrication of 80 ? metal wires [J] Rev. Sci.Instrum., 1984, 55, 410-412.
    [19] Li Y, Meng G W, Zhang L D, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties [J]. Appl Phys Lett, 2000, 76: 2011-2013.
    [20] Shaw T W, Solid Solutions in the System LaMgAl11O19- LaMgGa11O19-LaMgFe11O19 [J]. J Am Ceram Soc, 1986, 69(1):7-9.
    [21] Gleiter H, The deformation behaviour of intermetallic superlattice compounds [J]. Prog. Mate Sci.1990, 33: 22.
    [22] G. Pacheco-Malagon, TIO2-AL2O3 NANOCOMPOSITES J. Mater. Res. 1995:10(5), 1264-1269.
    [23] Ding X Z, et al., Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol-gel process [J] J Mater Sci Lett, 1995,14(1):21-22.
    [24] Dong X T, Hong G Y, Synthesis and Properties of Cerium Oxide Nanometer Powders by Pyrolysis of Amorphous Citrate [J] J. Mater. Sci. Technot, 1997,13(2):113-116.
    [25] K. R. Venkatachari, A Combustion Synthesis Process for Synthesizing Nanocrystalline Zirconic Powders [J]. J. Mater. Res.1995, 10: 248-251.
    [26] H.Gleiter, Demonstration of quantum conductance switching between a non-conducting "off-state" and a preselected quantized "on- state" at 4 G0. Euro. Physics News, 1989, 20: 130-133.
    [27] Cui Z L, Dong L F, Zhang Z K, et al., Oxidation behavior of nano-Fe prepared by hydrogen ARC plasma method [J]. Nanostructured Mater.1995,5: 829-833.
    [28] Brringer R, Glblter H, Klein H P, et al. Nanocrystalline Materials an Approach to a Novel Solid Structure with Gas-like Disorder [J]. Phys Lett 1984, 102A, 365.
    [29]高晓云,陈进,王冕云,材料学报, 1992, 7, 429.
    [30] Puchert M K et al. Highly resistive sputtered ZnO films implanted with copper [J]. J. Mater. Res., 1996, 11(10): 2463-2469.
    [31] Q. Chen, J. W. Yang et al. Schottky barrier detectors on GaN for visible–blind ultraviolet detection [J]. J Appl Phys, 1997, 70(17) :2277-2279.
    [32] Tan G. Wu J, Sensitivity to Combustible Gas for ZnO Thin Films [J]. J Mater Sci Technol, 1997, 13(2): 302-305.
    [33] Kamata A, Mitsuhashi H, Fujita H. Origin of the low doping efficiency of nitrogen acceptors in ZnSe grown by metalorganic chemical vapor deposition [J]. Appl Phys Lett, 1993, 63(24): 3353-3354.
    [34] Guo X L, Tabata H, Kawai T. Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source [J]. J Cryst Growth, 2001, 223(1-2): 135-139.
    [35] Guo X L, Tabata H, Kawai T, p-Type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N2O plasma [J]. Opt Mater, 2002, 19(1): 229-233.
    [36] Ryu Y R, Zhu S, Look D C, et al. Synthesis of p-type ZnO films [J]. J. Cryst. Growth, 2000, 216 (1-4): 330-334.
    [37] Ryu Y R, Kim W J, White H W, et al. Fabrication of homostructural ZnO p–n junctions [J]. J Cryst Growth, 2000, 219(4):419-422.
    [38] A. G.米尔恩斯CMi1ns.张月清等译[M].半导体中的深能级杂质,科学出版社,1982。
    [39] Ohtomo A, Kawasaki M, Koida T, et al. MgxZn1– xO as a II–VI wide gap semiconductor alloy, [J]. Appl Phys Lett, 1998,72:2466-2469..
    [40] Ohtomo A, Shiroki R, Ohkubo L, et al. Thermal stability of supersaturated MgxZn1–xO alloy films and MgxZn1–xO/ZnO heterointerfaces, [J]. Appl Phys Lett, 1999, 75:4088-4091.
    [41] ChooPun S, VisPute R D, Yang W, et al. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1–xO alloy films [J]. Appl Phys Lett, 2002, 80:1529-1531.
    [42] Gruber T, Kirehner C, Kling R, et al. ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region [J]. Appl Phys Lett2004, 84: 5359-5361.
    [43] Ogata K, Koike K, Tanite T, et al. ZnO and ZnMgO growth on a-plane sapphire by molecular beam [J]. J Cryst Growth, 2003, 251(1-4):623-627.
    [44] Makino T, Chia C H, Tuan N T, et al. Radiative and nonradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells [J]. Appl Phys Lett 2000, 77: 1632-1635.
    [45] Ma D W, Ye Z Z, Chen L L, Dependence of structural and optical properties of Zn1-xCdxO films on the Cd composition [J]. Phys. Status Solidi A, 2004, 201: 2929-2933.
    [46] Sakurai K, Takagi T, Kubo T, et al. Spatial composition fluctuations in blue-luminescent ZnCdO semiconductor films grown by molecular beam epitaxy [J]. J Cryst Growth, 2002,237:514-517.
    [47] Makino T, Segawa Y, Kawasaki M, et al. Band gap engineering based on MgxZn1–xO and CdyZn1–yO ternary alloy films [J]. Appl Phys Lett 2001, 78: 1237-1230.
    [48] Takahei K, Taguchi A, Selective formation of an efficient Er‐O luminescence center in GaAs by metalorganic chemical vapor deposition under an atmosphere containing oxygen [J]. J Appl Phys, 1993, 74: 1979-1983.
    [49] Favennec P N, Haridon H L, Salvi M, et al., Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials [J]. Electron.Lett. 1989, 25(11): 718-719.
    [50] Oestereich T, Swiatkowski C, Broser I, et al. A simple method for elimination of gallium-source related oval defects in molecular beam epitaxy of GaAs [J]. Appl Phys Lett 1990, 56:446-449.
    [51] Bresler M S, Gusev O B, Kudoyarova V Kh, et al. Room-temperature photoluminescence of erbium-doped hydrogenated amorphous silicon [J]. Appl Phys Lett, 1995, 67:3599-3602.
    [52] Shin J H, Serna R, et al. Luminescence quenching in erbium-doped hydrogenated amorphous silicon [J]. Appl Phys Lett, 1996, 68: 46-49.
    [53] Lombardo S, Campisano S U, et al. Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon [J]. Appl Phys Lett, 1993, 63:1942-1945.
    [54] Kimura T, Yokoi A, et al. Electrochemical Er doping of porous silicon and its room-temperature luminescence at ~1.54μm [J]. Appl Phys Lett, 1994, 65:983-986.
    [55] Zhao X, Isshiki H, et al., Photoluminescence and Optical Transition Dynamics of Er3+ Ions in Porous Si [J]. J Mater Sci Technol, 1999, 15(4):357-362.
    [56] Komuro S, Katsumata T, et al. Time response of 1.54μm emission from highly Er-doped nanocrystalline Si thin films prepared by laser ablation [J]. Appl Phys Lett, 1999, 74:377-380.
    [57] Fujii M, Yoshida M, Hayashi S, et al. Photoluminescence from SiO2 films containing Si nanocrystals and Er: Effects of nanocrystalline size on the photoluminescence efficiency of Er3+[J]. J Appl Phys, 1998, 84:4525-4532.
    [58] Mais N, Reithmaier J P, et al. Er doped nanocrystalline ZnO planar waveguide structures for 1.55μm amplifier applications [J]. Appl Phys Lett, 1999, 75:2005-2007.
    [59] Shuji Komuro,T.Katsumata,et al.,Appl.Phys.Lett.88(2000)7129-7136
    [60] Liu S M, Liu F Q, Wang Z G, et al. Relaxation of carriers in terbium-doped ZnO nanoparticles [J] Chem. Phys. Lett. 2001, 343:489-492.
    [61] Cheng B C, Xiao Y H, Wu G S, et al. Controlled Growth and Properties of One-Dimensional ZnO Nanostructures with Ce as Activator/Dopant [J]. Adv. Funct. Mater. 2004, 14(9): 913-919.
    [62] Wu G S, Zhuang Y L, Lin Z Q, et al. Synthesis and photoluminescence of Dy-doped ZnO nanowires [J]. Physica E 2006, 31(1): 5-8
    [63] Zhang X T, Liu Y C, Zhang J Y, et al. Structure and photoluminescence of Mn-passivated nanocrystalline ZnO thin films [J]. J. Cryst. Growth 2003, 254: 80-85.
    [64] Xu C X, Sun X W, Dong Z L, et al. Manganese-doped zinc oxide tetratubes and their photoluminescent properties [J]. J. Appl. Phys. 2005, 98, 113513.
    [65] Baik J M, Lee J L, Fabrication of Vertically Well-Aligned (Zn,Mn)O Nanorods with Room Temperature Ferromagnetism [J]. Adv. Mater. 2005, 17(22): 2745-2748.
    [66] Yang L W, Wu X L, Huang G S, et al. In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibration[J] J. Appl. Phys. 2005, 97(1): 014308-014312.
    [67] Ronning C, Gao P. X, Ding Y, et al. Manganese-doped ZnO nanobelts for spintronics [J]. Appl Phys Lett 2004, 84: 783-787.
    [68] He H, Lao C. S, Chen L. J, et al. Large-Scale Ni-Doped ZnO Nanowire Arrays and Electrical and Optical Properties [J]. J. Am. Chem. Soc. 2005, 127, 16376-16377
    [69] Antony J, Pendyala S, Sharma A, et al. Room temperature ferromagnetic and ultraviolet optical properties of Co-doped ZnO nanocluster films [J].J. Appl. Phys. 2005, 97, 10D307-10D310.
    [70] Xu C X, Sun X W, Zhang X H, et al. Photoluminescent properties of copper-doped zinc oxide nanowires [J]. Nanotechnology 2004, 15: 856-861
    [71] Zhou S M, Zhang X H, Meng X M, et al. The fabrication and optical properties of highly crystalline ultra-long Cu-doped ZnO nanowires [J]. Nanotechnology 2004, 15: 1152-1155.
    [72] Dietl T, Ohno H, Matsuhura F, et al. Zener Model Description of Ferromagnetism in Zinc-blend Magnetic Semiconductor [J]. Science, 2000, 287: 1019-1022.
    [73] Ueda K, Tabata H, Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films[J].App.l Phys. Lett.,2001, 79(7): 988-990.
    [74] Lee H J, Jeong S Y Cho C R, Study of diluted magnetic semiconductor: Co-doped ZnO [J]. Appl Phys. Lett., 2002, 81(21): 4020-4022.
    [75] Kim J H, Kim H, et al., Magnetic properties of epitaxially grown semiconducting Zn1?xCoxO thin films by pulsed laser deposition [J]. J. Appl. Phys. 2002, 92: 6066-6071.
    [76] Prellier W, Fouehet A, Mercey B, Laser ablation of Co:ZnO films deposited from Zn and Co metal targets on (0001) Al2O3 substrates, [J]. Appl Phys Lett, 2003, 82(20):3490-3492.
    [77] Rode K, Anane A, Mattana R, et a.lMagnetic semiconductors based on cobalt substituted ZnO[J]. J. Appl Phys, 2003, 93: 7676-7678.
    [78] Park J H, Kim M G, Jang H M, et a.l Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films [J]. Appl Phys. Lett., 2004, 84(8): 1338-1340.
    [79] Venkatesan M, Fitzgerald C B, Lunney JG, et a.l, Magnetoresistance in Fe and Cu co-doped ZnO thin films[J]. Phys. Rev. Lett. , 2004, 93: 177206-177209.
    [80] Ramachandran S, Tiwari A, Narayan J, et al. Zn0.9Co0.1O-based diluted magnetic semiconducting thin films [J]. Appl. Phys. Lett., 84 (2004), p. 5255.
    [81] Bouloudenine M, ViartN, Colis S, et a.l ntiferromagnetism in bulk Zn1-xCoxO magnetic semiconductors preparad by the copreci pitation technique [J].Appl phys Lett. 2005, 87: 052501-052504.
    [82] Fukumura T, Jin Zh W, Kawasaki M, et a1.Magnetic properties of Mn·doped ZnO[J]. Appl Phys Lett, 2001, 78: 958-960.
    [83] Rebecca J, Rriya G, Nicola A P, Impurity magnetopolaron in a parabolic quantum dot: the squeezed-state variational approach [J]. J. Phys: Condens Matter, 2005, 17: 667-677.
    [84] Lim S W, Jeong M C, Ham M H, et al. Hole-Mediated Ferromagnetic Properties inZn1-xMnxO Thin Films [J]. Jpn. J. Appl. Phys, 2004, 43: L280-L283.
    [85] Jung S W, An S J, Yi G C, et a1. Ferromagnetic properties of Znl-xMnxO epitaxial thin films [J]. Appl Phys Lett, 2002, 80:4561-4563.
    [86] Kim Y M, Yoon M, Park I W, et al. [J]. Synthesis and magnetic properties of Zn1?xMnxO films prepared by the sol–gel method Solid State Commun., 2004, 129(3): 175-178.
    [87] Sharma P, Gupta A, Rao KV, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO [J]. Nature Mater., 2003, 2:673-677.
    [88] Blythe H. J.,Ibrahim R. M.,Gehring G. A.,et al. Mechanical alloying: a route to room-temperature Ferromagnetism in bulk Zn1-xMnxO [J]. J. Magn. Magn. Mater., 2004, 283:117-127.
    [89] Sato K and Katayama-Yoshida H, Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors [J]. Jpn. J. Appl. Phys., 2000, 39: L555-L558.
    [90] Park M S and Min B I, Ferromagnetism in ZnO codoped with transition metals: Zn1-x(FeCo)xO and Zn1-x(FeCu)xO [J]. Phys. Rev. B, 2003, 68: 224436-224441.
    [91] Chien C.-H, Chiou S H, Guo G Y, et al., Electronic structure and magnetic moments of 3d transition metal-doped ZnO [J]. J. Magn. Magn. Mater., 2004, 282: 275-278.
    [92] D.B. Buchholz et al., Room-temperature ferromagnetism in Cu-doped ZnO thin films [J]. Appl. Phys. Lett., 2005, 87: 082504-082506.
    [93] Chakraborti D, Trichy G, Prater J T, et al., Effect of Al doping on the magnetic and electrical properties of Zn(Cu)O based diluted magnetic semiconductors[J]. J. Appl. Phys., 2007, 102: 113908-1139114.
    [94] Sato K and Katayama-Yoshida H, Electronic structure and ferromagnetism of transition-metal-impurity-doped zinc oxide [J]. Physica B, 2001, 308–310: 904–907.
    [95] Tiwari A, Snure M, Kumar D, et al., Ferromagnetism in Cu-doped ZnO films: Role of charge carriers [J]. Appl. Phys. Lett., 2008, 92: 062509-062511.
    [96] Yu W, Yang L H, Teng X Y, et al., Influence of structure characteristics on room temperature ferromagnetism of Ni-doped ZnO thin films [J]. J. Appl. Phys., 2008, 103: 093901-093904.
    [97] Jayaram V and Rani B S, Soft chemical routes to the synthesis of extended solid solutions of wurtzite ZnO–MO (M=Mg, Co, Ni) [J]. Mater. Sci. Eng. A, 2001: 304: 800-804.
    [98] Cong C J, Hong JH, LiuQ Y, eta.l Synthesis, syructure and ferromagnetic properties ofNi-doped ZnO nanoparticles[J]. Solid State Commun, 2006, 138: 511-515.
    [99] Schwartz D A, Kittilstved K R, Gamelin D R, Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared from colloidal dilutedmagnetic semiconductor quantum dots [J].Appl. Phys. Letts., 2004, 85(8): 1395-1398.
    [100] Behana A J, Neala J R, Ibrahim R M, et al., Synthesis ofZn1-xCrxO DMS by co-precipitation and ceramic methods: Structural and magnetization studies [J]. J. Magn. Magn. Mater., 2006, (11): 225-228.
    [101] Wang X S, Wu Z C, Webb J F, et al., Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared by pulsed laser deposition [J].Appl. Phys A. 2003, 77, 561-565.
    [102] Lee H J, Jeong S.Y, Hwany J Y, et al., Study of diluted magnetic semiconductor: Co-doped ZnO [J]. Earophys. Lett. 2003, 64: 797.
    [103] Han J W, Song C H, Yang S H, et al., A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu [J]. Appl. Phys Lett, 2002, 81: 4212-4215.
    [104] Cho Y M, Choo W K, Kim H, et al., Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1-x(Co0. 5 Fe0. 5) xO thin films [J].Appl. Phys. Lett. 2002, 80: 3358-3360.
    [105] Pan H, Yi J B, Lin J Y, et al., Carbon-doped ZnO:A New Class of Room Temperature Dilute Magnetic Semiconductor [J]. Cond-Mat/0610870 v.l, 2006, 10.
    [106] Vanheusden K, Seager C H, Warren W L, et al., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Appl. Phys. Lett.1996,68(3):403-405
    [107] Bixia Lin,Zhuxi Fu,Ynbo Jia,Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J].Appl.Phys.Lett.2001,79(7): 943-945.
    [108] Dijken A V, Meulenkamp E A, Vanmaekelbergh D, et al., The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation [J]. J. Phys. Chem.B., 2000, 104:1715-1719.
    [109]居键,吴雷梅,诸葛兰剑,ZnO基稀磁半导体磁性起源的探索[J].材料导报,2007,21(12):110-114。
    [110] Klingshirn C, ZnO: Material, Physics and Applications [J] ChemPhysChem 2007, 8(6): 782-803.
    [111] Li, J.H., Shen, D. Z.; Zhang, J. Y.,et a1.Magnetism origin of Mn-doped Nzo nanoclusters. [J] J. Mag. and Mag. Mater., 2006, 302(1): 118-121.
    [112] Radovanovic P. V., Gamelin, D. R. High temperature ferromagnetism in Ni2+-doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots. [J] Phys Rev Lett, 2003,91(15):200-202.
    [113] Chang, Y. Q.; Luo, X. H.; Xu, X.Y.,etal. Synthesis, optical and magnetic properties of diluted magnetic semiconductor Zn1-xMnxO nanowires via vapor phase growth [J]. Appl. Phys. Lett., 2003,83 (65):4020-4022.
    [114] Royv, A. L.; Djuri,A. B.; Liu H.; eta1.Magnetic properties of Mn doped ZnO tetrapod structures. [J] Appl. Phys. Lett., 2004, 84(21): 756—758.
    [115]赵建华,邓加军,郑厚植。稀磁半导体的研究进展[J].物理学进展,2007, 27(2): 109-150.
    [116]常觊,夏建自。稀磁半导体一自旋和电荷的桥梁[J]。物理,2004,33(6):414-418。
    [117] Shuji Komuro, Tooru Katsumata,Takitaro Morikawa,1.54μm emission dynamics of erbium-doped zinc-oxide thin films [J]. Appl. Phys. Lett., 2000, 76(26): 3935.
    [118] Wan Q, Lin C L, Yu X B, et al., Room-temperature hydrogen storage characteristics of ZnO nanowires [J].Appl Phys Lett,2004, 84:124-126.
    [119] Wagner R S and Ellis W C, Vapor-liquid-solid mechanism of single crystal growth. [J]. Appl. Phys. Lett., 1964, 4, 89-90.
    [120]丛秋滋《多晶二维X射线衍射》科学出版社1997, p36
    [121]马金鑫朱国凯《扫描电子显微镜入门》科学出版社1985, p49
    [122] Lucovsky G, Yank J, Chao S S, et al., Nitrogen-bonding environments in flow-discharge-deposited a-Si:H films, Phys. Rev. B, 1983, 28, 3234-3240.
    [123]周玉《材料分析方法》机械工业出版社2000.
    [124] R. M. Wang, Y. J. Xing, J. Xu, D. P. Yu, Fabrication and microstructure analysis on zinc oxide nanotubes. [J] New J. Phys., 2003, 5,1151-1157.
    [125] J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee,et al, Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes. [J]. Chem. Mater., 2003. 15: 305-308.
    [126] Y.W. Wang, L.D. Zhang, G.Z. Wang, X.S. Peng, Z.Q. Chu,C.H. Liang, Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties [J].J. Crystal Growth, 2002, 234, 171-175.
    [127] J. Q. Hu, X. L. Ma, Z. Y. Xie.et al, Characterization of zine oxide crystal whiskers grown by thermal evaporation [J]. Chem. Phys. Lett., 2001, 344, 97-100.
    [128] B. D. Yao,Y. F. Chan, N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation [J]. Appl. Phys. Lett. 2002, 81, 757-759.
    [129] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, et al, Catalytic Growth of Zine Oxide Nanowires by Vapor Transport . [J]. Adv. Mater, 2001, 13, 113-116.
    [130] S. Y. Li, C. Y. Lee, T. Y. Tseng, Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. [J] J. Cryt. Growth, 2003, 247, 357-362.
    [131] Ye Zhang, Hongbo Jia, Rongming Wang, et al, Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate [J]. Appl Phys Lett., 2003, 83: 4631-4633.
    [132] Ding Y, Gao P X, Wang Z L, et al, Catalyst- Nanostructure Interfacial Lattice Mismatch in Determining the Shape of VLS Grown Nanowires and Nanotubes: A Case of Sn/ZnO. [J] J. Am. Chem. Soc., 2004, 126, 2066-2072.
    [133] P. X. Gao, Y. Ding, Z. L. Wang, Crystallographic Orientation-Aligend ZnO Nanorods Grown by a Tin Catalyst [J]. Nano. Lett., 2003, 3, 1315-1320.
    [134] J. G. Wen, J. Y. Lao, D. Z. Wang, et al, Self-assembly of semiconduction oxide nanowires, nanorods, and nanoribbons. [J].Chem. Phys. Lett., 2003, 372, 717-722.
    [135] J. Y. Lao, J. G. Wen, Z. F. Ren, Hierarchical ZnO Nanostructures. [J]. Nano. Lett., 2002, 2: 1287-1291.
    [136] J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, ZnO Nanobridges and Nanonails. [J]. Nano. Lett., 2003, 3: 235-238.
    [137] Lyu S C, Zhang Y, Lee C, Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method. [J]. Chem. Mater. 2003, 15: 3294-3299.
    [138] Roy V A L, Luminescent and structural properties of ZnO nanorods prepared under different conditions [J]. Appl. Phys. Lett., 2003, 83:141-143.
    [139] Yan H Q, He R R., Pham J, et al., Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals. [J]. Adv. Mater, 2002, 15: 402-405.
    [140] Mooradian A and Wright G B, First order raman effect in III-V compounds, [J]. Solid State Commun., 1966, 4 (9): 431-434.
    [141] Mooradian A and McWhorter A L, Polarization and intensity of Raman scattering from plasmons and phonons in gallium arsenide, [J]. Phys. Rev. Lett., 1967, 19: 849–852.
    [142]徐婉棠,喀兴林,群论及其在固体物理中的应用,高等教育出版社,1999,第一版,173。
    [143] Zeng J N, Low J K, Ren Z M, et al., Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition, [J].Appl. Surf. Sci., 2002, 197: 362-367.
    [144] Rajalakshmi M, Akhilesh K A, Bendre B S, et al., Optical phonon confinement in zinc oxide nanoparticles, [J].J. Appl. Phys., 2000, 87(5): 2445-2448
    [145] Futsuhara. M, Yoshioka. K, Takai. O, Optical properties of zinc oxynitride thin films [J].Thin Solid Films 1998, 317(1-2): 322-325.
    [146] Frank. L, Hereford Intensity of Heavily Ionizing Penetrating Particles at 4300-Meter Altitude, [J]. Phys. Rev. 1949, 75(6): 923-928.
    [147] Sears G W, Mercury whiskers [J]. Acta Metall., 1953, 1: 457-459.
    [148] Wagner R S, Ellis W C, Vapor-liquid-solid mechanism of single crystal growth, [J]. Appl. Phys. Lett., 1964, 4(5): 89-92.
    [149] Morales A M, Lieber C M, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires [J]. Science, 1998 279: 208-211
    [150] Huang M H, Wu Y, Yang P, et al, Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport, [J]. Adv. Mater, 2001,13(2): 113-116.
    [151] Gudiksen M S, Clieber C M, Diameter-Selective Synthesis of Semiconductor Nanowires,[J]. J. Am. Chem. Soc, 2000, 122(36): 8801-8802.
    [152] Wu Y, Yang P, Direct Observation of Vapor-Liquid-Solid Nanowire Growth, J. Am. Chem. Soc, 2001, 123(13): 3165-3166.
    [153] Dijken A V, Meulenkamp E A, Vanmaekelbergh D, The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation [J]. J. Phys. Chem.B, 2000, 104: 1715-1723.
    [154]林碧霞,傅竹西,贾云波等。非掺杂氧化锌薄膜中的紫外和绿色发光中心[J].物理学报, 2001, 50(11): 2208-2211.
    [155] Lin B, Fu Z, Jia Y. et al. Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J]. Appl Phys Lett, 2001, 79: 943-946.
    [156] Studenikin S A, Golego Nickolay, Cocivra Michael, Fabrication of green and orange photoluminescent undoped ZnO films using spray pyrolysis [J]. J Appl Phys, 1998, 84(4): 2287-2294.
    [157] Lyu S C, Zhang Y, Ruh H, et al. Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires [J]. Chem. Phys Lett, 2002, 363: 134-138.
    [158] Qian F, Li Y, Grade S, et al., Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers [J]. Nat. Mater. 2008, 7: 701-706.
    [159] Szarko J M, Song J K, Blackledge C W, et al. Optical injection probing of single ZnO tetrapod lasers [J]. Chem. Phys. Lett. 2005, 404: 171-177.
    [160] Song J K, Szarko J M, Leone S R, et al. Ultrafast Wavelength-Dependent Lasing-Time Dynamics in Single ZnO Nanotetrapod and Nanowire Lasers [J]. J. Phys. Chem. B 2005, 109: 15749-15753.
    [161] Song J K, Willer U, Szarko J M, et al. Ultrafast Upconversion Probing of Lasing Dynamics in Single ZnO Nanowire Lasers [J]. J. Phys. Chem. C 2008, 112: 1679-1684.
    [162] Gao T, Wang T H, Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications [J]. Appl. Phys. A 2005, 80 (7): 1451-1454.
    [163] Chunming J, Ashutosh T, Roger J N, Ultraviolet-illumination-enhanced photoluminescence effect in zinc oxide thin films [J]. J. Appl. Phys. 2005, 98: 083707-083714.
    [164] Wu X L, Siu G G, Fu C L, et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films [J]. Appl. Phys. Lett. 2001, 78: 2285-2288.
    [165] Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. J. Appl. Phys. 1996, 79: 7983-7989.
    [166] Soo Y L, Ming Z H, Huang S W, et al., Local structures around Mn luminescent centers in Mn-doped nanocrystals of ZnS [J]. Phys. Rev., B 1994, 50(11): 7602-7607.
    [167] Bol A A, Meijerink A, Long-lived Mn2+ emission in nanocrystalline ZnS: Mn2+ [J].Phys. Rev. B 1998, 58(24): R15997-R16000.
    [168] Murase N, Jagannathan R, Kanematsu Y, et al. Fluorescence and EPR Characteristics of Mn2+-Doped ZnS Nanocrystals Prepared by Aqueous Colloidal Method [J]. J. Phys. Chem. B 1999, 103: 754-760.
    [169] Chamarro M A , Voliotis V, Grousson R, et al. Optical properties of Mn-doped CdS nanocrystals [J].J. Cryst. Growth 1996, 159: 853-856.
    [170] Tan X L, Wang X K, Geckeis H, et al. Sorption of Eu(III) on Humic Acid or Fulvic Acid Bound to Hydrous Alumina Studied by SEM-EDS, XPS, TRLFS, and Batch Techniques [J]. Environ. Sci. Technol. 42 (2008) 6532-6537.
    [171] Meng L J, Moreira C P, Santos M P, et al. Study of the structural properties of ZnO thin films by x-ray photoelectron spectroscopy [J]. Appl. Surf. Sci. 1994, 78(1): 57-61.
    [172] B S U, Liu Y C, Zhi Z Z, et al. Effect of the growth temperature on Zn0 thin films grownby plasma enhanced chemical vapor deposition [J].Thin Solid Films, 2002, 414: 170-174.
    [173] Burstein E, Anomalous Optical Absorption Limit in InSb [J].Phys. Rev., 1954, 93: 632-633.
    [174] Hamberg I and Granqvist C Cz, Evaporated Sn-doped In203 films: Basic optical properties and applications to energy-efficient windows [J].J. Appl. Phys., 1986, 60: 8123-8160.
    [175] Kumar B, Gong H, Akkipeddi R, High mobility undoped amorphous indium zinc oxide transparent thin films [J].J. Appl. Phys., 2005, 98: 073703(1-5).
    [176] Wu J, Walukiewicz W, Shan W, et al. Schaff, Effects of the narrow band gap on the properties of InN [J].Phys. Rev. B, 2002, 66: 201403(1-4).
    [177] Kane E O, Band structure of indium antimonide [J].J. Phys. Chem. Solids, 1957, 1: 249-261.
    [178] Makinoa T, Segawa Y, Yoshida S, et al. Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO:Ga[J].Appl. Phys. Lett., 2004, 85: 759-761.
    [179] Sadhu S, Sen T, Patra A, et al. Shape controlled synthesis and luminescence properties of ZnO: Eu3+ nanostructures [J]. Chem. Phys. Lett. 2007, 440: 121-124.
    [180] Du Y P, Zhang Y W, Sun L D, et al. Efficient Energy Transfer in Monodisperse Eu-Doped ZnO Nanocrystals Synthesized from Metal Acetylacetonates in High-Boiling Solvents [J]. J. Phys. Chem. C 2008, 112: 12234-12241.
    [181] Bihari Bipin, Sharma K K, Erickson L E, et al. Spectroscopy of LiYF4:Eu3+ single crystals Spectroscopy of LiYF4:Eu3+ single crystals J. Phys: Condens Matter, 1990, 2(26): 5703-5713.
    [182] Liu Y S, Luo W Q, Li R F, et al. Spectroscopic evidence of the multiple-site structure of Eu3+ ions incorporated in ZnO nanocrystals [J]. Opt. Lett. 2007, 32(5): 566-568.
    [183] Al-Suleiman M, Mofor A C, El-Shaer A, et al. Photoluminescence properties: Catalyst-free ZnO nanorods and layers versus bulk ZnO [J]. Appl. Phys. Lett. 2006, 89: 231911-231913.
    [184] Bertram F, Christen J, Dadgar A, et al. Complex excitonic recombination kinetics in ZnO: Capture, relaxation, and recombination from steady state [J]. Appl. Phys. Lett, 2007, 90:041917-041919.
    [185] Gu X Q, Huo K F, Qian G X, et al. Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate [J]. Appl. Phys. Lett. 2008, 93, 203117-203119.
    [186] Woong-Ki H, Gunho J, Minhyeok C, et al. Influence of surface structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films[J]. Appl. Phys. Lett. 2009, 94: 043103-043105.
    [187] Steckl A J, Park J H, Zavada J M, et al. Prospects for rare earth doped GaN lasers on Si [J]. Materials Today 2007, 10: 20.
    [188] Wang D, Liu Y C, Mu R, et al. The photoluminescence properties of ZnO:N films fabricated by thermally oxidizing Zn3N2 films using plasma-assisted metal-organic chemical vapour deposition [J]. J. Phys.: Condens. Matter 2004, 16:4635-4642.
    [189] Dhanaraj J, Geethalakshmi M, Jagannathan R, et al. Eu3+ doped yttrium oxysulfide nanocrystals– crystallite size and luminescence transition(s) [J]. Chem. Phys. Lett. 2004, 387: 23-28.
    [190] Yan C H, Sun L D, Liao C S, et al. Eu3+ ion as fluorescent probe for detecting the surface effect in nanocrystals [J]. Appl. Phys. Lett, 2003, 82: 3511-3513.
    [191] Peng H S, Song H W, Chen B J, et al. Temperature dependence of luminescent spectraand dynamics in nanocrystalline Y2O3:Eu3+ [J]. J. Chem. Phys. 2003, 118(7): 3277-3280.
    [192] Yang W C, Wang C W, He J H, et al.Facile synthesis of large scale Er-doped ZnO flower-like structures with enhanced 1.54 m infrared emission [J]. Phys. Stat. Sol. A 2008, 205(5): 1190-1195.
    [193] Yang W C, Wang C W, Wang J C, et al. Aligned Er-Doped ZnO Nanorod Arrays with Enhanced 1.54μm Infrared Emission [J]. J. Nanosci. Nanotechnol. 2008, 8, 3363-3368.
    [194] Jia W Y, Monge K, Fernandez F, et al. Energy transfer from the host to Eu3+ in ZnO [J]. Opt. Mater. 2003, 23: 27-32.
    [195] Prezzi D, Eberlein T A G, Filhol J S, et al. Optical and electrical properties of vanadium and erbium in 4H-SiC [J]. Phys. Rev. B 2004, 69: 193202-193205.
    [196] Vanheusden K, Seager C H, Warren, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Appl. Phys. Lett. 1996, 68, 403.
    [197] Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.; Gnade, B. E. Mechanisms behind green photoluminescence in ZnO phosphor powders J. Appl. Phys. 1996, 79(10): 7983-7990.
    [198] Zeng X, Yuan J, Zhang L, et al. Synthesis and Photoluminescent Properties of Rare Earth Doped ZnO Hierarchical Microspheres [J]. J. Phys. Chem. C 2008, 112, 3503-3508.
    [199] ?zgürü, Alivov Y I, Liu C, et al. [J]. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys. 2005, 98:041301-041305.
    [200] Chang W L, Henry O E, Lee D. S, et al. Temperature dependence of energy transfer mechanisms in Eu-doped GaN [J]. J. Appl. Phys. 2004, 95: 7717-7724.
    [201] Bodiou L, Braud A, Direct evidence of trap-mediated excitation in GaN:Er3+ with a two-color experiment Appl. Phys. Lett. 2008, 93(15), 151107-151109.
    [202] Vercaemst R, Poelman D, Fiermans L, et al. A detailed XPS study of the rare earth compounds EuS and EuF3 [J]. J. Electron. Spectrosc. Relat. Phenom. 1995, 74(1): 45-56.
    [203] Zuo J, Xu C Y, Zhang L H, et al., Sb-induced size effects in ZnO nanocrystallites [J]. J. Raman Spectrosc. 2001, 32(11): 979-981.
    [204] Pradhan A K, Zhang K, Loutts G B, et al., Structural and spectroscopic characteristics of ZnO and ZnO:Er3+ nanostructures [J]. J. Phys.: Condens. Mat. 2004, 16: 7123-7130.
    [205] Cheng B C, Xiao Y H, Wu G S, et al. The vibrational properties of one-dimensional ZnO: Ce nanostructures [J]. Appl. Phys. Lett. 2004, 84: 416-418.
    [206] Jaba N, Mermet A, Duval E, et al. Raman spectroscopy studies of Er3+-doped zinc tellurite glasses [J]. J. Non-Cryst. Solids 2005, 351: 833-837.
    [207] Samanta K, Bhattacharya P, Katiyar R S, et al. Raman scattering studies in dilute magnetic semiconductor Zn1?xCoxO [J]. Phys. ReV. B 2006, 73(24): 245213-245217.
    [208] Samanta K, Dussan S, Katiyara R S, Bhattacharya, P. Structural and optical properties of nanocrystalline Zn1?xMnxO[J]. Appl. Phys. Lett. 2007, 90, 261903-261905.
    [209] Wang X F, Xu J B, Yu X J, et al. Structural evidence of secondary phase segregation from the Raman vibrational modes in Zn1?xCoxO (0    [210] Aleksandra D B, Leung Y H, Optical Properties of ZnO Nanostructures [J]. Small 2006, 2: (2): 944-961.
    [211] Wang D D, Yang J H, Xing G Z, et al. Abnormal blueshift of UV emission in single-crystalline ZnO nanowires [J]. J. Lumin. 2009, 129: 996-999.
    [212] Zhang Y, Zhang W, Zheng H, Fabrication and photoluminescence properties of ZnO: Zn hollow microspheres [J]. Scripta Mater. 2007, 57(4): 313-316.
    [213] Djuriscaroni A B, Choy W C H, Roy V A L, et al. Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures [J]. Adv. Funct. Mater. 2004, 14(9):856-864.
    [214] Li D, Leung Y H, Djurisic A B, et al. Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods [J]. Appl. Phys. Lett. 2004, 85: 1601-1603.
    [215] Sadhu S, Sen T, Patra A, et al. Characterization of electronic structure of aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) for phosphorescent organic light emitting devices [J]. Chem. Phys. Lett. 2007, 440: 121-125.
    [216] Zeng X Y, Yuan J L, Wang Z, et al. Nanosheet-Based Microspheres of Eu3+-doped ZnO with Efficient Energy Transfer from ZnO to Eu3+ at Room Temperature [J]. Adv. Mater. 2007, 19 (24): 4510-4514.
    [217] Blasse G, Grabmaier B C, Luminescent Materials, Springer, Berlin: 1994.
    [218] Gauglitz G, Dinh T V, Handbook of Spectroscopy: Wiley-Vch Berlag Gmbh&KGaA, Weinhibeim ISBN 3-527-29782-0, Sec.II
    [219] Sato K, Katayama-Yoshida H, Stabilization of Ferromagnetic States by Electron Doping in Fe-,Co-or Ni-doped ZnO[J]. Jpn. J. Appl. Phys., 2001, 40: L334-336.
    [220] Kane M H, Shalini K, et al. Magnetic properties of bulk Zn1?xMnxO and Zn1?xCoxO single crystals [J]. J. Appl. Phys. 2005, 97: 023906-023911.
    [221] Dhar S, Brandt O, Ramsteiner M, Sapega V F et al. Colossal Magnetic Moment of Gd in GaN, [J]. Phys. Rev. Lett. 2005, 94: 037205-037207.
    [222] Wang X M, Zeng X Q, Wu G S, et al. Surface oxidation behavior of MgNd alloys, [J]. Appl. Surf. Sci. 2007, 253: 9017–9023.
    [223] Majumder S, D Paramanik, Gupta A, et al., Observation of magnetic domains in undoped ZnO grains at room temperature, [J]. Appl. Surf. Sci. 2009, 256: 513–516.
    [224] Zhang Y B, Li S, Goh G K L, et al. Hydrothermal epitaxy of ZnO:Co diluted magnetic semiconducting single crystalline films [J]. Appl. Phys. Lett. 2008, 93: 102510-3
    [225] Gu Z B, Lu M H, Wang J, et al. Structure, optical, and magnetic properties of sputtered manganese and nitrogen-codoped ZnO films [J]. Appl. Phys. Lett. 2006, 88: 082111-082113.
    [226] Parra-Palomino A, Perales–Perez O, Singhal R, et al Structural, optical, and magnetic characterization of monodisperse Fe-doped ZnO nanocrysta, [J]. J. Appl. Phys. 2008, 103: 07D121.
    [227] Livingston J D, A review of coercivity mechanisms, [J]. Journal of Applied Physics, 1981, 52:2544-2560.
    [228]戴道生,钱昆明,[M]铁磁学,科学出版社,1989,p101
    [229]近角聪信著,葛世慧译,[M]铁磁性物理,兰州大学出版社,2002年,p149。
    [230] Whitney T M, Jiang J. S, Searson P C, et al. Chien Fabrication and Magnetic Properties of Arrays of Metallic Nanowires[J]. Science, 1993, 261: 1316-1319.
    [231] Sun L, Hao Y, Chien C-L, Searson P C, et al., Tuning the properties of magnetic nanowires [J]. IBM J. RES. & DEV., 2005 49(1):79-102.
    [232] Sati P, Hayn R, Kuzian R, et al. Magnetic Anisotropy of Co2+ as Signature of Intrinsic Ferromagnetism in ZnO:Co, [J] Phys. Rev. Lett.2006, 96:017203.
    [233] Venkatesan M, Fitzgerald C B, Coey J M D, Unexpected magnetism in a dielectric oxide, [J]. Nature, 2004, 430: 630-634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700